Download citation
Download citation
link to html
In contrast to most other structures of transition metal orthophosphates with composition M3-xM'x(PO4)2·H2O, the three metallic sites in the structure of Mn2Zn(PO4)2·H2O show no statistical disorder.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989015000341/wm5102sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989015000341/wm5102Isup2.hkl
Contains datablock I

CCDC reference: 1042563

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](P-O) = 0.002 Å
  • R factor = 0.019
  • wR factor = 0.052
  • Data-to-parameter ratio = 19.0

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT430_ALERT_2_B Short Inter D...A Contact O1 .. O1 .. 2.62 Ang. PLAT430_ALERT_2_B Short Inter D...A Contact O4 .. O6 .. 2.79 Ang.
Alert level C CRYSC01_ALERT_1_C The word below has not been recognised as a standard identifier. off
Alert level G PLAT004_ALERT_5_G Polymeric Structure Found with Dimension ....... 3 Info PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do ! PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms .............. 2 Report PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ Please Check PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Zn1 -- O5 .. 12.2 su PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Zn1 -- O1_b .. 6.0 su PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Mn1 -- O6_e .. 6.4 su PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Mn1 -- O9_f .. 10.2 su PLAT793_ALERT_4_G The Model has Chirality at P1 ............. R Verify PLAT793_ALERT_4_G The Model has Chirality at P2 ............. R Verify PLAT899_ALERT_4_G SHELXL97 is Deprecated and Succeeded by SHELXL 2014 Note PLAT961_ALERT_5_G Dataset Contains no Negative Intensities ....... Please Check
0 ALERT level A = Most likely a serious problem - resolve or explain 2 ALERT level B = A potentially serious problem, consider carefully 1 ALERT level C = Check. Ensure it is not caused by an omission or oversight 12 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 4 ALERT type 5 Informative message, check

Chemical context top

The great structural diversity of metal-based phosphates, associated with their physical properties makes this family of compounds inter­esting as potential functional materials, e.g. as catalysts (Viter & Nagornyi, 2009; Weng et al., 2009) or ion-exchangers (Jignasa et al., 2006). Among the wide variety of metal phosphates, one of our inter­ests is focused on mixed metallic orthophosphates of general formula M3-xM'x(PO4)2·H2O. The present communication reports the hydro­thermal synthesis and structural characterization of a new member of this family, Mn2Zn(PO4)2·H2O.

Structural commentary top

The structure of the title compound is built up from four different types of building units: [MnO6] and [MnO5(H2O)] o­cta­hedra, [ZnO5] square pyramids and PO4 tetra­hedra, as shown in Fig. 1. Whereas the [MnO6] o­cta­hedron is more or less regular with Mn—O distances in the range 2.1254 (13) to 2.2590 (13) Å, the [MnO5(H2O)] o­cta­hedron is significantly distorted with five equal Mn—O distances in the range 2.1191 (13) to 2.1556 (16) and one considerably longer Mn—O distance to the water ligand of 2.5163 (15) Å; the ZnO5 square pyramid is also distorted with four shorter Zn—O distances between 1.9546 (13) and 2.0347 (12) Å and one longer Zn—O distance, likewise to the water O atom [2.3093 (14) Å]; the two PO4 tetra­hedra are rather regular [P—O distances between 1.5322 (13) and 1.5570 (13) Å; O—P—O angles between 102.92 (7) and 111.62 (8)°]. These polyhedra are arranged in such a way as to build up two types of layers parallel to (101). One layer contains two [ZnO5] polyhedra linked together by edge-sharing into a [Zn2O8] dimer that in turn is linked to PO4 tetra­hedra. The other layer contains dimers of the type [Mn2O8(H2O)2] (also formed by edge-sharing of two [MnO5(H2O)] o­cta­hedra), connecting [MnO6] o­cta­hedra and PO4 tetra­hedra through common vertices. The two types of layers are linked by common edges and vertices into a framework structure with channels parallel to [101]. The water molecules of the [MnO5(H2O)] o­cta­hedra protrude into these channels and develop hydrogen bonds (one bifurcated) of medium-to-weak strength to framework O atoms across the channels (Fig 2; Table 1).

The title compound adopts the Fe3(PO4)2·H2O structure type (Moore & Araki, 1975) and is isotypic with various structures of general formula M3-xM'x(PO4)2·H2O: CuMn2(PO4)2·H2O (Liao et al., 1995); Co2.59Zn0.41(PO4)2·H2O (Sørensen et al., 2005); Co2.39Cu0.61(PO4)2·H2O (Assani et al., 2010); Mg1.65Cu1.35(PO4)2·H2O (Khmiyas et al. 2015).

Synthesis and crystallization top

Crystals of Mn2Zn(PO4)2·H2O were obtained by hydro­thermal treatment of of zinc oxide (0.0406 g), metallic manganese (0.0824 g), phospho­ric acid (0.1 ml) and 12.5 ml of distilled water, in a proportion corresponding to the molar ratio Zn: Mn: P = 1: 3: 3. The hydro­thermal reaction was conducted in a 23 ml Teflon-lined autoclave under autogenous pressure at 493 K for five days. After being filtered, washed with deionized water and dried in air, the reaction product consisted of two types of crystals, the first as off-white parallelepipeds corresponding to Mn7(PO4)2(HPO4)4 (Riou et al., 1987) and the second as colourless parallelepipeds corresponding to the title compound.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The O-bound H atoms were initially located in a difference map. In the last refinement cycle the distances were fixed at 0.89 and 0.91 Å, respectively, and the H atoms refined in the riding-model approximation with Uiso(H) set to 1.5Ueq(O). The highest peak and the deepest hole in the final Fourier map are at 0.32 Å and 0.30 Å, respectively, from Mn1 and Zn1.

Related literature top

For related literature, see: Assani et al. (2010); Jignasa et al. (2006); Khmiyas et al. (2015); Liao et al. (1995); Moore & Araki (1975); Riou et al. (1987); Sørensen et al. (2005); Viter & Nagornyi (2009); Weng et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The principal building units in the structure of Mn2Zn(PO4)2·H2O. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are indicated by dashed lines. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1/2, -y + 1/2, z + 1/2; (iii) -x + 2, -y + 1, -z + 1; (iv) -x + 3/2, y + 1/2, -z + 1/2; (v) -x + 1/2, y - 1/2, -z + 1/2; (vi) x - 1/2, -y + 1/2, z - 1/2; (vii) x - 1/2, -y + 3/2, z - 1/2; (viii) -x + 1/2, y + 1/2, -z + 1/2.]
[Figure 2] Fig. 2. Polyhedral representation of Mn2Zn(PO4)2·H2O showing channels extending parallel to [101]. Hydrogen bonds are shown as dashed lines.
Dimanganese(II) zinc bis[orthophosphate(V)] monohydrate top
Crystal data top
Mn2Zn(PO4)2·H2OF(000) = 736
Mr = 383.21Dx = 3.688 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2407 reflections
a = 8.1784 (2) Åθ = 2.8–32.0°
b = 10.1741 (2) ŵ = 7.54 mm1
c = 9.0896 (2) ÅT = 296 K
β = 114.142 (1)°Parallelepiped, off-white
V = 690.17 (3) Å30.32 × 0.27 × 0.19 mm
Z = 4
Data collection top
Bruker X8 APEX
diffractometer
2407 independent reflections
Radiation source: fine-focus sealed tube2305 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 32.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.574, Tmax = 0.748k = 1415
11327 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0248P)2 + 1.0141P]
where P = (Fo2 + 2Fc2)/3
2407 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
Mn2Zn(PO4)2·H2OV = 690.17 (3) Å3
Mr = 383.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1784 (2) ŵ = 7.54 mm1
b = 10.1741 (2) ÅT = 296 K
c = 9.0896 (2) Å0.32 × 0.27 × 0.19 mm
β = 114.142 (1)°
Data collection top
Bruker X8 APEX
diffractometer
2407 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2305 reflections with I > 2σ(I)
Tmin = 0.574, Tmax = 0.748Rint = 0.023
11327 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 1.11Δρmax = 0.94 e Å3
2407 reflectionsΔρmin = 0.84 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.88638 (3)0.35884 (3)0.46580 (3)0.00768 (6)
Mn20.48057 (3)0.38305 (3)0.21880 (3)0.00726 (6)
Zn10.12609 (3)0.62028 (2)0.06179 (2)0.00934 (6)
P10.70438 (5)0.08456 (4)0.32706 (5)0.00553 (8)
P20.38560 (5)0.67442 (4)0.36388 (5)0.00613 (8)
O10.58212 (17)0.03301 (13)0.40831 (15)0.0102 (2)
O20.87050 (16)0.15076 (13)0.45546 (15)0.0094 (2)
O30.59293 (17)0.18429 (12)0.19887 (15)0.0092 (2)
O40.76145 (17)0.03217 (12)0.25178 (15)0.0092 (2)
O50.23736 (18)0.77279 (13)0.26723 (16)0.0123 (2)
O60.36400 (17)0.63194 (13)0.51688 (15)0.0104 (2)
O70.57269 (16)0.73311 (13)0.41028 (15)0.0110 (2)
O80.35411 (17)0.55914 (13)0.24330 (15)0.0107 (2)
O90.88135 (18)0.58568 (14)0.57419 (16)0.0130 (2)
H10.78760.62030.49230.019*
H20.87930.59690.67310.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.00519 (11)0.00776 (11)0.00860 (11)0.00070 (8)0.00129 (8)0.00274 (8)
Mn20.00657 (11)0.00704 (11)0.00777 (11)0.00016 (8)0.00254 (9)0.00025 (8)
Zn10.00839 (10)0.00949 (10)0.00884 (9)0.00028 (6)0.00219 (7)0.00093 (6)
P10.00538 (16)0.00594 (17)0.00519 (16)0.00046 (13)0.00209 (13)0.00030 (13)
P20.00556 (16)0.00676 (17)0.00569 (16)0.00008 (13)0.00193 (13)0.00044 (13)
O10.0107 (5)0.0111 (5)0.0126 (5)0.0015 (4)0.0087 (5)0.0025 (4)
O20.0079 (5)0.0105 (5)0.0073 (5)0.0020 (4)0.0008 (4)0.0025 (4)
O30.0099 (5)0.0080 (5)0.0081 (5)0.0022 (4)0.0020 (4)0.0013 (4)
O40.0083 (5)0.0091 (5)0.0099 (5)0.0017 (4)0.0033 (4)0.0027 (4)
O50.0121 (5)0.0135 (6)0.0108 (5)0.0070 (5)0.0041 (4)0.0035 (4)
O60.0106 (5)0.0137 (6)0.0071 (5)0.0006 (4)0.0038 (4)0.0016 (4)
O70.0081 (5)0.0129 (6)0.0120 (5)0.0031 (4)0.0041 (4)0.0030 (4)
O80.0107 (5)0.0093 (5)0.0099 (5)0.0011 (4)0.0021 (4)0.0035 (4)
O90.0109 (5)0.0181 (6)0.0106 (5)0.0020 (5)0.0051 (4)0.0007 (5)
Geometric parameters (Å, º) top
Mn1—O6i2.1191 (13)Zn1—O1vi2.0242 (13)
Mn1—O22.1208 (14)Zn1—O1viii2.0347 (12)
Mn1—O3ii2.1464 (12)Zn1—O52.3093 (14)
Mn1—O9iii2.1504 (14)P1—O31.5327 (13)
Mn1—O4iv2.1556 (13)P1—O41.5355 (13)
Mn1—O92.5163 (15)P1—O21.5377 (13)
Mn2—O82.1254 (13)P1—O11.5570 (13)
Mn2—O5v2.1533 (13)P2—O71.5322 (13)
Mn2—O4iv2.1921 (13)P2—O61.5340 (13)
Mn2—O2vi2.2126 (13)P2—O51.5401 (13)
Mn2—O6i2.2166 (13)P2—O81.5532 (13)
Mn2—O32.2590 (13)O9—H10.8939
Zn1—O7vii1.9546 (13)O9—H20.9131
Zn1—O82.0174 (13)
O6i—Mn1—O290.23 (5)O4iv—Mn2—O387.66 (5)
O6i—Mn1—O3ii109.27 (5)O2vi—Mn2—O376.87 (5)
O2—Mn1—O3ii81.31 (5)O6i—Mn2—O387.34 (5)
O6i—Mn1—O9iii161.48 (5)O7vii—Zn1—O8132.60 (5)
O2—Mn1—O9iii107.27 (5)O7vii—Zn1—O1vi100.19 (6)
O3ii—Mn1—O9iii80.06 (5)O8—Zn1—O1vi99.81 (5)
O6i—Mn1—O4iv81.32 (5)O7vii—Zn1—O1viii117.98 (5)
O2—Mn1—O4iv118.14 (5)O8—Zn1—O1viii107.48 (5)
O3ii—Mn1—O4iv158.49 (5)O1vi—Zn1—O1viii80.41 (5)
O9iii—Mn1—O4iv84.99 (5)O7vii—Zn1—O587.57 (5)
O6i—Mn1—O976.07 (5)O8—Zn1—O567.61 (5)
O2—Mn1—O9157.28 (5)O1vi—Zn1—O5167.20 (5)
O3ii—Mn1—O986.18 (5)O1viii—Zn1—O5105.05 (5)
O9iii—Mn1—O989.00 (5)O3—P1—O4111.58 (7)
O4iv—Mn1—O978.15 (5)O3—P1—O2110.68 (7)
O8—Mn2—O5v89.03 (5)O4—P1—O2109.99 (7)
O8—Mn2—O4iv98.10 (5)O3—P1—O1106.62 (7)
O5v—Mn2—O4iv167.53 (5)O4—P1—O1108.79 (7)
O8—Mn2—O2vi104.14 (5)O2—P1—O1109.08 (7)
O5v—Mn2—O2vi90.14 (5)O7—P2—O6109.42 (7)
O4iv—Mn2—O2vi97.96 (5)O7—P2—O5111.62 (8)
O8—Mn2—O6i91.85 (5)O6—P2—O5110.15 (7)
O5v—Mn2—O6i91.25 (5)O7—P2—O8110.32 (7)
O4iv—Mn2—O6i78.36 (5)O6—P2—O8112.31 (8)
O2vi—Mn2—O6i163.97 (5)O5—P2—O8102.92 (7)
O8—Mn2—O3173.90 (5)H1—O9—H2114.6
O5v—Mn2—O384.95 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+2, y+1, z+1; (iv) x+3/2, y+1/2, z+1/2; (v) x+1/2, y1/2, z+1/2; (vi) x1/2, y+1/2, z1/2; (vii) x1/2, y+3/2, z1/2; (viii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H1···O70.891.972.7866 (19)151
O9—H2···O5ix0.912.162.8687 (19)134
O9—H2···O1ii0.912.483.0494 (19)120
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (ix) x+1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H1···O70.891.972.7866 (19)150.7
O9—H2···O5i0.912.162.8687 (19)134.2
O9—H2···O1ii0.912.483.0494 (19)120.4
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaMn2Zn(PO4)2·H2O
Mr383.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.1784 (2), 10.1741 (2), 9.0896 (2)
β (°) 114.142 (1)
V3)690.17 (3)
Z4
Radiation typeMo Kα
µ (mm1)7.54
Crystal size (mm)0.32 × 0.27 × 0.19
Data collection
DiffractometerBruker X8 APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.574, 0.748
No. of measured, independent and
observed [I > 2σ(I)] reflections
11327, 2407, 2305
Rint0.023
(sin θ/λ)max1)0.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.052, 1.11
No. of reflections2407
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 0.84

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds