Download citation
Download citation
link to html
The crystal structure of the title compound consists of a polymeric chain of SmIII cations and nitrate anions, cross-linked in two dimensions with an organic ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536814020078/wm5049sup1.cif
Contains datablocks I, I_rev1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536814020078/wm5049Isup2.hkl
Contains datablock I

CCDC reference: 1023116

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.027
  • wR factor = 0.068
  • Data-to-parameter ratio = 13.7

checkCIF/PLATON results

No syntax errors found



Alert level B Crystal system given = triclinic PLAT220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) Range 7.9 Ratio PLAT222_ALERT_3_B Large Non-Solvent H Uiso(max)/Uiso(min) .. 8.9 Ratio PLAT731_ALERT_1_B Bond Calc 1.461(6), Rep 1.4609(2) ...... 10 su-Rat O3 -C4 1.555 1.555 # 99 PLAT731_ALERT_1_B Bond Calc 1.541(8), Rep 1.5409(2) ...... 10 su-Rat C4 -C5 1.555 1.555 # 102
Alert level C PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) Range 3.8 Ratio PLAT234_ALERT_4_C Large Hirshfeld Difference O3 -- C4 .. 0.18 Ang. PLAT241_ALERT_2_C High Ueq as Compared to Neighbors for ..... O4 Check PLAT242_ALERT_2_C Low Ueq as Compared to Neighbors for ..... P1 Check PLAT242_ALERT_2_C Low Ueq as Compared to Neighbors for ..... C6 Check PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 2 Report PLAT976_ALERT_2_C Check Calcd Residual Density 0.99A From O27 -0.53 eA-3 PLAT976_ALERT_2_C Check Calcd Residual Density 0.95A From O27 -0.43 eA-3
Alert level G PLAT004_ALERT_5_G Polymeric Structure Found with Dimension ....... 2 Info PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do ! PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms .............. 4 Report PLAT154_ALERT_1_G The su's on the Cell Angles are Equal .......... 0.00100 Degree PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Sm1 -- O22 .. 6.5 su PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Sm1 -- O11_a .. 6.7 su PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Sm2 -- O9 .. 6.3 su PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Sm2 -- O13 .. 6.6 su PLAT432_ALERT_2_G Short Inter X...Y Contact O20 .. C5 .. 3.02 Ang. PLAT764_ALERT_4_G Overcomplete CIF Bond List Detected (Rep/Expd) . 1.12 Ratio PLAT794_ALERT_5_G Tentative Bond Valency for Sm1 (III) ..... 3.79 Note PLAT860_ALERT_3_G Number of Least-Squares Restraints ............. 26 Note PLAT910_ALERT_3_G Missing # of FCF Reflections Below Th(Min) ..... 1 Report PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 13 Note
0 ALERT level A = Most likely a serious problem - resolve or explain 4 ALERT level B = A potentially serious problem, consider carefully 8 ALERT level C = Check. Ensure it is not caused by an omission or oversight 14 ALERT level G = General information/check it is not something unexpected 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 12 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 4 ALERT type 5 Informative message, check

Chemical context top

The carbamoyl­methyl­phosphine oxide (CMPO) moiety has been well studied as a chelating group for lanthanoides and actinoides. To this end, this bidentate phospho­ryl/carbonyl moiety is a component of the TRUEX process for the treatment of nuclear waste (Siddall, 1963; Horwitz et al., 1985). A handful of ligands bearing CMPO groups linked through tri- and tetra­podal caps have been reported in the literature in an attempt to increase the binding strength and selectivity toward f-elements (Arnaud-Neu et al., 1996; Peters et al., 2002; Sharova et al., 2012; Sartain et al., 2014). The title compound, [Sm2(NO3)6(C14H30N2O8P2)(H2O)], is another representative.

Structural commentary top

The asymmetric unit of the title compound contains two SmIII ions, one nine-coordinate and one 12-coordinate, two halves of the di-CMPO ligand tetra­ethyl [(ethane-1,2-diyl)bis­(aza­nediyl)bis­(2-oxo­ethane-2,1-diyl)]di­phospho­nate, six nitrate anions and one coordinating water molecule (Fig. 1). The 12-coordinate SmIII cation (Sm1) is surrounded by six bidentate nitrate ions [range of Sm—O bond lengths = 2.485 (3)–2.705 (3) Å], while the nine-coordinate SmIII cation bears another bidentate nitrate ligand, one water molecule, and two CMPO groups from separate organic ligands [range of Sm—O bond lengths = 2.340 (3)–2.625 (3) Å].

The large displacement parameters of the methyl group (C5) are likely due to large thermal motion of this terminal group (see Refinement section for more discussion on the treatment of this disorder).

The SmIII metal cations are bridged through shared bis-bidentate nitrate anions (N3 and N4), forming a corrugated chain (Fig. 2, bottom) parallel to the a axis. In this figure, bridging bis-bidentate nitrate ions are shown in pink, while nitrate ions bound only to the 12-coordinate SmIII cation are shown in purple. The nine-coordinate SmIII ions of the metal chain are also linked by the organic ligand. The organic ligand lies on an inversion center, lies along the c axis, and cross-links the metal chains (Fig. 2, top). This cross-linking results in sheets that extend parallel to the ac plane (Fig. 3).

Supra­molecular features top

The lanthanide–organic polymer is reinforced through two separate hydrogen-bonding motifs (Table 1). In the linear metal chain, each H atom (H27A and H27B) of the water molecule bound to Sm2 forms a hydrogen bond with an O atom of a nitrate group on Sm1 (Fig. 2, bottom). In the formation of the cross-linked sheets, the amide NH groups (H1 and H2) form hydrogen bonds with O atoms of two separate nitrate groups bound to Sm1 (Fig. 3). These inter­actions likely act to rigidify both the SmIII chain and the cross-linked organometallic sheets.

These metal–organic sheets are stacked along the b axis using only van der Waals forces (Fig. 4). No inter­molecular hydrogen bonds or shared chelating groups are found between the sheets in this third dimension.

Database survey top

While numerous polymeric structures of lanthanide–organic compounds can be found in the Cambridge Structural Database (CSD; Version 5.35, last update February 2014; Allen, 2002), one inter­esting feature of this structure is the bidentate bridging of two lanthanides by one shared nitrate group (Fig. 2, bottom; pink-coloured nitrate groups). At present, only four other examples (Albrecht et al., 2005; Hashimoto et al., 2000) with this bidentate bridging motif have been submitted to the CSD.

Synthesis and crystallization top

The CMPO ligand was prepared following a reported procedure (Hamadouchi et al., 1999), using ethyl­enedi­amine in place of methyl­amine. This compound was isolated as a white solid. The title metal–ligand coordination polymer was prepared by dissolving the ligand in a minimum amount of aceto­nitrile. To this solution were added 2 molar equivalents of samarium(III) nitrate hexahydrate as a solution in aceto­nitrile. The mixture was stirred at room temperature overnight and concentrated under reduced pressure to give an off-white solid. Crystals suitable for X-ray diffraction were grown from vapor diffusion of toluene into a solution of the 2:1 SmIII–ligand complex in aceto­nitrile.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in calculated positions and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N) for methyl­ene and amino groups, and 1.5Ueq(C,O) for methyl and water groups. C—H distances were restrained to 0.98 Å for methyl and 0.99 Å for methyl­ene H atoms, N—H distances to 0.88 Å and O—H distances to 0.89 Å. One of the methyl groups on the organic ligand (C5) has relatively large displacement ellipsoids that we attribute to large thermal motion of this terminal group. Attempts to model this disorder by assigning two atom locations for C5 or the entire eth­oxy group were unsuccessful. The O3—C4 and C4—C5 bond lengths were constrained using DFIX instructions in SHELXL (Sheldrick, 2008) at 1.46 and 1.54 Å, respectively, to model more accurate bond lengths. The displacement parameters of all methyl groups (C5, C7, C12 and C14) were also treated with ISOR instructions to produce more uniform ellipsoids for these terminal atoms.

Related literature top

For related literature, see: Albrecht et al. (2005); Allen (2002); Arnaud-Neu, Böhmer, Dozol, Grattner, Jakobi, Kraft, Mauprivez, Rouquette, Schwing-Weill, Simon & Vogt (1996); Hamadouchi et al. (1999); Hashimoto et al. (2000); Horwitz et al. (1985); Peters et al. (2002); Sartain et al. (2014); Sharova et al. (2012); Sheldrick (2008).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The coordination environments of the SmIII cations of the title compound, showing displacement ellipsoids at the 50% probability level and the atom-numbering scheme. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. (Top) The Sm2 cations of each metal chain are linked to a neighboring metal chain via the di-CMPO organic ligands. Color codes: black C, light green Sm1, dark green Sm2, red O, blue N, and orange P. (Bottom) The metal chain showing alternating Sm1 and Sm2 cations, linked through bridging bis-bidentate nitrate groups shown in pink. Non-bridging nitrate groups are shown in purple. Hydrogen bonds between the water molecule on Sm2 and nitrate groups on Sm1 are shown as dashed lines.
[Figure 3] Fig. 3. Sheets formed by the cross-linking of the SmIII chains with the di-CMPO organic ligands (viewed down the b axis). Hydrogen bonds between the amide NH groups and metal bound nitrate anions are shown as dashed lines.
[Figure 4] Fig. 4. Stacking diagram for the title compound. The horizontal sheets pack vertically with only van der Waals forces.
Poly[aquabis(µ-nitrato-κ4O,O':O,O'')tetrakis(nitrato-κ2O,O'){µ4-tetraethyl [(ethane-1,2-diyl)bis(azanediyl)bis(2-oxoethane-2,1-diyl)]diphosphonate-κ2O,O'}disamarium(III)] top
Crystal data top
[Sm2(NO3)6(C14H30N2O8P2)(H2O)]Z = 2
Mr = 1107.11F(000) = 1084
Triclinic, P1Dx = 2.060 Mg m3
a = 8.9416 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.0128 (9) ÅCell parameters from 9076 reflections
c = 18.4635 (15) Åθ = 2.2–25.5°
α = 81.441 (1)°µ = 3.46 mm1
β = 83.428 (1)°T = 173 K
γ = 86.977 (1)°Plate, colourless
V = 1784.9 (2) Å30.21 × 0.20 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
5801 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1010
Tmin = 0.648, Tmax = 0.745k = 1313
29697 measured reflectionsl = 2222
6597 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.031P)2 + 3.3158P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
6597 reflectionsΔρmax = 1.12 e Å3
483 parametersΔρmin = 0.83 e Å3
26 restraints
Crystal data top
[Sm2(NO3)6(C14H30N2O8P2)(H2O)]γ = 86.977 (1)°
Mr = 1107.11V = 1784.9 (2) Å3
Triclinic, P1Z = 2
a = 8.9416 (7) ÅMo Kα radiation
b = 11.0128 (9) ŵ = 3.46 mm1
c = 18.4635 (15) ÅT = 173 K
α = 81.441 (1)°0.21 × 0.20 × 0.07 mm
β = 83.428 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6597 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
5801 reflections with I > 2σ(I)
Tmin = 0.648, Tmax = 0.745Rint = 0.034
29697 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02726 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.09Δρmax = 1.12 e Å3
6597 reflectionsΔρmin = 0.83 e Å3
483 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4236 (5)0.3466 (4)0.4463 (2)0.0310 (11)
H1A0.43640.32410.49920.037*
H1B0.51330.39120.42190.037*
C20.2843 (5)0.4287 (4)0.4379 (2)0.0251 (9)
C30.0696 (5)0.5385 (4)0.4953 (2)0.0344 (11)
H3A0.07360.59350.44760.041*
H3B0.06290.59040.53500.041*
C60.6269 (6)0.0574 (5)0.3611 (3)0.0445 (13)
H6A0.66090.01720.39280.053*
H6B0.54790.03430.33270.053*
C70.7535 (9)0.1088 (6)0.3109 (4)0.078 (2)
H7A0.72140.18740.28370.117*
H7B0.78810.05160.27610.117*
H7C0.83600.12200.33920.117*
C80.0825 (5)0.3555 (4)0.0759 (2)0.0220 (9)
H8A0.06970.33710.02620.026*
H8B0.01020.39950.09450.026*
C90.2156 (5)0.4353 (4)0.0718 (2)0.0195 (8)
C100.4285 (5)0.5407 (4)0.0025 (2)0.0254 (9)
H10A0.42050.59510.03610.030*
H10B0.43400.59320.05110.030*
C110.3455 (6)0.0601 (5)0.1246 (3)0.0476 (14)
H11A0.39930.10390.15630.057*
H11B0.42020.03500.08530.057*
C120.2811 (8)0.0504 (6)0.1690 (4)0.070 (2)
H12A0.23000.09570.13780.104*
H12B0.20850.02660.20880.104*
H12C0.36190.10290.19020.104*
C130.0892 (6)0.0737 (5)0.0967 (3)0.0457 (13)
H13A0.08790.01460.11730.055*
H13B0.02120.08410.05020.055*
C140.2433 (6)0.1154 (6)0.0820 (3)0.0557 (15)
H14A0.27970.06490.04860.084*
H14B0.24320.20160.05900.084*
H14C0.30960.10750.12840.084*
N10.2069 (4)0.4607 (4)0.49749 (18)0.0324 (9)
H10.23920.43420.54050.039*
N20.2952 (4)0.4660 (3)0.00718 (17)0.0238 (8)
H20.26660.44020.03180.029*
N30.5773 (4)0.4028 (3)0.20518 (17)0.0187 (7)
N40.0810 (4)0.4035 (3)0.30951 (18)0.0201 (7)
N50.1376 (4)0.7647 (3)0.34168 (19)0.0282 (8)
N60.5159 (4)0.6838 (3)0.3522 (2)0.0276 (8)
N70.0156 (4)0.6943 (3)0.11928 (19)0.0244 (8)
N80.4015 (4)0.7661 (3)0.11347 (19)0.0246 (8)
O10.3540 (3)0.2348 (3)0.33183 (15)0.0264 (7)
O20.2458 (3)0.4644 (3)0.37532 (14)0.0256 (7)
O40.5669 (5)0.1506 (4)0.4063 (2)0.0675 (14)
O50.1545 (3)0.2391 (3)0.20820 (15)0.0230 (6)
O60.2338 (3)0.1437 (3)0.09119 (16)0.0318 (7)
O70.0363 (3)0.1451 (3)0.14912 (17)0.0341 (8)
O80.2492 (3)0.4708 (3)0.12877 (14)0.0232 (6)
O90.4987 (3)0.3265 (3)0.18599 (15)0.0224 (6)
O100.5160 (3)0.4694 (2)0.25338 (14)0.0202 (6)
O110.7097 (3)0.4201 (3)0.18052 (15)0.0236 (6)
O120.0270 (3)0.4703 (2)0.24983 (13)0.0188 (6)
O130.0052 (3)0.3276 (3)0.34151 (15)0.0239 (6)
O140.2148 (3)0.4198 (3)0.33178 (15)0.0243 (6)
O150.0976 (3)0.6526 (3)0.33775 (15)0.0259 (7)
O160.2292 (3)0.8130 (3)0.29682 (16)0.0290 (7)
O170.0955 (5)0.8200 (4)0.3872 (2)0.0570 (11)
O180.4056 (3)0.6115 (3)0.36950 (15)0.0266 (7)
O190.5180 (3)0.7205 (3)0.28354 (15)0.0244 (6)
O200.6118 (4)0.7143 (4)0.39827 (18)0.0490 (10)
O210.0206 (3)0.7294 (3)0.18220 (15)0.0245 (6)
O220.1142 (3)0.6189 (3)0.11303 (15)0.0236 (6)
O230.0773 (4)0.7313 (3)0.06865 (17)0.0422 (9)
O240.4267 (3)0.6527 (3)0.13518 (15)0.0236 (6)
O250.3199 (3)0.8163 (3)0.15244 (16)0.0283 (7)
O260.4522 (4)0.8224 (3)0.05930 (17)0.0397 (8)
O270.2340 (3)0.6220 (2)0.24155 (15)0.0240 (6)
H27A0.19680.65250.19960.036*
H27B0.32530.65100.24040.036*
P10.40754 (14)0.21020 (11)0.40584 (6)0.0292 (3)
P20.11133 (12)0.21522 (10)0.13643 (6)0.0203 (2)
Sm10.26393 (2)0.62766 (2)0.23940 (2)0.01687 (7)
Sm20.24755 (2)0.40037 (2)0.25726 (2)0.01562 (7)
O30.3060 (5)0.1299 (4)0.4626 (2)0.0724 (14)
C40.1675 (5)0.0766 (4)0.4490 (4)0.103 (3)
H4A0.12240.12610.40710.124*
H4B0.09280.07070.49320.124*
C50.2205 (12)0.0518 (5)0.4307 (6)0.154 (4)
H5A0.20500.05740.37960.231*
H5B0.16250.11450.46400.231*
H5C0.32780.06540.43700.231*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.029 (2)0.050 (3)0.015 (2)0.011 (2)0.0059 (18)0.010 (2)
C20.030 (2)0.030 (2)0.015 (2)0.0021 (19)0.0032 (17)0.0046 (17)
C30.044 (3)0.041 (3)0.016 (2)0.019 (2)0.001 (2)0.008 (2)
C60.046 (3)0.044 (3)0.041 (3)0.024 (3)0.002 (2)0.012 (2)
C70.100 (5)0.046 (4)0.078 (5)0.003 (4)0.026 (4)0.006 (3)
C80.023 (2)0.025 (2)0.019 (2)0.0002 (17)0.0043 (17)0.0055 (17)
C90.025 (2)0.021 (2)0.0132 (19)0.0059 (17)0.0054 (16)0.0040 (16)
C100.034 (2)0.028 (2)0.013 (2)0.0099 (19)0.0018 (17)0.0010 (17)
C110.033 (3)0.039 (3)0.067 (4)0.008 (2)0.005 (3)0.010 (3)
C120.066 (4)0.053 (4)0.076 (4)0.026 (3)0.011 (3)0.011 (3)
C130.046 (3)0.039 (3)0.060 (4)0.012 (2)0.015 (3)0.020 (3)
C140.043 (3)0.071 (4)0.055 (3)0.011 (3)0.008 (3)0.008 (3)
N10.041 (2)0.045 (2)0.0100 (17)0.0155 (19)0.0028 (16)0.0058 (16)
N20.032 (2)0.030 (2)0.0097 (16)0.0050 (16)0.0008 (14)0.0045 (14)
N30.0178 (18)0.0212 (18)0.0169 (17)0.0018 (14)0.0026 (14)0.0020 (14)
N40.0194 (18)0.0243 (18)0.0172 (17)0.0025 (15)0.0016 (14)0.0067 (14)
N50.029 (2)0.035 (2)0.0237 (19)0.0001 (17)0.0069 (16)0.0118 (17)
N60.0212 (19)0.038 (2)0.026 (2)0.0045 (17)0.0037 (16)0.0139 (17)
N70.0236 (19)0.029 (2)0.0202 (19)0.0007 (16)0.0075 (15)0.0003 (15)
N80.0249 (19)0.030 (2)0.0197 (18)0.0061 (16)0.0047 (15)0.0061 (16)
O10.0335 (17)0.0276 (16)0.0181 (15)0.0058 (13)0.0078 (13)0.0013 (12)
O20.0300 (17)0.0353 (17)0.0114 (14)0.0091 (13)0.0024 (12)0.0063 (12)
O40.066 (3)0.096 (3)0.048 (2)0.059 (3)0.030 (2)0.039 (2)
O50.0294 (16)0.0226 (15)0.0176 (14)0.0034 (12)0.0047 (12)0.0020 (12)
O60.0329 (18)0.0307 (17)0.0309 (17)0.0097 (14)0.0035 (14)0.0103 (14)
O70.0303 (18)0.045 (2)0.0297 (17)0.0168 (15)0.0025 (14)0.0122 (15)
O80.0317 (16)0.0278 (16)0.0111 (14)0.0085 (13)0.0030 (12)0.0034 (11)
O90.0246 (15)0.0231 (15)0.0209 (15)0.0056 (12)0.0008 (12)0.0085 (12)
O100.0189 (15)0.0242 (15)0.0184 (14)0.0027 (12)0.0008 (11)0.0081 (12)
O110.0175 (15)0.0278 (16)0.0243 (15)0.0019 (12)0.0047 (12)0.0046 (12)
O120.0188 (14)0.0233 (15)0.0127 (14)0.0006 (11)0.0015 (11)0.0002 (11)
O130.0219 (15)0.0302 (16)0.0172 (14)0.0083 (13)0.0031 (12)0.0021 (12)
O140.0167 (15)0.0295 (16)0.0247 (15)0.0017 (12)0.0029 (12)0.0025 (12)
O150.0267 (16)0.0304 (17)0.0229 (15)0.0063 (13)0.0092 (13)0.0095 (13)
O160.0352 (18)0.0252 (16)0.0301 (17)0.0054 (13)0.0136 (14)0.0095 (13)
O170.073 (3)0.053 (2)0.059 (3)0.011 (2)0.039 (2)0.037 (2)
O180.0227 (16)0.0375 (18)0.0201 (15)0.0086 (13)0.0052 (12)0.0070 (13)
O190.0227 (15)0.0311 (17)0.0211 (15)0.0054 (13)0.0069 (12)0.0083 (13)
O200.038 (2)0.079 (3)0.0309 (19)0.0201 (19)0.0046 (16)0.0229 (19)
O210.0263 (16)0.0304 (16)0.0186 (15)0.0029 (13)0.0064 (12)0.0060 (12)
O220.0221 (15)0.0279 (16)0.0224 (15)0.0047 (13)0.0058 (12)0.0049 (12)
O230.042 (2)0.061 (2)0.0218 (17)0.0213 (18)0.0046 (15)0.0022 (16)
O240.0274 (16)0.0247 (16)0.0206 (15)0.0006 (13)0.0091 (12)0.0041 (12)
O250.0353 (18)0.0246 (16)0.0274 (16)0.0007 (13)0.0121 (14)0.0049 (13)
O260.053 (2)0.039 (2)0.0269 (18)0.0116 (17)0.0174 (16)0.0009 (15)
O270.0232 (16)0.0266 (16)0.0242 (16)0.0004 (13)0.0107 (13)0.0038 (12)
P10.0352 (7)0.0342 (7)0.0157 (5)0.0136 (5)0.0028 (5)0.0003 (5)
P20.0215 (6)0.0216 (5)0.0182 (5)0.0023 (4)0.0007 (4)0.0058 (4)
Sm10.01713 (11)0.02063 (12)0.01388 (11)0.00136 (8)0.00375 (8)0.00494 (8)
Sm20.01417 (11)0.02308 (12)0.00966 (10)0.00120 (8)0.00118 (7)0.00321 (8)
O30.111 (4)0.068 (3)0.033 (2)0.040 (3)0.005 (2)0.012 (2)
C40.101 (7)0.116 (7)0.080 (6)0.024 (6)0.022 (5)0.011 (5)
C50.131 (7)0.134 (7)0.206 (9)0.005 (6)0.006 (7)0.064 (7)
Geometric parameters (Å, º) top
C1—H1A0.9900N5—O171.212 (5)
C1—H1B0.9900N5—Sm12.939 (3)
C1—C21.508 (6)N6—O181.274 (4)
C1—P11.794 (5)N6—O191.274 (4)
C2—N11.315 (5)N6—O201.207 (4)
C2—O21.245 (5)N6—Sm12.993 (3)
C3—C3i1.522 (10)N7—O211.273 (4)
C3—H3A0.9900N7—O221.268 (4)
C3—H3B0.9900N7—O231.214 (4)
C3—N11.460 (6)N7—Sm12.991 (4)
C6—H6A0.9900N8—O241.277 (4)
C6—H6B0.9900N8—O251.279 (4)
C6—C71.461 (8)N8—O261.216 (4)
C6—O41.461 (6)N8—Sm12.940 (3)
C7—H7A0.9800O1—P11.482 (3)
C7—H7B0.9800O1—Sm22.344 (3)
C7—H7C0.9800O2—Sm22.387 (3)
C8—H8A0.9900O4—P11.537 (4)
C8—H8B0.9900O5—P21.485 (3)
C8—C91.504 (6)O5—Sm22.340 (3)
C8—P21.792 (4)O6—P21.553 (3)
C9—N21.325 (5)O7—P21.542 (3)
C9—O81.249 (4)O8—Sm22.382 (3)
C10—C10ii1.526 (9)O9—Sm22.625 (3)
C10—H10A0.9900O10—Sm1iii2.663 (3)
C10—H10B0.9900O10—Sm22.546 (3)
C10—N21.463 (5)O11—Sm1iii2.705 (3)
C11—H11A0.9900O12—Sm12.671 (3)
C11—H11B0.9900O12—Sm22.547 (3)
C11—C121.467 (8)O13—Sm22.607 (3)
C11—O61.449 (6)O14—Sm12.692 (3)
C12—H12A0.9800O15—Sm12.528 (3)
C12—H12B0.9800O16—Sm12.485 (3)
C12—H12C0.9800O18—Sm12.570 (3)
C13—H13A0.9900O19—Sm12.540 (3)
C13—H13B0.9900O21—Sm12.546 (3)
C13—C141.472 (7)O22—Sm12.566 (3)
C13—O71.466 (5)O24—Sm12.518 (3)
C14—H14A0.9800O25—Sm12.495 (3)
C14—H14B0.9800O27—H27A0.8910
C14—H14C0.9800O27—H27B0.8889
N1—H10.8800O27—Sm22.413 (3)
N2—H20.8800P1—O31.515 (4)
N3—O91.238 (4)Sm1—O10iv2.663 (3)
N3—O101.292 (4)Sm1—O11iv2.705 (3)
N3—O111.233 (4)O3—C41.4609 (2)
N3—Sm22.995 (3)C4—H4A0.9900
N4—O121.290 (4)C4—H4B0.9900
N4—O131.238 (4)C4—C51.5409 (2)
N4—O141.232 (4)C5—H5A0.9800
N4—Sm22.986 (3)C5—H5B0.9800
N5—O151.277 (4)C5—H5C0.9800
N5—O161.272 (4)
H1A—C1—H1B108.2O3—P1—O4106.8 (3)
C2—C1—H1A109.6O5—P2—C8111.44 (18)
C2—C1—H1B109.6O5—P2—O6114.34 (17)
C2—C1—P1110.1 (3)O5—P2—O7109.63 (17)
P1—C1—H1A109.6O6—P2—C8103.35 (18)
P1—C1—H1B109.6O7—P2—C8108.30 (19)
N1—C2—C1118.6 (4)O7—P2—O6109.49 (18)
O2—C2—C1119.6 (4)O10iv—Sm1—O11iv47.58 (8)
O2—C2—N1121.8 (4)O10iv—Sm1—O1299.82 (8)
C3i—C3—H3A109.4O10iv—Sm1—O1466.48 (8)
C3i—C3—H3B109.4O12—Sm1—O11iv65.78 (8)
H3A—C3—H3B108.0O12—Sm1—O1447.61 (8)
N1—C3—C3i111.2 (5)O14—Sm1—O11iv66.19 (9)
N1—C3—H3A109.4O15—Sm1—O10iv125.69 (9)
N1—C3—H3B109.4O15—Sm1—O11iv126.11 (9)
H6A—C6—H6B108.4O15—Sm1—O1264.28 (8)
C7—C6—H6A110.1O15—Sm1—O1465.88 (9)
C7—C6—H6B110.1O15—Sm1—O1866.49 (9)
C7—C6—O4108.0 (5)O15—Sm1—O19104.37 (9)
O4—C6—H6A110.1O15—Sm1—O2169.29 (9)
O4—C6—H6B110.1O15—Sm1—O22112.67 (9)
C6—C7—H7A109.5O16—Sm1—O10iv133.60 (9)
C6—C7—H7B109.5O16—Sm1—O11iv177.10 (9)
C6—C7—H7C109.5O16—Sm1—O12111.44 (9)
H7A—C7—H7B109.5O16—Sm1—O14111.46 (9)
H7A—C7—H7C109.5O16—Sm1—O1551.01 (9)
H7B—C7—H7C109.5O16—Sm1—O1869.05 (10)
H8A—C8—H8B108.2O16—Sm1—O1969.79 (10)
C9—C8—H8A109.7O16—Sm1—O2169.86 (10)
C9—C8—H8B109.7O16—Sm1—O22115.60 (10)
C9—C8—P2109.7 (3)O16—Sm1—O24117.28 (9)
P2—C8—H8A109.7O16—Sm1—O2570.34 (9)
P2—C8—H8B109.7O18—Sm1—O10iv69.92 (9)
N2—C9—C8118.9 (3)O18—Sm1—O11iv110.60 (9)
O8—C9—C8119.8 (4)O18—Sm1—O12105.95 (8)
O8—C9—N2121.3 (4)O18—Sm1—O1463.31 (9)
C10ii—C10—H10A109.5O19—Sm1—O10iv67.58 (9)
C10ii—C10—H10B109.5O19—Sm1—O11iv112.32 (9)
H10A—C10—H10B108.1O19—Sm1—O12154.83 (8)
N2—C10—C10ii110.7 (4)O19—Sm1—O14107.65 (9)
N2—C10—H10A109.5O19—Sm1—O1849.87 (9)
N2—C10—H10B109.5O19—Sm1—O21130.76 (9)
H11A—C11—H11B107.7O19—Sm1—O22134.81 (9)
C12—C11—H11A108.9O21—Sm1—O10iv156.23 (8)
C12—C11—H11B108.9O21—Sm1—O11iv109.21 (8)
O6—C11—H11A108.9O21—Sm1—O1268.54 (9)
O6—C11—H11B108.9O21—Sm1—O14112.57 (9)
O6—C11—C12113.4 (5)O21—Sm1—O18132.34 (9)
C11—C12—H12A109.5O21—Sm1—O2249.75 (9)
C11—C12—H12B109.5O22—Sm1—O10iv107.16 (8)
C11—C12—H12C109.5O22—Sm1—O11iv64.52 (8)
H12A—C12—H12B109.5O22—Sm1—O1268.75 (8)
H12A—C12—H12C109.5O22—Sm1—O14110.52 (9)
H12B—C12—H12C109.5O22—Sm1—O18173.74 (9)
H13A—C13—H13B108.2O24—Sm1—O10iv64.44 (9)
C14—C13—H13A109.7O24—Sm1—O11iv65.55 (9)
C14—C13—H13B109.7O24—Sm1—O12124.03 (8)
O7—C13—H13A109.7O24—Sm1—O14126.46 (9)
O7—C13—H13B109.7O24—Sm1—O15167.55 (9)
O7—C13—C14109.9 (4)O24—Sm1—O18115.68 (9)
C13—C14—H14A109.5O24—Sm1—O1971.63 (9)
C13—C14—H14B109.5O24—Sm1—O21103.97 (9)
C13—C14—H14C109.5O24—Sm1—O2266.59 (9)
H14A—C14—H14B109.5O25—Sm1—O10iv110.95 (9)
H14A—C14—H14C109.5O25—Sm1—O11iv112.06 (9)
H14B—C14—H14C109.5O25—Sm1—O12133.87 (9)
C2—N1—C3122.8 (4)O25—Sm1—O14177.43 (9)
C2—N1—H1118.6O25—Sm1—O15116.50 (9)
C3—N1—H1118.6O25—Sm1—O18116.35 (10)
C9—N2—C10123.2 (3)O25—Sm1—O1971.06 (10)
C9—N2—H2118.4O25—Sm1—O2169.65 (10)
C10—N2—H2118.4O25—Sm1—O2269.77 (9)
O9—N3—O10117.9 (3)O25—Sm1—O2451.13 (9)
O9—N3—Sm260.84 (18)N4—Sm2—N3178.81 (9)
O10—N3—Sm257.50 (17)O1—Sm2—N375.33 (10)
O11—N3—O9124.0 (3)O1—Sm2—N4105.41 (10)
O11—N3—O10118.1 (3)O1—Sm2—O274.17 (10)
O11—N3—Sm2171.5 (3)O1—Sm2—O8136.97 (10)
O12—N4—Sm257.91 (17)O1—Sm2—O971.48 (9)
O13—N4—O12117.9 (3)O1—Sm2—O1078.85 (10)
O13—N4—Sm260.43 (19)O1—Sm2—O12130.32 (9)
O14—N4—O12118.2 (3)O1—Sm2—O1381.06 (9)
O14—N4—O13123.9 (3)O1—Sm2—O27139.51 (9)
O14—N4—Sm2172.1 (3)O2—Sm2—N3101.03 (9)
O15—N5—Sm158.92 (18)O2—Sm2—N478.34 (9)
O16—N5—O15115.8 (3)O2—Sm2—O9121.05 (9)
O16—N5—Sm156.92 (18)O2—Sm2—O1077.94 (9)
O17—N5—O15122.0 (4)O2—Sm2—O1291.77 (9)
O17—N5—O16122.1 (4)O2—Sm2—O1369.90 (10)
O17—N5—Sm1175.1 (3)O2—Sm2—O2771.63 (9)
O18—N6—O19115.4 (3)O5—Sm2—N3105.48 (10)
O18—N6—Sm158.56 (19)O5—Sm2—N475.60 (9)
O19—N6—Sm157.19 (18)O5—Sm2—O181.18 (10)
O20—N6—O18121.7 (4)O5—Sm2—O2137.54 (10)
O20—N6—O19122.9 (4)O5—Sm2—O874.70 (9)
O20—N6—Sm1175.0 (3)O5—Sm2—O981.16 (9)
O21—N7—Sm157.56 (19)O5—Sm2—O10130.47 (9)
O22—N7—O21115.6 (3)O5—Sm2—O1278.43 (9)
O22—N7—Sm158.44 (19)O5—Sm2—O1372.55 (9)
O23—N7—O21121.9 (4)O5—Sm2—O27139.29 (9)
O23—N7—O22122.4 (3)O8—Sm2—N377.51 (9)
O23—N7—Sm1173.9 (3)O8—Sm2—N4102.40 (9)
O24—N8—O25115.6 (3)O8—Sm2—O2144.24 (10)
O24—N8—Sm158.38 (18)O8—Sm2—O970.00 (9)
O25—N8—Sm157.38 (19)O8—Sm2—O1090.33 (9)
O26—N8—O24121.9 (4)O8—Sm2—O1278.92 (9)
O26—N8—O25122.4 (4)O8—Sm2—O13122.96 (9)
O26—N8—Sm1176.9 (3)O8—Sm2—O2772.66 (9)
P1—O1—Sm2137.71 (18)O9—Sm2—N324.32 (8)
C2—O2—Sm2141.6 (3)O9—Sm2—N4156.74 (9)
C6—O4—P1124.7 (4)O10—Sm2—N325.35 (8)
P2—O5—Sm2138.15 (17)O10—Sm2—N4153.65 (8)
C11—O6—P2123.2 (3)O10—Sm2—O949.56 (8)
C13—O7—P2125.0 (3)O10—Sm2—O12145.44 (9)
C9—O8—Sm2139.8 (3)O10—Sm2—O13145.66 (8)
N3—O9—Sm294.8 (2)O12—Sm2—N3154.01 (8)
N3—O10—Sm1iii96.9 (2)O12—Sm2—N425.41 (8)
N3—O10—Sm297.1 (2)O12—Sm2—O9146.35 (8)
Sm2—O10—Sm1iii156.84 (11)O12—Sm2—O1349.69 (8)
N3—O11—Sm1iii96.5 (2)O13—Sm2—N3156.28 (8)
N4—O12—Sm196.29 (19)O13—Sm2—N424.38 (8)
N4—O12—Sm296.7 (2)O13—Sm2—O9144.47 (9)
Sm2—O12—Sm1157.45 (12)O27—Sm2—N390.54 (9)
N4—O13—Sm295.2 (2)O27—Sm2—N488.30 (9)
N4—O14—Sm196.8 (2)O27—Sm2—O9109.18 (9)
N5—O15—Sm195.4 (2)O27—Sm2—O1073.42 (9)
N5—O16—Sm197.7 (2)O27—Sm2—O1272.02 (9)
N6—O18—Sm196.4 (2)O27—Sm2—O13106.34 (9)
N6—O19—Sm197.9 (2)C4—O3—P1125.4 (4)
N7—O21—Sm197.5 (2)O3—C4—H4A111.1
N7—O22—Sm196.7 (2)O3—C4—H4B111.1
N8—O24—Sm196.0 (2)O3—C4—C5103.4 (5)
N8—O25—Sm197.0 (2)H4A—C4—H4B109.0
H27A—O27—H27B108.3C5—C4—H4A111.1
Sm2—O27—H27A110.9C5—C4—H4B111.1
Sm2—O27—H27B110.2C4—C5—H5A109.5
O1—P1—C1113.43 (19)C4—C5—H5B109.5
O1—P1—O4113.95 (19)C4—C5—H5C109.5
O1—P1—O3114.3 (2)H5A—C5—H5B109.5
O4—P1—C1102.9 (2)H5A—C5—H5C109.5
O3—P1—C1104.4 (2)H5B—C5—H5C109.5
C1—C2—N1—C3179.2 (4)O11—N3—O10—Sm2171.6 (3)
C1—C2—O2—Sm233.1 (7)O12—N4—O13—Sm27.0 (3)
C1—P1—O3—C4125.6 (4)O12—N4—O14—Sm110.4 (3)
C2—C1—P1—O146.3 (4)O13—N4—O12—Sm1168.7 (3)
C2—C1—P1—O4169.9 (3)O13—N4—O12—Sm27.1 (3)
C2—C1—P1—O378.7 (4)O13—N4—O14—Sm1168.7 (3)
C3i—C3—N1—C292.6 (6)O14—N4—O12—Sm110.5 (3)
C6—O4—P1—C1161.4 (5)O14—N4—O12—Sm2172.0 (3)
C6—O4—P1—O138.2 (6)O14—N4—O13—Sm2172.2 (3)
C6—O4—P1—O388.9 (5)O15—N5—O16—Sm12.9 (4)
C7—C6—O4—P1116.4 (6)O16—N5—O15—Sm12.8 (4)
C8—C9—N2—C10178.6 (4)O17—N5—O15—Sm1174.4 (4)
C8—C9—O8—Sm234.7 (6)O17—N5—O16—Sm1174.3 (4)
C9—C8—P2—O550.5 (3)O18—N6—O19—Sm16.4 (4)
C9—C8—P2—O672.7 (3)O19—N6—O18—Sm16.3 (4)
C9—C8—P2—O7171.2 (3)O20—N6—O18—Sm1174.2 (4)
C10ii—C10—N2—C993.4 (5)O20—N6—O19—Sm1174.1 (4)
C11—O6—P2—C8148.3 (4)O21—N7—O22—Sm16.8 (3)
C11—O6—P2—O527.0 (4)O22—N7—O21—Sm16.9 (3)
C11—O6—P2—O796.5 (4)O23—N7—O21—Sm1172.8 (3)
C12—C11—O6—P266.9 (6)O23—N7—O22—Sm1172.9 (4)
C13—O7—P2—C877.8 (4)O24—N8—O25—Sm13.8 (3)
C13—O7—P2—O5160.4 (4)O25—N8—O24—Sm13.7 (3)
C13—O7—P2—O634.2 (4)O26—N8—O24—Sm1176.4 (3)
C14—C13—O7—P2126.2 (4)O26—N8—O25—Sm1176.4 (3)
N1—C2—O2—Sm2147.0 (4)P1—C1—C2—N1122.9 (4)
N2—C9—O8—Sm2145.0 (3)P1—C1—C2—O257.2 (5)
O1—P1—O3—C41.1 (5)P1—O3—C4—C593.5 (7)
O2—C2—N1—C30.9 (7)P2—C8—C9—N2119.1 (4)
O4—P1—O3—C4125.8 (4)P2—C8—C9—O860.7 (4)
O8—C9—N2—C101.2 (6)Sm2—N3—O10—Sm1iii161.56 (15)
O9—N3—O10—Sm1iii169.1 (3)Sm2—N4—O12—Sm1161.52 (15)
O9—N3—O10—Sm27.6 (3)Sm2—O1—P1—C111.9 (3)
O9—N3—O11—Sm1iii169.2 (3)Sm2—O1—P1—O4129.3 (3)
O10—N3—O9—Sm27.3 (3)Sm2—O1—P1—O3107.6 (3)
O10—N3—O11—Sm1iii9.9 (3)Sm2—O5—P2—C817.6 (3)
O11—N3—O9—Sm2171.8 (3)Sm2—O5—P2—O699.2 (3)
O11—N3—O10—Sm1iii10.1 (3)Sm2—O5—P2—O7137.4 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O27—H27A···O210.892.122.772 (4)130
O27—H27B···O19iii0.891.932.755 (4)153
N1—H1···O15i0.882.533.176 (4)131
N1—H1···O18i0.882.343.176 (4)159
N2—H2···O22v0.882.313.164 (4)161
N2—H2···O24v0.882.563.186 (4)129
Symmetry codes: (i) x, y+1, z+1; (iii) x+1, y, z; (v) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O27—H27A···O210.892.122.772 (4)129.5
O27—H27B···O19i0.891.932.755 (4)153.3
N1—H1···O15ii0.882.533.176 (4)130.9
N1—H1···O18ii0.882.343.176 (4)159.1
N2—H2···O22iii0.882.313.164 (4)161.0
N2—H2···O24iii0.882.563.186 (4)129.0
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Sm2(NO3)6(C14H30N2O8P2)(H2O)]
Mr1107.11
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.9416 (7), 11.0128 (9), 18.4635 (15)
α, β, γ (°)81.441 (1), 83.428 (1), 86.977 (1)
V3)1784.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)3.46
Crystal size (mm)0.21 × 0.20 × 0.07
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Tmin, Tmax0.648, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
29697, 6597, 5801
Rint0.034
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.09
No. of reflections6597
No. of parameters483
No. of restraints26
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.12, 0.83

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds