Download citation
Download citation
link to html
The title compound, [Ru(CO3)(η6-C6H6){(C6H11)2P(CH2C10H7)}]·3CHCl3, was synthesized by carbonation of [RuCl26-C6H6){(C6H11)2P(CH2C10H7)}] with NaHCO3 in methanol at room temperature. The RuII atom is surrounded by a benzene ligand, a chelating carbonate group and a phosphane ligand in a piano-stool configuration. The crystal packing is consolidated by C—H...O and C—H...Cl hydrogen-bonding inter­actions between adjacent metal complexes and between the complexes and the solvent mol­ecules. The asymmetric unit contains one metal complex and three chloro­form solvent mol­ecules of which only one was modelled. The estimated diffraction contributions of the other two strongly disordered chloro­form solvent mol­ecules were substracted from the observed diffraction data using the SQUEEZE procedure in PLATON [Spek (2009). Acta Cryst. D65, 148–155].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536814014081/wm5028sup1.cif
Contains datablocks I, Global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536814014081/wm5028Isup2.hkl
Contains datablock I

CCDC reference: 1008559

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.007 Å
  • Some non-H atoms missing
  • R factor = 0.041
  • wR factor = 0.110
  • Data-to-parameter ratio = 19.9

checkCIF/PLATON results

No syntax errors found



Alert level A CHEMW03_ALERT_2_A ALERT: The ratio of given/expected molecular weight as calculated from the _atom_site* data lies outside the range 0.90 <> 1.10 From the CIF: _cell_formula_units_Z 8 From the CIF: _chemical_formula_weight 935.74 TEST: Calculate formula weight from _atom_site_* atom mass num sum C 12.01 31.00 372.34 H 1.01 38.00 38.30 O 16.00 3.00 48.00 P 30.97 1.00 30.97 Cl 35.45 3.00 106.36 Ru 101.07 1.00 101.07 Calculated formula weight 697.04
Author Response: The two omitted disordered chloroform molecules are considered in the molecular formula and therefore also for the molecular weight.
PLAT051_ALERT_1_A Mu(calc) and Mu(CIF) Ratio Differs from 1.0 by .      40.26 %
Author Response: The two omitted disordered chloroform molecules are considered in the formula, but not in the model.

Alert level B Crystal system given = orthorhombic PLAT019_ALERT_1_B _diffrn_measured_fraction_theta_full/_max < 1.0 0.978 Why ?
Alert level C PLAT041_ALERT_1_C Calc. and Reported SumFormula Strings Differ Please Check PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)... Please Check PLAT230_ALERT_2_C Hirshfeld Test Diff for C2 -- C3 .. 5.7 su PLAT230_ALERT_2_C Hirshfeld Test Diff for C11 -- C12 .. 5.8 su PLAT241_ALERT_2_C High Ueq as Compared to Neighbors for ..... C2 Check PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of C31 Check PLAT410_ALERT_2_C Short Intra H...H Contact H8A .. H17 .. 1.95 Ang. PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 2.372 Check PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.595 25 Why ?
Alert level G FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C33 H40 Cl9 O3 P1 Ru1 Atom count from the _atom_site data: C31 H38 Cl3 O3 P1 Ru1 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G ALERT: Large difference may be due to a symmetry error - see SYMMG tests From the CIF: _cell_formula_units_Z 8 From the CIF: _chemical_formula_sum C33 H40 Cl9 O3 P Ru TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 264.00 248.00 16.00 H 320.00 304.00 16.00 Cl 72.00 24.00 48.00 O 24.00 24.00 0.00 P 8.00 8.00 0.00 Ru 8.00 8.00 0.00 PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ Please Check PLAT044_ALERT_1_G Calculated and Reported Density Dx Differ by .. 0.3988 Check PLAT063_ALERT_4_G Crystal Size Likely too Large for Beam Size .... 0.64 mm PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large. 8.47 Why ? PLAT606_ALERT_4_G VERY LARGE Solvent Accessible VOID(S) in Structure ! Info PLAT869_ALERT_4_G ALERTS Related to the use of SQUEEZE Suppressed ! Info PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 73 % PLAT961_ALERT_5_G Dataset Contains no Negative Intensities ....... Please Check
2 ALERT level A = Most likely a serious problem - resolve or explain 1 ALERT level B = A potentially serious problem, consider carefully 9 ALERT level C = Check. Ensure it is not caused by an omission or oversight 11 ALERT level G = General information/check it is not something unexpected 8 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The title compound was prepared in a two step synthesis: In the presence of 60 bar hydrogen, the benzene ruthenium dichloride dimer and the dicyclohexyl(1-naphthoyl)phosphane ligand react to give the [RuCl2(η6-C6H6){(C6H11)2PCH2C10H7)}] complex in 80% yield. Here, the carbonyl group of the ligand is reduced to a methylen unit (Gowrisankar et al., 2014). In the second step the reduced complex was carbonated at room temperature in methanol with 10 equivalent of NaHCO3 to yield the title compound, [Ru(CO3)(η6-C6H6){(C6H11)2PCH2C10H7)}], as a chloroform solvate after recrystallization from a CHCl3/heptane mixture. Related carbonatophosphane ruthenium complexes are known from the literature (Allen et al., 2009; Blosser et al., 2004; Davies et al., 2013; Dell'Amico et al., 2000; Demerseman et al., 2006; Drake et al., 2013).

The asymmetric unit contains one complex and one chloroform solvent molecule (Fig. 1). Contributions of two further strongly disordered solvent molecules (chloroform) were removed from the diffraction data with the SQUEEZE option in PLATON (Spek, 2009). The RuII atom is surrounded by a benzene ligand, a chelating carbonate group and a phosphane ligand (C6H11)2P(CH2C10H7) in a piano-stool geometry. The phosphane ligand is linked through its P atom with a Ru—P bond length of 2.3705 (8) Å; both cyclohexyl rings at the P atom adopt a chair conformation. The molecular structure shows a planar arrangement of the Ru(CO3) fragment (mean deviation of the best plane defined by Ru1, O1, C1, O2, O3 is 0.036 Å). As expected, the exocyclic C—O bond in the Ru(CO3) unit is with 1.242 (4) Å significantly shorter than the two endocyclic C—O bonds (C1—O1 = 1.326 (4) and C1—O2 = 1.309 (4) Å). The complex molecules as well as complex and solvent molecules are linked by C—H···Cl and C—H···O hydrogen bonds (Fig. 2).

The 31P-NMR spectrum of the title complex shows a singulett at 42.5 p.p.m., whereas the reduced complex [RuCl2(η6-C6H6){(C6H11)2PCH2C10H7)}] exhibits an upfield shift to 39.1 p.p.m..

Related literature top

For crystal structures of related carbonatophosphane ruthenium(II) complexes, see: Allen et al. (2009); Blosser et al. (2004); Davies et al. (2013); Dell'Amico et al. (2000); Demerseman et al. (2006); Drake et al. (2013). The starting complex [RuCl2(η6-C6H6)(C6H11)2PCH2C10H7)] was described by Gowrisankar et al. (2014).

Experimental top

At room temperature, a mixture consisting of [RuCl2(η6-C6H6){(C6H11)2P(1-methylnaphthyl)}] (20 mg, 0.034 mmol), NaHCO3(63 mg, 0.34 mmol) and methanol (5 ml) was stirred under argon in a Schlenk tube. The orange suspension changed to a yellow solution. The reaction was completed within 10 min and the solution was filtered over celite. The solvent was removed in vacuo and 18 mg (94%) of a yellow solid was obtained. Crystals suitable for X-ray analysis were grown from a CHCl3/heptane mixture at 245 K. 1H NMR (300 MHz, CDCl3) δ 8.18 (d, J = 8.6 Hz, 1H, naphthyl), 7.88–7.75 (m, 2H, naphthyl), 7.63–7.30 (m, 3H, naphthyl), 7.33 (m, 1H, naphthyl), 5.07 (s, 6H, benzene), 3.55 (d, J = 10.2 Hz, 2H, CH2), 2.14–1.95 (m, 4H, Cy), 1.95–1.79 (m, 4H, Cy), 1.79–1.65 (m, 4H, Cy), 1.67–1.47 (m, 2H, Cy), 1.32–1.01 (m, 8H, Cy). 31P{1H} NMR (121 MHz, CDCl3): δ 42.5.

Refinement top

H atoms were placed in idealized positions with d(C—H) = 0.95 - 1.00 Å (CH), 0.99 Å (CH2) and refined using a riding model with Uiso(H) fixed at 1.2Ueq(C). Contributions of further disordered solvent molecules were removed from the diffraction data with PLATON / SQUEEZE (Spek, 2009). SQUEEZE estimated the electron count in the void volume of 1149 Å3 to be 501; two voids are given. The highest peak in the final difference Fourier map is located 0.86 Å from Ru1 and the deepest hole 0.75 Å from Cl3.

Structure description top

The title compound was prepared in a two step synthesis: In the presence of 60 bar hydrogen, the benzene ruthenium dichloride dimer and the dicyclohexyl(1-naphthoyl)phosphane ligand react to give the [RuCl2(η6-C6H6){(C6H11)2PCH2C10H7)}] complex in 80% yield. Here, the carbonyl group of the ligand is reduced to a methylen unit (Gowrisankar et al., 2014). In the second step the reduced complex was carbonated at room temperature in methanol with 10 equivalent of NaHCO3 to yield the title compound, [Ru(CO3)(η6-C6H6){(C6H11)2PCH2C10H7)}], as a chloroform solvate after recrystallization from a CHCl3/heptane mixture. Related carbonatophosphane ruthenium complexes are known from the literature (Allen et al., 2009; Blosser et al., 2004; Davies et al., 2013; Dell'Amico et al., 2000; Demerseman et al., 2006; Drake et al., 2013).

The asymmetric unit contains one complex and one chloroform solvent molecule (Fig. 1). Contributions of two further strongly disordered solvent molecules (chloroform) were removed from the diffraction data with the SQUEEZE option in PLATON (Spek, 2009). The RuII atom is surrounded by a benzene ligand, a chelating carbonate group and a phosphane ligand (C6H11)2P(CH2C10H7) in a piano-stool geometry. The phosphane ligand is linked through its P atom with a Ru—P bond length of 2.3705 (8) Å; both cyclohexyl rings at the P atom adopt a chair conformation. The molecular structure shows a planar arrangement of the Ru(CO3) fragment (mean deviation of the best plane defined by Ru1, O1, C1, O2, O3 is 0.036 Å). As expected, the exocyclic C—O bond in the Ru(CO3) unit is with 1.242 (4) Å significantly shorter than the two endocyclic C—O bonds (C1—O1 = 1.326 (4) and C1—O2 = 1.309 (4) Å). The complex molecules as well as complex and solvent molecules are linked by C—H···Cl and C—H···O hydrogen bonds (Fig. 2).

The 31P-NMR spectrum of the title complex shows a singulett at 42.5 p.p.m., whereas the reduced complex [RuCl2(η6-C6H6){(C6H11)2PCH2C10H7)}] exhibits an upfield shift to 39.1 p.p.m..

For crystal structures of related carbonatophosphane ruthenium(II) complexes, see: Allen et al. (2009); Blosser et al. (2004); Davies et al. (2013); Dell'Amico et al. (2000); Demerseman et al. (2006); Drake et al. (2013). The starting complex [RuCl2(η6-C6H6)(C6H11)2PCH2C10H7)] was described by Gowrisankar et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atoms at the 30% probability level for the displacement ellipsoids. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. A packing diagram of the title compound showing hydrogen bonds as dashed lines.
(η6-Benzene)(carbonato-κ2O,O')[dicyclohexyl(naphthalen-1-ylmethyl)phosphane-κP]ruthenium(II) chloroform trisolvate top
Crystal data top
[Ru(CO3)(C6H6)(C23H31P)]·3CHCl3Dx = 1.563 Mg m3
Mr = 935.74Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcaCell parameters from 9902 reflections
a = 22.1730 (4) Åθ = 3.7–66.2°
b = 15.1385 (3) ŵ = 9.40 mm1
c = 23.6954 (5) ÅT = 150 K
V = 7953.7 (3) Å3Needle, yellow
Z = 80.64 × 0.08 × 0.05 mm
F(000) = 3792
Data collection top
Bruker Kappa APEXII DUO
diffractometer
6998 independent reflections
Radiation source: microfocus5815 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.062
Detector resolution: 8.3333 pixels mm-1θmax = 66.6°, θmin = 3.7°
ω and φ scansh = 2625
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1717
Tmin = 0.065, Tmax = 0.651l = 2827
68879 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.050P)2 + 8.4698P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
6998 reflectionsΔρmax = 1.17 e Å3
352 parametersΔρmin = 0.79 e Å3
Crystal data top
[Ru(CO3)(C6H6)(C23H31P)]·3CHCl3V = 7953.7 (3) Å3
Mr = 935.74Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 22.1730 (4) ŵ = 9.40 mm1
b = 15.1385 (3) ÅT = 150 K
c = 23.6954 (5) Å0.64 × 0.08 × 0.05 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
6998 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5815 reflections with I > 2σ(I)
Tmin = 0.065, Tmax = 0.651Rint = 0.062
68879 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.07Δρmax = 1.17 e Å3
6998 reflectionsΔρmin = 0.79 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C310.03361 (18)0.8411 (3)0.0554 (2)0.0638 (12)
H310.07320.81840.06950.077*
Cl10.00779 (7)0.92264 (10)0.10140 (6)0.0870 (4)
Cl20.04409 (5)0.88587 (10)0.01171 (6)0.0783 (4)
Cl30.01875 (5)0.75354 (8)0.05459 (7)0.0812 (4)
C10.18339 (13)0.1129 (2)0.06775 (15)0.0346 (7)
C20.1466 (2)0.1023 (3)0.0075 (2)0.0668 (14)
H20.12350.07400.03610.080*
C30.12336 (17)0.1126 (3)0.0464 (2)0.0598 (12)
H30.08360.09310.05440.072*
C40.15773 (19)0.1512 (2)0.0888 (2)0.0572 (11)
H40.14240.15370.12620.069*
C50.21390 (18)0.1860 (2)0.07708 (19)0.0509 (9)
H50.23620.21520.10570.061*
C60.23753 (16)0.1778 (2)0.02288 (19)0.0489 (9)
H60.27610.20220.01500.059*
C70.2066 (2)0.1351 (3)0.01994 (19)0.0580 (11)
H70.22410.12760.05620.070*
C80.31201 (14)0.1025 (2)0.11038 (15)0.0371 (7)
H8A0.27700.10580.13620.045*
H8B0.30360.14380.07890.045*
C90.36532 (14)0.1397 (2)0.14218 (16)0.0387 (8)
C100.41559 (16)0.1674 (3)0.1131 (2)0.0533 (10)
H100.41720.16100.07330.064*
C110.46469 (19)0.2052 (3)0.1421 (3)0.0810 (18)
H110.49890.22470.12150.097*
C120.4639 (2)0.2142 (4)0.1988 (3)0.0815 (17)
H120.49800.23870.21740.098*
C130.4139 (2)0.1880 (3)0.2304 (2)0.0621 (12)
C140.4120 (3)0.1993 (4)0.2895 (2)0.0862 (18)
H140.44680.22100.30840.103*
C150.3619 (4)0.1801 (4)0.3205 (3)0.101 (2)
H150.36150.18870.36020.121*
C160.3109 (3)0.1471 (4)0.2924 (2)0.0869 (17)
H160.27570.13370.31360.104*
C170.3106 (2)0.1339 (3)0.23569 (19)0.0598 (11)
H170.27510.11200.21820.072*
C180.36244 (16)0.1520 (2)0.20162 (17)0.0443 (8)
C190.34391 (14)0.0887 (2)0.13099 (14)0.0356 (7)
H190.34040.14820.11290.043*
C200.30672 (17)0.0935 (2)0.18484 (16)0.0461 (8)
H20A0.31110.03760.20620.055*
H20B0.26360.10100.17520.055*
C210.3276 (2)0.1705 (3)0.22123 (19)0.0596 (11)
H21A0.30370.17210.25650.072*
H21B0.32080.22670.20080.072*
C220.3943 (2)0.1608 (4)0.2353 (2)0.0681 (13)
H22A0.40770.21260.25750.082*
H22B0.40030.10740.25870.082*
C230.43187 (18)0.1536 (3)0.18300 (19)0.0576 (11)
H23A0.47460.14450.19370.069*
H23B0.42920.20960.16150.069*
C240.41101 (15)0.0771 (2)0.14555 (17)0.0450 (8)
H24A0.41700.02040.16560.054*
H24B0.43520.07580.11040.054*
C250.36856 (15)0.0046 (2)0.02310 (15)0.0390 (7)
H250.40620.02060.03990.047*
C260.38481 (18)0.0969 (3)0.00015 (18)0.0537 (10)
H26A0.34880.12360.01800.064*
H26B0.39750.13570.03130.064*
C270.4356 (2)0.0903 (4)0.0434 (2)0.0668 (13)
H27A0.44480.14990.05840.080*
H27B0.47240.06740.02480.080*
C280.4183 (2)0.0297 (4)0.0917 (2)0.0828 (17)
H28A0.38430.05590.11290.099*
H28B0.45290.02360.11780.099*
C290.4004 (2)0.0598 (4)0.0700 (2)0.0771 (16)
H29A0.43630.08900.05360.092*
H29B0.38650.09630.10220.092*
C300.35006 (18)0.0565 (3)0.02506 (18)0.0586 (11)
H30A0.31230.03470.04240.070*
H30B0.34260.11660.01020.070*
O10.18027 (9)0.05130 (14)0.10738 (10)0.0363 (5)
O20.20684 (9)0.08313 (15)0.02076 (10)0.0365 (5)
O30.16578 (10)0.19007 (15)0.07473 (12)0.0455 (6)
P10.31196 (3)0.00947 (5)0.08005 (4)0.03076 (17)
Ru10.21220 (2)0.04581 (2)0.05258 (2)0.03286 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C310.040 (2)0.064 (3)0.088 (3)0.0052 (19)0.009 (2)0.016 (2)
Cl10.0890 (9)0.0875 (9)0.0845 (9)0.0228 (7)0.0002 (7)0.0021 (7)
Cl20.0510 (6)0.1074 (10)0.0766 (8)0.0010 (6)0.0000 (5)0.0143 (7)
Cl30.0556 (6)0.0563 (6)0.1317 (12)0.0060 (5)0.0115 (7)0.0108 (7)
C10.0250 (14)0.0301 (17)0.049 (2)0.0032 (12)0.0052 (13)0.0029 (14)
C20.068 (3)0.038 (2)0.094 (4)0.0077 (19)0.050 (3)0.008 (2)
C30.0327 (18)0.037 (2)0.110 (4)0.0105 (15)0.002 (2)0.016 (2)
C40.059 (2)0.0327 (19)0.080 (3)0.0206 (17)0.011 (2)0.0012 (19)
C50.063 (2)0.0221 (16)0.068 (3)0.0063 (15)0.007 (2)0.0026 (16)
C60.0422 (18)0.0268 (17)0.078 (3)0.0011 (14)0.0052 (19)0.0159 (17)
C70.083 (3)0.039 (2)0.052 (2)0.0145 (19)0.008 (2)0.0156 (18)
C80.0340 (16)0.0285 (15)0.049 (2)0.0033 (13)0.0107 (14)0.0073 (14)
C90.0334 (16)0.0254 (15)0.057 (2)0.0059 (12)0.0077 (15)0.0074 (14)
C100.043 (2)0.0402 (19)0.076 (3)0.0020 (16)0.0048 (19)0.0169 (19)
C110.038 (2)0.050 (2)0.154 (6)0.0098 (18)0.013 (3)0.039 (3)
C120.046 (2)0.074 (3)0.125 (5)0.000 (2)0.032 (3)0.047 (3)
C130.064 (3)0.046 (2)0.077 (3)0.0015 (19)0.033 (2)0.009 (2)
C140.121 (5)0.062 (3)0.075 (4)0.013 (3)0.055 (4)0.006 (3)
C150.181 (7)0.065 (3)0.058 (3)0.030 (4)0.031 (4)0.002 (3)
C160.138 (5)0.065 (3)0.058 (3)0.028 (3)0.009 (3)0.008 (2)
C170.075 (3)0.046 (2)0.059 (3)0.012 (2)0.005 (2)0.0082 (19)
C180.0495 (19)0.0279 (16)0.055 (2)0.0054 (14)0.0157 (17)0.0057 (15)
C190.0371 (16)0.0287 (15)0.0411 (18)0.0097 (13)0.0055 (14)0.0017 (14)
C200.0454 (18)0.044 (2)0.049 (2)0.0112 (16)0.0032 (16)0.0035 (17)
C210.066 (3)0.061 (3)0.053 (2)0.015 (2)0.003 (2)0.016 (2)
C220.069 (3)0.077 (3)0.057 (3)0.029 (2)0.015 (2)0.012 (2)
C230.052 (2)0.054 (2)0.066 (3)0.0213 (18)0.019 (2)0.003 (2)
C240.0366 (17)0.0430 (19)0.056 (2)0.0071 (15)0.0097 (16)0.0043 (16)
C250.0353 (16)0.0423 (18)0.0395 (18)0.0049 (14)0.0014 (14)0.0034 (15)
C260.053 (2)0.054 (2)0.054 (2)0.0086 (18)0.0118 (18)0.0227 (19)
C270.061 (3)0.077 (3)0.062 (3)0.016 (2)0.020 (2)0.025 (2)
C280.064 (3)0.118 (5)0.067 (3)0.037 (3)0.020 (2)0.025 (3)
C290.056 (3)0.108 (4)0.067 (3)0.024 (3)0.001 (2)0.030 (3)
C300.048 (2)0.081 (3)0.047 (2)0.014 (2)0.0018 (18)0.016 (2)
O10.0323 (11)0.0287 (11)0.0479 (14)0.0004 (8)0.0041 (10)0.0046 (10)
O20.0351 (11)0.0357 (12)0.0387 (13)0.0009 (9)0.0075 (9)0.0021 (10)
O30.0351 (11)0.0276 (12)0.0739 (18)0.0011 (9)0.0048 (12)0.0023 (12)
P10.0283 (4)0.0257 (4)0.0383 (4)0.0019 (3)0.0040 (3)0.0038 (3)
Ru10.02876 (14)0.02455 (14)0.04527 (16)0.00038 (8)0.00458 (10)0.00306 (10)
Geometric parameters (Å, º) top
C31—Cl21.744 (5)C16—C171.359 (7)
C31—Cl11.743 (5)C16—H160.9500
C31—Cl31.762 (4)C17—C181.431 (6)
C31—H311.0000C17—H170.9500
C1—O31.242 (4)C19—C201.521 (5)
C1—O21.309 (4)C19—C241.537 (4)
C1—O11.326 (4)C19—P11.844 (3)
C1—Ru12.513 (3)C19—H191.0000
C2—C31.386 (7)C20—C211.522 (5)
C2—C71.451 (7)C20—H20A0.9900
C2—Ru12.209 (4)C20—H20B0.9900
C2—H20.9500C21—C221.524 (6)
C3—C41.390 (7)C21—H21A0.9900
C3—Ru12.219 (4)C21—H21B0.9900
C3—H30.9500C22—C231.497 (6)
C4—C51.380 (6)C22—H22A0.9900
C4—Ru12.177 (4)C22—H22B0.9900
C4—H40.9500C23—C241.531 (5)
C5—C61.393 (6)C23—H23A0.9900
C5—Ru12.200 (4)C23—H23B0.9900
C5—H50.9500C24—H24A0.9900
C6—C71.384 (6)C24—H24B0.9900
C6—Ru12.192 (3)C25—C301.525 (5)
C6—H60.9500C25—C261.545 (5)
C7—Ru12.190 (4)C25—P11.844 (3)
C7—H70.9500C25—H251.0000
C8—C91.511 (4)C26—C271.526 (5)
C8—P11.841 (3)C26—H26A0.9900
C8—H8A0.9900C26—H26B0.9900
C8—H8B0.9900C27—C281.516 (8)
C9—C101.376 (5)C27—H27A0.9900
C9—C181.422 (5)C27—H27B0.9900
C10—C111.409 (6)C28—C291.502 (8)
C10—H100.9500C28—H28A0.9900
C11—C121.349 (8)C28—H28B0.9900
C11—H110.9500C29—C301.544 (6)
C12—C131.397 (8)C29—H29A0.9900
C12—H120.9500C29—H29B0.9900
C13—C141.412 (8)C30—H30A0.9900
C13—C181.437 (5)C30—H30B0.9900
C14—C151.363 (9)O1—Ru12.085 (2)
C14—H140.9500O2—Ru12.096 (2)
C15—C161.404 (9)P1—Ru12.3705 (8)
C15—H150.9500
Cl2—C31—Cl1109.8 (3)C23—C22—H22B109.3
Cl2—C31—Cl3111.7 (3)C21—C22—H22B109.3
Cl1—C31—Cl3108.8 (2)H22A—C22—H22B108.0
Cl2—C31—H31108.8C22—C23—C24111.5 (3)
Cl1—C31—H31108.8C22—C23—H23A109.3
Cl3—C31—H31108.8C24—C23—H23A109.3
O3—C1—O2124.2 (3)C22—C23—H23B109.3
O3—C1—O1123.4 (3)C24—C23—H23B109.3
O2—C1—O1112.4 (3)H23A—C23—H23B108.0
O3—C1—Ru1176.4 (2)C23—C24—C19109.6 (3)
O2—C1—Ru156.47 (15)C23—C24—H24A109.8
O1—C1—Ru156.03 (15)C19—C24—H24A109.8
C3—C2—C7119.3 (4)C23—C24—H24B109.8
C3—C2—Ru172.2 (2)C19—C24—H24B109.8
C7—C2—Ru170.1 (2)H24A—C24—H24B108.2
C3—C2—H2120.4C30—C25—C26110.1 (3)
C7—C2—H2120.4C30—C25—P1112.9 (3)
Ru1—C2—H2129.8C26—C25—P1112.5 (3)
C2—C3—C4120.7 (4)C30—C25—H25107.0
C2—C3—Ru171.3 (2)C26—C25—H25107.0
C4—C3—Ru169.9 (2)P1—C25—H25107.0
C2—C3—H3119.7C27—C26—C25110.6 (3)
C4—C3—H3119.7C27—C26—H26A109.5
Ru1—C3—H3132.0C25—C26—H26A109.5
C5—C4—C3120.7 (4)C27—C26—H26B109.5
C5—C4—Ru172.5 (2)C25—C26—H26B109.5
C3—C4—Ru173.2 (2)H26A—C26—H26B108.1
C5—C4—H4119.7C28—C27—C26111.1 (4)
C3—C4—H4119.7C28—C27—H27A109.4
Ru1—C4—H4126.5C26—C27—H27A109.4
C4—C5—C6119.4 (4)C28—C27—H27B109.4
C4—C5—Ru170.7 (2)C26—C27—H27B109.4
C6—C5—Ru171.2 (2)H27A—C27—H27B108.0
C4—C5—H5120.3C29—C28—C27110.8 (4)
C6—C5—H5120.3C29—C28—H28A109.5
Ru1—C5—H5130.3C27—C28—H28A109.5
C7—C6—C5122.1 (4)C29—C28—H28B109.5
C7—C6—Ru171.5 (2)C27—C28—H28B109.5
C5—C6—Ru171.9 (2)H28A—C28—H28B108.1
C7—C6—H6119.0C28—C29—C30113.4 (4)
C5—C6—H6119.0C28—C29—H29A108.9
Ru1—C6—H6130.4C30—C29—H29A108.9
C6—C7—C2117.8 (4)C28—C29—H29B108.9
C6—C7—Ru171.6 (2)C30—C29—H29B108.9
C2—C7—Ru171.4 (2)H29A—C29—H29B107.7
C6—C7—H7121.1C25—C30—C29110.0 (4)
C2—C7—H7121.1C25—C30—H30A109.7
Ru1—C7—H7127.8C29—C30—H30A109.7
C9—C8—P1122.6 (2)C25—C30—H30B109.7
C9—C8—H8A106.7C29—C30—H30B109.7
P1—C8—H8A106.7H30A—C30—H30B108.2
C9—C8—H8B106.7C1—O1—Ru192.15 (19)
P1—C8—H8B106.7C1—O2—Ru192.16 (19)
H8A—C8—H8B106.6C8—P1—C19110.09 (15)
C10—C9—C18119.5 (3)C8—P1—C25104.37 (16)
C10—C9—C8119.9 (4)C19—P1—C25104.11 (15)
C18—C9—C8120.5 (3)C8—P1—Ru1108.75 (10)
C9—C10—C11120.4 (5)C19—P1—Ru1112.78 (11)
C9—C10—H10119.8C25—P1—Ru1116.32 (11)
C11—C10—H10119.8O1—Ru1—O263.14 (9)
C12—C11—C10121.1 (5)O1—Ru1—C494.77 (13)
C12—C11—H11119.4O2—Ru1—C4142.45 (13)
C10—C11—H11119.4O1—Ru1—C7154.77 (14)
C11—C12—C13121.0 (4)O2—Ru1—C7106.83 (13)
C11—C12—H12119.5C4—Ru1—C779.91 (17)
C13—C12—H12119.5O1—Ru1—C6158.39 (14)
C12—C13—C14121.5 (5)O2—Ru1—C6138.42 (14)
C12—C13—C18118.9 (4)C4—Ru1—C666.45 (16)
C14—C13—C18119.6 (5)C7—Ru1—C636.83 (16)
C15—C14—C13122.2 (5)O1—Ru1—C5121.43 (13)
C15—C14—H14118.9O2—Ru1—C5173.76 (13)
C13—C14—H14118.9C4—Ru1—C536.75 (15)
C14—C15—C16118.5 (5)C7—Ru1—C567.20 (16)
C14—C15—H15120.7C6—Ru1—C536.98 (16)
C16—C15—H15120.7O1—Ru1—C2116.80 (15)
C17—C16—C15121.6 (6)O2—Ru1—C295.23 (13)
C17—C16—H16119.2C4—Ru1—C266.72 (19)
C15—C16—H16119.2C7—Ru1—C238.51 (18)
C16—C17—C18121.7 (5)C6—Ru1—C266.96 (15)
C16—C17—H17119.1C5—Ru1—C278.94 (16)
C18—C17—H17119.1O1—Ru1—C393.51 (13)
C9—C18—C17124.7 (3)O2—Ru1—C3110.50 (13)
C9—C18—C13119.0 (4)C4—Ru1—C336.84 (18)
C17—C18—C13116.3 (4)C7—Ru1—C367.43 (18)
C20—C19—C24110.0 (3)C6—Ru1—C377.92 (14)
C20—C19—P1111.8 (2)C5—Ru1—C366.00 (15)
C24—C19—P1116.4 (2)C2—Ru1—C336.48 (18)
C20—C19—H19106.0O1—Ru1—P188.99 (6)
C24—C19—H19106.0O2—Ru1—P186.30 (6)
P1—C19—H19106.0C4—Ru1—P1125.43 (13)
C19—C20—C21110.3 (3)C7—Ru1—P1114.30 (13)
C19—C20—H20A109.6C6—Ru1—P193.47 (9)
C21—C20—H20A109.6C5—Ru1—P197.78 (11)
C19—C20—H20B109.6C2—Ru1—P1151.84 (15)
C21—C20—H20B109.6C3—Ru1—P1162.24 (13)
H20A—C20—H20B108.1O1—Ru1—C131.82 (10)
C20—C21—C22110.2 (4)O2—Ru1—C131.38 (10)
C20—C21—H21A109.6C4—Ru1—C1120.25 (14)
C22—C21—H21A109.6C7—Ru1—C1133.50 (15)
C20—C21—H21B109.6C6—Ru1—C1169.46 (15)
C22—C21—H21B109.6C5—Ru1—C1152.76 (14)
H21A—C21—H21B108.1C2—Ru1—C1107.16 (13)
C23—C22—C21111.5 (4)C3—Ru1—C1102.69 (12)
C23—C22—H22A109.3P1—Ru1—C188.63 (7)
C21—C22—H22A109.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.952.513.179 (5)127
C29—H29A···Cl3ii0.992.683.457 (6)135
C31—H31···O3iii1.002.063.004 (5)156
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.952.513.179 (5)127.2
C29—H29A···Cl3ii0.992.683.457 (6)135.2
C31—H31···O3iii1.002.063.004 (5)156.2
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds