Download citation
Download citation
link to html
The first ferrocenylcarbo­nitrile copper complex is reported. The structure consists of two CuI ions complexed by ferrocenediyl-1,1′-dicarbo­nitrile forming a paddle-wheel with two acetone mol­ecules, with one coordinating on top of one trigonal–planar-coordinated copper ion, and the other as a packing solvent.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989015001760/wm5104sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989015001760/wm5104Isup2.hkl
Contains datablock I

CCDC reference: 1045804

Key indicators

  • Single-crystal X-ray study
  • T = 110 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in solvent or counterion
  • R factor = 0.041
  • wR factor = 0.107
  • Data-to-parameter ratio = 11.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT216_ALERT_3_C Disordered F3' (An/Solv) ADP max/min Ratio 5.1 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of B1 Check PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 3.3 Note PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.592 43 Report
Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 9 Note PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ... 9 Report PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do ! PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records 1 Report PLAT177_ALERT_4_G The CIF-Embedded .res File Contains DELU Records 1 Report PLAT244_ALERT_4_G Low 'Solvent' Ueq as Compared to Neighbors of B2 Check PLAT302_ALERT_4_G Anion/Solvent Disorder ............ Percentage = 29 Note PLAT380_ALERT_4_G Incorrectly? Oriented X(sp2)-Methyl Moiety ..... C37 Check PLAT380_ALERT_4_G Incorrectly? Oriented X(sp2)-Methyl Moiety ..... C39 Check PLAT380_ALERT_4_G Incorrectly? Oriented X(sp2)-Methyl Moiety ..... C40 Check PLAT380_ALERT_4_G Incorrectly? Oriented X(sp2)-Methyl Moiety ..... C42 Check PLAT432_ALERT_2_G Short Inter X...Y Contact C23 .. C23 .. 3.17 Ang. PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 1 Do ! N1 -C1 -C2 -C3 141.00 17.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 2 Do ! N1 -C1 -C2 -C6 -42.00 17.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 3 Do ! N1 -C1 -C2 -FE1 -130.00 17.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 23 Do ! N4 -C7 -C8 -C12 29.00 33.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 24 Do ! N4 -C7 -C8 -C9 -157.00 32.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 25 Do ! N4 -C7 -C8 -FE1 116.00 32.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 45 Do ! N2 -C13 -C14 -C18 113.00 7.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 46 Do ! N2 -C13 -C14 -C15 -68.00 7.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 47 Do ! N2 -C13 -C14 -FE2 -157.00 7.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 67 Do ! N5 -C19 -C20 -C24 100.00 7.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 68 Do ! N5 -C19 -C20 -C21 -72.00 7.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 69 Do ! N5 -C19 -C20 -FE2 13.00 7.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 89 Do ! N3 -C25 -C26 -C27 153.00 7.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 90 Do ! N3 -C25 -C26 -C30 -31.00 7.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 91 Do ! N3 -C25 -C26 -FE3 -119.00 7.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 111 Do ! N6 -C31 -C32 -C33 -109.00 33.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 112 Do ! N6 -C31 -C32 -C36 77.00 33.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 113 Do ! N6 -C31 -C32 -FE3 164.00100.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 133 Do ! C2 -C1 -N1 -CU1 81.00 18.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 134 Do ! C14 -C13 -N2 -CU1 21.00 7.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 135 Do ! C26 -C25 -N3 -CU1 135.00 6.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 136 Do ! C8 -C7 -N4 -CU2 95.00 33.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 137 Do ! C20 -C19 -N5 -CU2 16.00 9.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 138 Do ! C32 -C31 -N6 -CU2 54.00 34.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 673 Do ! C1 -N1 -CU1 -N3 136.00 5.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 674 Do ! C1 -N1 -CU1 -N2 -23.00 5.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 675 Do ! C1 -N1 -CU1 -O1 -122.00 5.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 676 Do ! C25 -N3 -CU1 -N1 -95.00 6.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 677 Do ! C25 -N3 -CU1 -N2 65.00 6.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 678 Do ! C25 -N3 -CU1 -O1 165.00 6.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 682 Do ! C7 -N4 -CU2 -N5 -112.10 1.50 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 683 Do ! C7 -N4 -CU2 -N6 61.30 1.60 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 684 Do ! C19 -N5 -CU2 -N4 -111.50 1.50 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 685 Do ! C19 -N5 -CU2 -N6 74.90 1.50 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 686 Do ! C31 -N6 -CU2 -N4 -123.00 2.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 687 Do ! C31 -N6 -CU2 -N5 51.00 2.00 1.555 1.555 1.555 1.555 PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF .... # 372 Check F3 -B1 -F3' 1.555 1.555 1.555 16.20 Deg. PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF .... # 380 Check F2 -B1 -F2' 1.555 1.555 1.555 7.40 Deg. PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF .... # 387 Check F1 -B1 -F1' 1.555 1.555 1.555 9.00 Deg. PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF .... # 389 Check F4 -B1 -F4' 1.555 1.555 1.555 18.10 Deg. PLAT860_ALERT_3_G Number of Least-Squares Restraints ............. 148 Note PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 87 % PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Th(Min) ... 1 Report PLAT961_ALERT_5_G Dataset Contains no Negative Intensities ....... Please Check
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 4 ALERT level C = Check. Ensure it is not caused by an omission or oversight 56 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 49 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Chemical context top

The electron-transfer properties of the acetyl­ide function have been investigated intensively by using bridging units of the type —C C—M—CC— (M = transition metal), showing moderate electron communication between two redox-active metallocenyl termini in the mixed-valence species (see, for example: Lang et al., 2006; Vives et al., 2006; Jakob et al., 2009; Díez et al., 2008, 2009; Osella et al., 1998; Packheiser et al., 2008; Burgun et al., 2013). The nitrile group is isoelectronic with the acetyl­ide function; Bonniard et al. (2011) described how an —N C—C6H4—CN— linkage between two iron fragments prohibits the electronic inter­action between the transition metal atoms, while the isoelectric di(acetyl­ene)—phenyl­ene bridge shows a moderate delocalization. In contrast, a weak electron transfer by generation of the mixed-valence species [Ru(NCFc)(NH3)5]3+ [Fc = Fe(η5-C5H4)(η5-C5H5)] has been described (Dowling et al., 1981). We recently reported on the synthesis, characterization and electrochemical properties of platinum and copper complexes containing a —CN—M—NC— (M = Cu or Pt) bridging unit between two redox-active ferrocenyl moieties (Strehler et al., 2013, 2014) to achieve a direct comparison with the —CC—M—CC— building blocks. In addition, the coordination of ferrocene-1,1'-dicarbo­nitrile towards PtCl2 resulted in an oligomeric complex (Strehler et al., 2014). In a continuation of this work, we herein present the synthesis and crystal structure of [Cu2((CH3)2CO)(µ-Fe(η5-C5H4C N)2)3](BF4)2·(CH3)2CO, (I). The synthesis of this compound was realized by comproportionation of elementary copper and a copper(II) salt in the presence of 1,1'-ferrocenediyl dicarbo­nitrile.

Structural commentary top

The title compound contains one penta­metallic Cu2Fe3 complex molecule in the asymmetric unit consisting of two CuI ions bridged by three 1,1'-ferrocenediyl dicarbo­nitrile ligands that form a triangular paddle-wheel sandwich-type complex with iron···iron distances ranging from 9.1739 (13) (Fe2—Fe3) to 10.0385 (12) Å (Fe1—Fe2). The complex crystallizes with two BF4- counter-ions and two molecules of acetone. One acetone molecule coordinates with its oxygen atom to Cu1 [Cu1—O1 2.375 (2) Å], leading to an an 18 VE complex and an overall distorted trigonal–pyramidal environment. The Cu2 ion exhibits a weak inter­molecular η2, π inter­action [3.1520 (6) Å; Table 1, Fig. 1] with two atoms of an adjacent cyclo­penta­dienyl ring, and thus, only a 16 VE complex is present. The deviation from the N3 plane is increased for Cu1 [0.1883 (16) Å] as compared to Cu2 [0.0602 (16) Å] due to a stronger inter­action with the axial moiety. The Cu···Cu distance [3.3818 (7) Å] exceeds the sum of the van der Waals radii (Σ = 2.80 Å; Bondi, 1964), indicating that the CuI ions do not inter­act with each other.

The two faces of the sandwich-type complex consist of almost coplanar cyclo­penta­dienyl aromatics and central planes formed by three nitro­gen atoms that are also almost coplanar towards the C5 planes. However, one cyclo­penta­dienyl ring of each site deviates from coplanarity (Table 2), which results in a slight bending of the whole complex (Fig. 2). The ferrocenyl cyclo­penta­dienyl moieties virtually exhibit ecliptic conformations [4.5 (2) to 6.4 (2) °], with synperiplanar-oriented carbo­nitrile substituents towards each other. Maximum deviations from this plane are observed for N5 [0.289 (7) Å] and Cu2 [0.825 (9) Å].

Supra­molecular features top

Besides the already noted inter­molecular inter­action between Cu2 and the mid-point of the C26—C27 bond, ππ inter­actions are present in the crystal packing between the C23 atom and its symmetry-generated equivalent [3.167 (6) Å; Table 1]. All other π inter­actions occur almost perpendicular to the involved C5 ring (α C5···C23, 92.2 (2) °; α C5···Cu2, 93.23 (1) °; Table 1) . Compound (I) forms a layer-type structure parallel to (111) (Fig. 2), in which the coordinating acetone molecule is part of the overlaying layer. The second acetone molecule is present in each layer and does not exhibit any notable inter­molecular inter­actions. The distances between two layers are in the range of the above-mentioned inter­actions.

Database survey top

Since the first synthesis of 1,1'-di­cyano­ferrocene (Osgerby & Pauson, 1961), only one example of a crystal structure has been reported, that of the molecule itself (Altmannshofer et al., 2008) which exhibits a similar synperiplanar torsion (–2.2°) of the cyclo­penta­dienyl rings to that in (I). Further molecules bearing one nitrilo substituent at the ferrocenyl backbone include a penta­carbonyl tungsten complex with the second nitrilo functionality involved in a 2,3-di­hydro-1,2,3-aza­diphosphete (Helten et al., 2010) and recently published square-planar cis- and trans-platinum(II) complexes of cyano­ferrocene (Strehler et al., 2014).

Trigonal–planar (hetero-bimetallic) CuI complexes are well described in the literature (Lang et al., 1995, 2000, 2006; Buschbeck et al., 2011; Ferrara et al., 1987; Köhler et al., 1998; Frosch et al., 2000, 2001; Janssen et al., 1995; Spek, 2007). However, the coordination to a further carbon atom with similar short Cu···C distances has rarely been described (Cu···C distances are given in parentheses) [Dong et al., 2008 (3.538 and 3.583 Å); Chesnut et al., 1998 (3.126 Å); Fu et al., 2008 (3.577 and 3.561 Å); Benmansour et al., 2009 (3.088 and 3.519 Å] compared to 3.1520 (6) Å in (I). They mainly contain cyanide molecules acting as donating ligands that are partially replaced by aromatic N-donating molecules.

Regarding nitriles as donating molecules, a tris­(benzo­nitrilo)­copper(I) perchlorate complex (Bowmaker et al., 2004) has been reported, exhibiting a similar trigonal–planar coordination environment including the counter-ion acting as one axial ligand with a similar Cu—O distance of 2.404 (4) Å [compared to 2.375 (2) Å in (I)]. This results in a distorted trigonal-pyramidal environment with N—Cu—N angles slightly more varying [105.4 (2) to 130.4 (2)°] than in (I) [113.63 (11) to 128.97 (11)°], but Cu—N distances [1.906 (4)–1.958 (4) Å] in the same range as in (I) [1.911 (3)–1.960 (3) Å].

Synthesis and crystallization top

Ferrocene-1,1'-dicarbo­nitrile was prepared according to a published procedure (Strehler et al., 2014). Synthesis of [Cu2(µ-(η5-C5H4CN)Fe(η5-C5H4CN))3][BF4]2 (I): Copper powder (6 mg, 0.09 mmol), Cu[BF4]2·5H2O (12.5 mg, 0.05 mmol) and ferrocene-1,1'-dicarbo­nitrile (50.0 mg, 0.20 mmol) were stirred in 5 ml of di­chloro­methane at room temperature overnight. The resulting orange precipitate was filtered off using zeolite and washed several times with 20 ml of di­chloro­methane until the filtrate was colorless. The residue was taken up in acetone and this solution was evaporated to dryness using a rotary evaporator affording (I) as an orange solid. The evaporation was stopped before dryness, small orange crystals of (I) suitable for X-ray crystal structure analysis could be isolated. On further drying, the crystals decomposed due to evaporation of acetone from the crystal. Yield: 42 mg (0.04 mmol, 83 % based on Cu[BF4]2·5H2O). IR (KBr, cm-1): ν = 2248 (CN). 1H NMR (500.3 MHz, acetone-d6, 298 K, p.p.m.) = 5.12 (s, 12H, C5H4), 4.82 (s, 12H, C5H4). 13C{1H} NMR: Data not available due to low solubility. HRMS (ESI–TOF): M+ – C12H8N2CuFe (C24H16N4CuFe2): m/z = 534.9342 (calc. 534.9370); M+ – C24H16N4CuFe2 (C12H8N2CuFe): m/z = 298.9342 (calc. 298.9333).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bonded H atoms were placed in calculated positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å for aromatic and Uiso(H) = 1.5Ueq(C) and a C—H distance of 0.96 Å for methyl H atoms. The F atoms of one of the two BF4- ions were refined as equally disordered over two sets of sites using DFIX [B—F 1.38 (2) Å] and DANG [F—F 2.25 (4) Å] instructions. Since some anisotropic displacement ellipsoids were rather elongated, DELU/SIMU/ISOR restraints were also applied (McArdle, 1995; Sheldrick, 2008).

Related literature top

For related literature, see: Altmannshofer et al. (2008); Bonniard et al. (2011); Benmansour et al. (2009); Bondi (1964); Bowmaker et al. (2004); Burgun et al. (2013); Buschbeck et al. (2011); Chesnut et al. (1998); Díez et al. (2008); Dong et al. (2008); Ferrara et al. (1987); Frosch et al. (2000, 2001); Fu et al. (2008); Helten et al. (2010); Jakob et al. (2009); Janssen et al. (1995); Köhler et al. (1998); Díez et al. (2009); Lang et al. (1995, 2000, 2006); Dowling et al. (1981); McArdle (1995); Osella et al. (1998); Osgerby & Pauson (1961); Packheiser et al. (2008); Sheldrick (2008); Spek (2007); Strehler et al. (2013, 2014); Vives et al. (2006).

Structure description top

The electron-transfer properties of the acetyl­ide function have been investigated intensively by using bridging units of the type —C C—M—CC— (M = transition metal), showing moderate electron communication between two redox-active metallocenyl termini in the mixed-valence species (see, for example: Lang et al., 2006; Vives et al., 2006; Jakob et al., 2009; Díez et al., 2008, 2009; Osella et al., 1998; Packheiser et al., 2008; Burgun et al., 2013). The nitrile group is isoelectronic with the acetyl­ide function; Bonniard et al. (2011) described how an —N C—C6H4—CN— linkage between two iron fragments prohibits the electronic inter­action between the transition metal atoms, while the isoelectric di(acetyl­ene)—phenyl­ene bridge shows a moderate delocalization. In contrast, a weak electron transfer by generation of the mixed-valence species [Ru(NCFc)(NH3)5]3+ [Fc = Fe(η5-C5H4)(η5-C5H5)] has been described (Dowling et al., 1981). We recently reported on the synthesis, characterization and electrochemical properties of platinum and copper complexes containing a —CN—M—NC— (M = Cu or Pt) bridging unit between two redox-active ferrocenyl moieties (Strehler et al., 2013, 2014) to achieve a direct comparison with the —CC—M—CC— building blocks. In addition, the coordination of ferrocene-1,1'-dicarbo­nitrile towards PtCl2 resulted in an oligomeric complex (Strehler et al., 2014). In a continuation of this work, we herein present the synthesis and crystal structure of [Cu2((CH3)2CO)(µ-Fe(η5-C5H4C N)2)3](BF4)2·(CH3)2CO, (I). The synthesis of this compound was realized by comproportionation of elementary copper and a copper(II) salt in the presence of 1,1'-ferrocenediyl dicarbo­nitrile.

The title compound contains one penta­metallic Cu2Fe3 complex molecule in the asymmetric unit consisting of two CuI ions bridged by three 1,1'-ferrocenediyl dicarbo­nitrile ligands that form a triangular paddle-wheel sandwich-type complex with iron···iron distances ranging from 9.1739 (13) (Fe2—Fe3) to 10.0385 (12) Å (Fe1—Fe2). The complex crystallizes with two BF4- counter-ions and two molecules of acetone. One acetone molecule coordinates with its oxygen atom to Cu1 [Cu1—O1 2.375 (2) Å], leading to an an 18 VE complex and an overall distorted trigonal–pyramidal environment. The Cu2 ion exhibits a weak inter­molecular η2, π inter­action [3.1520 (6) Å; Table 1, Fig. 1] with two atoms of an adjacent cyclo­penta­dienyl ring, and thus, only a 16 VE complex is present. The deviation from the N3 plane is increased for Cu1 [0.1883 (16) Å] as compared to Cu2 [0.0602 (16) Å] due to a stronger inter­action with the axial moiety. The Cu···Cu distance [3.3818 (7) Å] exceeds the sum of the van der Waals radii (Σ = 2.80 Å; Bondi, 1964), indicating that the CuI ions do not inter­act with each other.

The two faces of the sandwich-type complex consist of almost coplanar cyclo­penta­dienyl aromatics and central planes formed by three nitro­gen atoms that are also almost coplanar towards the C5 planes. However, one cyclo­penta­dienyl ring of each site deviates from coplanarity (Table 2), which results in a slight bending of the whole complex (Fig. 2). The ferrocenyl cyclo­penta­dienyl moieties virtually exhibit ecliptic conformations [4.5 (2) to 6.4 (2) °], with synperiplanar-oriented carbo­nitrile substituents towards each other. Maximum deviations from this plane are observed for N5 [0.289 (7) Å] and Cu2 [0.825 (9) Å].

Besides the already noted inter­molecular inter­action between Cu2 and the mid-point of the C26—C27 bond, ππ inter­actions are present in the crystal packing between the C23 atom and its symmetry-generated equivalent [3.167 (6) Å; Table 1]. All other π inter­actions occur almost perpendicular to the involved C5 ring (α C5···C23, 92.2 (2) °; α C5···Cu2, 93.23 (1) °; Table 1) . Compound (I) forms a layer-type structure parallel to (111) (Fig. 2), in which the coordinating acetone molecule is part of the overlaying layer. The second acetone molecule is present in each layer and does not exhibit any notable inter­molecular inter­actions. The distances between two layers are in the range of the above-mentioned inter­actions.

Since the first synthesis of 1,1'-di­cyano­ferrocene (Osgerby & Pauson, 1961), only one example of a crystal structure has been reported, that of the molecule itself (Altmannshofer et al., 2008) which exhibits a similar synperiplanar torsion (–2.2°) of the cyclo­penta­dienyl rings to that in (I). Further molecules bearing one nitrilo substituent at the ferrocenyl backbone include a penta­carbonyl tungsten complex with the second nitrilo functionality involved in a 2,3-di­hydro-1,2,3-aza­diphosphete (Helten et al., 2010) and recently published square-planar cis- and trans-platinum(II) complexes of cyano­ferrocene (Strehler et al., 2014).

Trigonal–planar (hetero-bimetallic) CuI complexes are well described in the literature (Lang et al., 1995, 2000, 2006; Buschbeck et al., 2011; Ferrara et al., 1987; Köhler et al., 1998; Frosch et al., 2000, 2001; Janssen et al., 1995; Spek, 2007). However, the coordination to a further carbon atom with similar short Cu···C distances has rarely been described (Cu···C distances are given in parentheses) [Dong et al., 2008 (3.538 and 3.583 Å); Chesnut et al., 1998 (3.126 Å); Fu et al., 2008 (3.577 and 3.561 Å); Benmansour et al., 2009 (3.088 and 3.519 Å] compared to 3.1520 (6) Å in (I). They mainly contain cyanide molecules acting as donating ligands that are partially replaced by aromatic N-donating molecules.

Regarding nitriles as donating molecules, a tris­(benzo­nitrilo)­copper(I) perchlorate complex (Bowmaker et al., 2004) has been reported, exhibiting a similar trigonal–planar coordination environment including the counter-ion acting as one axial ligand with a similar Cu—O distance of 2.404 (4) Å [compared to 2.375 (2) Å in (I)]. This results in a distorted trigonal-pyramidal environment with N—Cu—N angles slightly more varying [105.4 (2) to 130.4 (2)°] than in (I) [113.63 (11) to 128.97 (11)°], but Cu—N distances [1.906 (4)–1.958 (4) Å] in the same range as in (I) [1.911 (3)–1.960 (3) Å].

For related literature, see: Altmannshofer et al. (2008); Bonniard et al. (2011); Benmansour et al. (2009); Bondi (1964); Bowmaker et al. (2004); Burgun et al. (2013); Buschbeck et al. (2011); Chesnut et al. (1998); Díez et al. (2008); Dong et al. (2008); Ferrara et al. (1987); Frosch et al. (2000, 2001); Fu et al. (2008); Helten et al. (2010); Jakob et al. (2009); Janssen et al. (1995); Köhler et al. (1998); Díez et al. (2009); Lang et al. (1995, 2000, 2006); Dowling et al. (1981); McArdle (1995); Osella et al. (1998); Osgerby & Pauson (1961); Packheiser et al. (2008); Sheldrick (2008); Spek (2007); Strehler et al. (2013, 2014); Vives et al. (2006).

Synthesis and crystallization top

Ferrocene-1,1'-dicarbo­nitrile was prepared according to a published procedure (Strehler et al., 2014). Synthesis of [Cu2(µ-(η5-C5H4CN)Fe(η5-C5H4CN))3][BF4]2 (I): Copper powder (6 mg, 0.09 mmol), Cu[BF4]2·5H2O (12.5 mg, 0.05 mmol) and ferrocene-1,1'-dicarbo­nitrile (50.0 mg, 0.20 mmol) were stirred in 5 ml of di­chloro­methane at room temperature overnight. The resulting orange precipitate was filtered off using zeolite and washed several times with 20 ml of di­chloro­methane until the filtrate was colorless. The residue was taken up in acetone and this solution was evaporated to dryness using a rotary evaporator affording (I) as an orange solid. The evaporation was stopped before dryness, small orange crystals of (I) suitable for X-ray crystal structure analysis could be isolated. On further drying, the crystals decomposed due to evaporation of acetone from the crystal. Yield: 42 mg (0.04 mmol, 83 % based on Cu[BF4]2·5H2O). IR (KBr, cm-1): ν = 2248 (CN). 1H NMR (500.3 MHz, acetone-d6, 298 K, p.p.m.) = 5.12 (s, 12H, C5H4), 4.82 (s, 12H, C5H4). 13C{1H} NMR: Data not available due to low solubility. HRMS (ESI–TOF): M+ – C12H8N2CuFe (C24H16N4CuFe2): m/z = 534.9342 (calc. 534.9370); M+ – C24H16N4CuFe2 (C12H8N2CuFe): m/z = 298.9342 (calc. 298.9333).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bonded H atoms were placed in calculated positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.93 Å for aromatic and Uiso(H) = 1.5Ueq(C) and a C—H distance of 0.96 Å for methyl H atoms. The F atoms of one of the two BF4- ions were refined as equally disordered over two sets of sites using DFIX [B—F 1.38 (2) Å] and DANG [F—F 2.25 (4) Å] instructions. Since some anisotropic displacement ellipsoids were rather elongated, DELU/SIMU/ISOR restraints were also applied (McArdle, 1995; Sheldrick, 2008).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing intermolecular η2, ππ interactions between Cu2 and the C26—C27 bond, and short interactions between C23 and its symmetry-generated equivalent (Table 1), with displacement ellipsoids drawn at the 50% probability level. All H atoms, the BF4- ions and the non-coordinating acetone solvent molecule have been omitted for clarity. [Symmetry codes: (A) x - 1, y, z; (B) 1 + x, y, z; (C) -x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. Packing of molecular layers in the crystal structure of (I), with displacement ellipsoids drawn at the 30% probability level. All H atoms have been omitted for clarity. The disorder of one of the counter-anions is not shown.
(Acetone-κO)tris(µ-ferrocene-1,1'-dicarbonitrile-κ2N:N')dicopper(I) bis(tetrafluoridoborate) acetone monosolvate top
Crystal data top
[Cu2Fe3(C6H4N)6(C3H6O)](BF4)2·C3H6OZ = 2
Mr = 1125.02F(000) = 1128
Triclinic, P1Dx = 1.774 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 7.9947 (6) ÅCell parameters from 8458 reflections
b = 13.9384 (18) Åθ = 3.3–69.0°
c = 19.923 (2) ŵ = 9.92 mm1
α = 72.942 (10)°T = 110 K
β = 82.968 (7)°Block, orange
γ = 87.936 (8)°0.4 × 0.4 × 0.4 mm
V = 2106.4 (4) Å3
Data collection top
Oxford Gemini CCD
diffractometer
7318 independent reflections
Radiation source: fine-focus sealed tube6793 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 66.0°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
h = 99
Tmin = 0.427, Tmax = 1.000k = 1616
18279 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0708P)2 + 0.1006P]
where P = (Fo2 + 2Fc2)/3
7318 reflections(Δ/σ)max = 0.001
623 parametersΔρmax = 0.59 e Å3
148 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Cu2Fe3(C6H4N)6(C3H6O)](BF4)2·C3H6Oγ = 87.936 (8)°
Mr = 1125.02V = 2106.4 (4) Å3
Triclinic, P1Z = 2
a = 7.9947 (6) ÅCu Kα radiation
b = 13.9384 (18) ŵ = 9.92 mm1
c = 19.923 (2) ÅT = 110 K
α = 72.942 (10)°0.4 × 0.4 × 0.4 mm
β = 82.968 (7)°
Data collection top
Oxford Gemini CCD
diffractometer
7318 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
6793 reflections with I > 2σ(I)
Tmin = 0.427, Tmax = 1.000Rint = 0.042
18279 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041148 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.05Δρmax = 0.59 e Å3
7318 reflectionsΔρmin = 0.49 e Å3
623 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5468 (4)0.3054 (2)0.04318 (16)0.0185 (6)
C20.4808 (4)0.3038 (2)0.01919 (15)0.0174 (6)
C30.5066 (4)0.2253 (2)0.05327 (16)0.0200 (6)
H30.57180.16780.03930.024*
C40.4134 (4)0.2527 (2)0.11210 (15)0.0220 (6)
H40.40760.21600.14390.026*
C50.3303 (4)0.3449 (2)0.11466 (16)0.0221 (6)
H50.26090.37820.14840.027*
C60.3697 (4)0.3788 (2)0.05765 (16)0.0202 (6)
H60.33180.43720.04720.024*
C70.2033 (4)0.1972 (2)0.13847 (16)0.0181 (6)
C80.1377 (4)0.1837 (2)0.07864 (15)0.0179 (6)
C90.1813 (4)0.1037 (2)0.04685 (16)0.0207 (6)
H90.25180.04950.06310.025*
C100.0957 (4)0.1244 (2)0.01372 (17)0.0219 (6)
H100.09940.08480.04420.026*
C110.0026 (4)0.2154 (2)0.02100 (16)0.0227 (6)
H110.06350.24470.05690.027*
C120.0277 (4)0.2537 (2)0.03579 (16)0.0202 (6)
H120.01770.31230.04380.024*
C130.5338 (4)0.4709 (2)0.25231 (15)0.0188 (6)
C140.5060 (4)0.5502 (2)0.28328 (15)0.0182 (6)
C150.5993 (4)0.5645 (2)0.33724 (16)0.0224 (6)
H150.68640.52450.35730.027*
C160.5322 (4)0.6516 (2)0.35356 (18)0.0282 (8)
H160.56900.67910.38650.034*
C170.3998 (5)0.6902 (2)0.31161 (18)0.0288 (8)
H170.33550.74680.31260.035*
C180.3822 (4)0.6281 (2)0.26801 (16)0.0225 (7)
H180.30480.63640.23550.027*
C190.2308 (4)0.3458 (2)0.36694 (15)0.0172 (6)
C200.2118 (4)0.4172 (2)0.40581 (15)0.0164 (6)
C210.3173 (4)0.4224 (2)0.45839 (15)0.0179 (6)
H210.40100.37710.47590.022*
C220.2683 (4)0.5103 (2)0.47808 (15)0.0197 (6)
H220.31500.53240.51140.024*
C230.1375 (4)0.5588 (2)0.43916 (17)0.0218 (6)
H230.08440.61790.44260.026*
C240.1004 (4)0.5022 (2)0.39356 (16)0.0202 (6)
H240.01980.51740.36210.024*
C250.8920 (4)0.1538 (2)0.27510 (15)0.0161 (6)
C260.9887 (4)0.0779 (2)0.31755 (15)0.0160 (6)
C271.0231 (4)0.0708 (2)0.38812 (16)0.0180 (6)
H270.99010.11610.41340.022*
C281.1172 (4)0.0189 (2)0.41175 (16)0.0170 (6)
H281.15730.04230.45560.020*
C291.1401 (4)0.0672 (2)0.35708 (16)0.0188 (6)
H291.19740.12710.35950.023*
C301.0613 (4)0.0089 (2)0.29883 (16)0.0181 (6)
H301.05680.02340.25640.022*
C310.5433 (4)0.0322 (2)0.34912 (16)0.0173 (6)
C320.6342 (4)0.0514 (2)0.38813 (16)0.0171 (6)
C330.6779 (4)0.0651 (2)0.45801 (16)0.0205 (6)
H330.64740.02360.48650.025*
C340.7752 (4)0.1528 (2)0.47542 (16)0.0239 (7)
H340.81950.17990.51800.029*
C350.7953 (4)0.1936 (2)0.41705 (18)0.0233 (7)
H350.85530.25140.41520.028*
C360.7084 (4)0.1314 (2)0.36238 (16)0.0199 (6)
H360.70090.14050.31840.024*
C371.1665 (5)0.5108 (3)0.0935 (2)0.0435 (10)
H37A1.15660.51180.04570.065*
H37B1.26690.47510.10830.065*
H37C1.17260.57830.09590.065*
C381.0157 (4)0.4592 (2)0.14111 (18)0.0223 (6)
C391.0100 (5)0.4503 (3)0.2177 (2)0.0332 (8)
H39A0.90860.41610.24280.050*
H39B1.01170.51600.22380.050*
H39C1.10610.41290.23590.050*
C400.4543 (4)0.0511 (2)0.19261 (17)0.0247 (7)
H40A0.36260.07330.17400.037*
H40B0.41270.00550.21870.037*
H40C0.50520.10800.22340.037*
C410.5833 (4)0.0012 (2)0.13277 (17)0.0223 (7)
C420.7365 (5)0.0406 (3)0.1520 (2)0.0313 (8)
H42A0.80950.07200.10980.047*
H42B0.79500.01370.18170.047*
H42C0.70340.08900.17690.047*
N10.6008 (3)0.30829 (19)0.09341 (14)0.0196 (5)
N20.5629 (3)0.40839 (19)0.22584 (13)0.0216 (5)
N30.8167 (3)0.21500 (17)0.23846 (13)0.0179 (5)
N40.2546 (3)0.20846 (19)0.18660 (13)0.0202 (5)
N50.2515 (3)0.29064 (18)0.33446 (13)0.0196 (5)
N60.4698 (3)0.09815 (19)0.31814 (14)0.0204 (5)
Fe10.25591 (6)0.24050 (3)0.02036 (2)0.01424 (12)
Fe20.34679 (5)0.54574 (3)0.37176 (2)0.01361 (12)
Fe30.88811 (5)0.05035 (3)0.38612 (2)0.01260 (12)
Cu10.68186 (5)0.31536 (3)0.17936 (2)0.01732 (12)
Cu20.32370 (5)0.20644 (3)0.27549 (2)0.01731 (12)
O10.9045 (3)0.42672 (16)0.11721 (11)0.0229 (5)
O20.5640 (3)0.0100 (2)0.07178 (13)0.0372 (6)
F10.030 (3)0.3112 (14)0.8055 (12)0.053 (5)0.50
F20.1898 (14)0.2122 (16)0.7813 (11)0.037 (3)0.50
F30.031 (2)0.2441 (11)0.7154 (7)0.072 (3)0.50
F40.083 (2)0.1484 (11)0.8103 (7)0.077 (4)0.50
F1'0.015 (3)0.3066 (11)0.8136 (11)0.033 (2)0.50
F2'0.1857 (15)0.1996 (15)0.7868 (11)0.040 (4)0.50
F3'0.000 (2)0.2664 (12)0.7105 (5)0.094 (5)0.50
F4'0.062 (2)0.1452 (9)0.8301 (6)0.050 (2)0.50
F50.8995 (3)0.25555 (17)0.46188 (15)0.0480 (6)
F60.6375 (3)0.26511 (19)0.51557 (14)0.0479 (6)
F70.6937 (5)0.3401 (2)0.39964 (16)0.0729 (9)
F80.6880 (3)0.17002 (17)0.44066 (14)0.0445 (6)
B10.0191 (5)0.2297 (3)0.7814 (2)0.0320 (9)
B20.7293 (5)0.2580 (3)0.4537 (2)0.0270 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0139 (14)0.0180 (14)0.0234 (16)0.0030 (11)0.0033 (12)0.0076 (11)
C20.0149 (14)0.0196 (14)0.0176 (14)0.0046 (11)0.0017 (11)0.0063 (11)
C30.0185 (15)0.0218 (15)0.0200 (15)0.0030 (12)0.0044 (12)0.0089 (12)
C40.0248 (16)0.0269 (16)0.0152 (14)0.0084 (13)0.0054 (12)0.0096 (12)
C50.0252 (16)0.0232 (15)0.0143 (14)0.0065 (12)0.0011 (12)0.0007 (11)
C60.0223 (15)0.0171 (14)0.0196 (15)0.0049 (12)0.0016 (12)0.0039 (11)
C70.0163 (14)0.0168 (14)0.0189 (15)0.0050 (11)0.0042 (12)0.0035 (11)
C80.0162 (14)0.0215 (14)0.0144 (14)0.0068 (11)0.0038 (11)0.0041 (11)
C90.0229 (16)0.0164 (14)0.0225 (15)0.0083 (12)0.0009 (12)0.0056 (11)
C100.0217 (16)0.0228 (15)0.0246 (16)0.0100 (12)0.0005 (12)0.0119 (12)
C110.0165 (15)0.0300 (16)0.0212 (15)0.0064 (12)0.0018 (12)0.0063 (12)
C120.0141 (14)0.0239 (15)0.0224 (15)0.0031 (11)0.0035 (11)0.0083 (12)
C130.0171 (14)0.0176 (14)0.0182 (14)0.0028 (11)0.0065 (11)0.0026 (12)
C140.0207 (15)0.0153 (13)0.0163 (14)0.0039 (11)0.0073 (11)0.0044 (11)
C150.0158 (15)0.0268 (16)0.0240 (15)0.0105 (12)0.0051 (12)0.0083 (12)
C160.0331 (19)0.0252 (16)0.0265 (16)0.0184 (14)0.0137 (14)0.0128 (13)
C170.041 (2)0.0073 (13)0.0327 (17)0.0044 (13)0.0137 (15)0.0037 (12)
C180.0320 (17)0.0141 (14)0.0158 (14)0.0019 (12)0.0071 (12)0.0005 (11)
C190.0202 (15)0.0118 (13)0.0171 (14)0.0055 (11)0.0008 (11)0.0009 (11)
C200.0179 (14)0.0119 (13)0.0180 (14)0.0063 (11)0.0042 (11)0.0039 (10)
C210.0236 (15)0.0149 (13)0.0131 (13)0.0043 (11)0.0011 (11)0.0014 (10)
C220.0269 (16)0.0185 (14)0.0134 (13)0.0099 (12)0.0065 (12)0.0065 (11)
C230.0197 (15)0.0167 (14)0.0291 (16)0.0010 (11)0.0090 (12)0.0113 (12)
C240.0147 (14)0.0201 (14)0.0254 (15)0.0026 (11)0.0018 (12)0.0072 (12)
C250.0156 (14)0.0105 (13)0.0226 (14)0.0066 (11)0.0050 (12)0.0074 (11)
C260.0145 (14)0.0118 (13)0.0204 (14)0.0064 (11)0.0033 (11)0.0040 (11)
C270.0168 (14)0.0149 (13)0.0238 (15)0.0047 (11)0.0013 (11)0.0088 (11)
C280.0110 (13)0.0158 (13)0.0238 (15)0.0037 (10)0.0027 (11)0.0044 (11)
C290.0145 (14)0.0123 (13)0.0283 (16)0.0006 (11)0.0029 (12)0.0063 (11)
C300.0160 (14)0.0157 (14)0.0217 (14)0.0053 (11)0.0077 (11)0.0074 (11)
C310.0118 (13)0.0190 (15)0.0225 (15)0.0052 (12)0.0020 (11)0.0091 (12)
C320.0142 (14)0.0139 (13)0.0223 (15)0.0049 (11)0.0013 (11)0.0037 (11)
C330.0145 (14)0.0245 (15)0.0207 (15)0.0086 (12)0.0040 (11)0.0052 (12)
C340.0195 (15)0.0244 (16)0.0204 (15)0.0125 (12)0.0016 (12)0.0061 (12)
C350.0237 (16)0.0079 (13)0.0345 (17)0.0067 (11)0.0041 (13)0.0007 (12)
C360.0209 (15)0.0146 (14)0.0256 (15)0.0085 (11)0.0032 (12)0.0069 (11)
C370.033 (2)0.035 (2)0.061 (3)0.0126 (16)0.0047 (19)0.0136 (18)
C380.0209 (16)0.0117 (13)0.0349 (17)0.0032 (11)0.0052 (13)0.0072 (12)
C390.042 (2)0.0217 (16)0.038 (2)0.0033 (14)0.0168 (16)0.0066 (14)
C400.0247 (17)0.0257 (16)0.0241 (16)0.0031 (13)0.0010 (13)0.0089 (12)
C410.0249 (16)0.0146 (14)0.0269 (17)0.0030 (12)0.0007 (13)0.0068 (12)
C420.0324 (19)0.0250 (17)0.0369 (19)0.0083 (14)0.0026 (15)0.0092 (14)
N10.0155 (12)0.0221 (13)0.0229 (13)0.0025 (10)0.0018 (10)0.0090 (10)
N20.0237 (14)0.0190 (12)0.0215 (13)0.0030 (10)0.0030 (10)0.0074 (10)
N30.0210 (13)0.0127 (12)0.0197 (12)0.0035 (10)0.0003 (10)0.0051 (10)
N40.0203 (13)0.0214 (13)0.0182 (13)0.0024 (10)0.0016 (10)0.0058 (10)
N50.0236 (13)0.0154 (12)0.0194 (12)0.0031 (10)0.0006 (10)0.0050 (10)
N60.0160 (12)0.0210 (13)0.0256 (13)0.0004 (10)0.0021 (10)0.0093 (11)
Fe10.0156 (2)0.0142 (2)0.0135 (2)0.00296 (17)0.00021 (17)0.00528 (17)
Fe20.0160 (2)0.0091 (2)0.0157 (2)0.00264 (16)0.00292 (17)0.00522 (16)
Fe30.0128 (2)0.0089 (2)0.0161 (2)0.00297 (16)0.00034 (17)0.00383 (16)
Cu10.0201 (2)0.0150 (2)0.0186 (2)0.00069 (16)0.00220 (17)0.00767 (16)
Cu20.0195 (2)0.0161 (2)0.0179 (2)0.00040 (16)0.00213 (17)0.00739 (16)
O10.0236 (11)0.0205 (10)0.0259 (11)0.0038 (9)0.0005 (9)0.0093 (8)
O20.0411 (15)0.0443 (15)0.0246 (13)0.0013 (12)0.0053 (11)0.0067 (11)
F10.085 (9)0.046 (6)0.048 (8)0.032 (4)0.046 (5)0.035 (6)
F20.027 (4)0.044 (6)0.034 (5)0.008 (3)0.000 (4)0.006 (4)
F30.090 (7)0.079 (5)0.086 (6)0.045 (4)0.065 (5)0.069 (4)
F40.037 (5)0.090 (6)0.136 (10)0.027 (5)0.011 (7)0.088 (6)
F1'0.056 (5)0.022 (4)0.029 (4)0.014 (4)0.018 (6)0.015 (3)
F2'0.037 (5)0.044 (6)0.055 (9)0.015 (4)0.025 (5)0.034 (6)
F3'0.116 (10)0.155 (12)0.035 (4)0.107 (9)0.053 (4)0.059 (5)
F4'0.045 (5)0.043 (3)0.074 (5)0.018 (3)0.010 (4)0.032 (3)
F50.0255 (11)0.0393 (12)0.0848 (18)0.0003 (9)0.0047 (11)0.0275 (12)
F60.0439 (13)0.0476 (13)0.0608 (15)0.0020 (10)0.0085 (11)0.0348 (11)
F70.108 (3)0.0435 (15)0.0600 (17)0.0378 (16)0.0194 (16)0.0047 (12)
F80.0368 (12)0.0356 (11)0.0757 (16)0.0038 (9)0.0083 (11)0.0387 (11)
B10.038 (2)0.034 (2)0.036 (2)0.0115 (17)0.0196 (18)0.0245 (17)
B20.0236 (19)0.0181 (17)0.041 (2)0.0068 (14)0.0013 (16)0.0125 (15)
Geometric parameters (Å, º) top
C1—N11.149 (4)C26—C301.449 (4)
C1—C21.414 (4)C26—Fe32.027 (3)
C2—C31.444 (4)C27—C281.423 (4)
C2—C61.449 (4)C27—Fe32.049 (3)
C2—Fe12.037 (3)C27—H270.9300
C3—C41.416 (5)C28—C291.430 (4)
C3—Fe12.054 (3)C28—Fe32.056 (3)
C3—H30.9300C28—H280.9300
C4—C51.416 (5)C29—C301.412 (5)
C4—Fe12.055 (3)C29—Fe32.051 (3)
C4—H40.9300C29—H290.9300
C5—C61.423 (5)C30—Fe32.038 (3)
C5—Fe12.046 (3)C30—H300.9300
C5—H50.9300C31—N61.135 (4)
C6—Fe12.053 (3)C31—C321.426 (4)
C6—H60.9300C32—C331.434 (4)
C7—N41.141 (4)C32—C361.441 (4)
C7—C81.422 (4)C32—Fe32.026 (3)
C8—C121.445 (5)C33—C341.403 (5)
C8—C91.448 (4)C33—Fe32.045 (3)
C8—Fe12.023 (3)C33—H330.9300
C9—C101.411 (5)C34—C351.428 (5)
C9—Fe12.043 (3)C34—Fe32.056 (3)
C9—H90.9300C34—H340.9300
C10—C111.425 (5)C35—C361.417 (5)
C10—Fe12.064 (3)C35—Fe32.047 (3)
C10—H100.9300C35—H350.9300
C11—C121.423 (5)C36—Fe32.040 (3)
C11—Fe12.070 (3)C36—H360.9300
C11—H110.9300C37—C381.501 (5)
C12—Fe12.052 (3)C37—H37A0.9600
C12—H120.9300C37—H37B0.9600
C13—N21.148 (4)C37—H37C0.9600
C13—C141.414 (4)C38—O11.217 (4)
C14—C181.434 (4)C38—C391.489 (5)
C14—C151.444 (5)C39—H39A0.9600
C14—Fe22.031 (3)C39—H39B0.9600
C15—C161.417 (5)C39—H39C0.9600
C15—Fe22.052 (3)C40—C411.503 (4)
C15—H150.9300C40—H40A0.9600
C16—C171.422 (6)C40—H40B0.9600
C16—Fe22.054 (3)C40—H40C0.9600
C16—H160.9300C41—O21.214 (4)
C17—C181.415 (5)C41—C421.496 (5)
C17—Fe22.048 (3)C42—H42A0.9600
C17—H170.9300C42—H42B0.9600
C18—Fe22.039 (3)C42—H42C0.9600
C18—H180.9300N1—Cu11.933 (3)
C19—N51.137 (4)N2—Cu11.960 (3)
C19—C201.423 (4)N3—Cu11.934 (3)
C20—C241.437 (4)N4—Cu21.911 (3)
C20—C211.442 (4)N5—Cu21.920 (3)
C20—Fe22.021 (3)N6—Cu21.931 (3)
C21—C221.421 (4)Cu1—O12.375 (2)
C21—Fe22.044 (3)F1—B11.385 (13)
C21—H210.9300F2—B11.378 (12)
C22—C231.411 (5)F3—B11.378 (11)
C22—Fe22.051 (3)F4—B11.362 (12)
C22—H220.9300F1'—B11.404 (11)
C23—C241.429 (4)F2'—B11.389 (12)
C23—Fe22.051 (3)F3'—B11.378 (9)
C23—H230.9300F4'—B11.407 (10)
C24—Fe22.039 (3)F5—B21.388 (5)
C24—H240.9300F6—B21.382 (5)
C25—N31.152 (4)F7—B21.371 (5)
C25—C261.417 (4)F8—B21.385 (4)
C26—C271.440 (4)
N1—C1—C2178.9 (3)C41—C40—H40A109.5
C1—C2—C3125.8 (3)C41—C40—H40B109.5
C1—C2—C6125.4 (3)H40A—C40—H40B109.5
C3—C2—C6108.7 (3)C41—C40—H40C109.5
C1—C2—Fe1124.0 (2)H40A—C40—H40C109.5
C3—C2—Fe169.98 (17)H40B—C40—H40C109.5
C6—C2—Fe169.87 (17)O2—C41—C42121.8 (3)
C4—C3—C2106.7 (3)O2—C41—C40121.2 (3)
C4—C3—Fe169.87 (18)C42—C41—C40117.0 (3)
C2—C3—Fe168.67 (17)C41—C42—H42A109.5
C4—C3—H3126.6C41—C42—H42B109.5
C2—C3—H3126.6H42A—C42—H42B109.5
Fe1—C3—H3126.4C41—C42—H42C109.5
C5—C4—C3109.0 (3)H42A—C42—H42C109.5
C5—C4—Fe169.46 (17)H42B—C42—H42C109.5
C3—C4—Fe169.81 (16)C1—N1—Cu1177.4 (2)
C5—C4—H4125.5C13—N2—Cu1162.7 (3)
C3—C4—H4125.5C25—N3—Cu1177.6 (2)
Fe1—C4—H4126.8C7—N4—Cu2170.5 (2)
C4—C5—C6109.4 (3)C19—N5—Cu2170.5 (3)
C4—C5—Fe170.15 (16)C31—N6—Cu2172.9 (2)
C6—C5—Fe169.96 (16)C8—Fe1—C2111.30 (12)
C4—C5—H5125.3C8—Fe1—C941.73 (12)
C6—C5—H5125.3C2—Fe1—C9122.57 (13)
Fe1—C5—H5126.2C8—Fe1—C5158.37 (13)
C5—C6—C2106.1 (3)C2—Fe1—C568.38 (12)
C5—C6—Fe169.42 (16)C9—Fe1—C5157.48 (13)
C2—C6—Fe168.65 (16)C8—Fe1—C1241.54 (13)
C5—C6—H6127.0C2—Fe1—C12128.56 (12)
C2—C6—H6127.0C9—Fe1—C1270.17 (13)
Fe1—C6—H6126.5C5—Fe1—C12120.54 (13)
N4—C7—C8179.4 (3)C8—Fe1—C6124.44 (12)
C7—C8—C12124.8 (3)C2—Fe1—C641.49 (13)
C7—C8—C9126.1 (3)C9—Fe1—C6159.97 (13)
C12—C8—C9108.9 (3)C5—Fe1—C640.62 (13)
C7—C8—Fe1121.6 (2)C12—Fe1—C6109.01 (13)
C12—C8—Fe170.32 (16)C8—Fe1—C3126.63 (13)
C9—C8—Fe169.87 (16)C2—Fe1—C341.35 (12)
C10—C9—C8106.4 (3)C9—Fe1—C3105.80 (13)
C10—C9—Fe170.70 (17)C5—Fe1—C368.44 (13)
C8—C9—Fe168.40 (16)C12—Fe1—C3165.74 (13)
C10—C9—H9126.8C6—Fe1—C369.84 (12)
C8—C9—H9126.8C8—Fe1—C4161.08 (13)
Fe1—C9—H9125.7C2—Fe1—C468.25 (12)
C9—C10—C11109.5 (3)C9—Fe1—C4121.35 (13)
C9—C10—Fe169.10 (16)C5—Fe1—C440.39 (13)
C11—C10—Fe170.05 (17)C12—Fe1—C4153.52 (13)
C9—C10—H10125.2C6—Fe1—C468.67 (12)
C11—C10—H10125.2C3—Fe1—C440.32 (13)
Fe1—C10—H10127.2C8—Fe1—C1068.17 (12)
C12—C11—C10108.7 (3)C2—Fe1—C10155.50 (13)
C12—C11—Fe169.15 (17)C9—Fe1—C1040.20 (13)
C10—C11—Fe169.60 (18)C5—Fe1—C10121.64 (13)
C12—C11—H11125.6C12—Fe1—C1068.45 (12)
C10—C11—H11125.6C6—Fe1—C10159.38 (13)
Fe1—C11—H11127.2C3—Fe1—C10117.83 (13)
C11—C12—C8106.5 (3)C4—Fe1—C10104.04 (12)
C11—C12—Fe170.46 (17)C8—Fe1—C1168.30 (12)
C8—C12—Fe168.14 (16)C2—Fe1—C11163.98 (13)
C11—C12—H12126.8C9—Fe1—C1168.58 (13)
C8—C12—H12126.8C5—Fe1—C11105.79 (13)
Fe1—C12—H12126.2C12—Fe1—C1140.39 (13)
N2—C13—C14177.1 (3)C6—Fe1—C11124.52 (13)
C13—C14—C18126.9 (3)C3—Fe1—C11152.10 (13)
C13—C14—C15124.6 (3)C4—Fe1—C11117.67 (13)
C18—C14—C15108.6 (3)C10—Fe1—C1140.35 (13)
C13—C14—Fe2125.5 (2)C20—Fe2—C14111.25 (12)
C18—C14—Fe269.70 (16)C20—Fe2—C18122.55 (13)
C15—C14—Fe270.07 (16)C14—Fe2—C1841.24 (13)
C16—C15—C14106.5 (3)C20—Fe2—C2441.45 (12)
C16—C15—Fe269.89 (18)C14—Fe2—C24127.62 (13)
C14—C15—Fe268.51 (16)C18—Fe2—C24106.96 (14)
C16—C15—H15126.7C20—Fe2—C2141.55 (12)
C14—C15—H15126.7C14—Fe2—C21123.44 (12)
Fe2—C15—H15126.4C18—Fe2—C21159.02 (12)
C15—C16—C17109.1 (3)C24—Fe2—C2169.95 (12)
C15—C16—Fe269.74 (17)C20—Fe2—C17155.36 (15)
C17—C16—Fe269.48 (18)C14—Fe2—C1768.43 (12)
C15—C16—H16125.4C18—Fe2—C1740.52 (14)
C17—C16—H16125.4C24—Fe2—C17117.82 (14)
Fe2—C16—H16126.9C21—Fe2—C17159.70 (14)
C18—C17—C16108.6 (3)C20—Fe2—C2368.72 (12)
C18—C17—Fe269.43 (16)C14—Fe2—C23162.87 (14)
C16—C17—Fe269.96 (18)C18—Fe2—C23123.29 (13)
C18—C17—H17125.7C24—Fe2—C2340.88 (13)
C16—C17—H17125.7C21—Fe2—C2368.70 (12)
Fe2—C17—H17126.5C17—Fe2—C23104.13 (13)
C17—C18—C14107.2 (3)C20—Fe2—C2268.55 (12)
C17—C18—Fe270.06 (17)C14—Fe2—C22156.78 (14)
C14—C18—Fe269.06 (16)C18—Fe2—C22159.14 (13)
C17—C18—H18126.4C24—Fe2—C2268.68 (13)
C14—C18—H18126.4C21—Fe2—C2240.59 (12)
Fe2—C18—H18126.1C17—Fe2—C22122.00 (13)
N5—C19—C20177.4 (3)C23—Fe2—C2240.24 (14)
C19—C20—C24126.1 (3)C20—Fe2—C15128.54 (13)
C19—C20—C21124.7 (3)C14—Fe2—C1541.43 (13)
C24—C20—C21108.8 (3)C18—Fe2—C1569.64 (14)
C19—C20—Fe2120.2 (2)C24—Fe2—C15166.46 (13)
C24—C20—Fe269.97 (16)C21—Fe2—C15108.26 (13)
C21—C20—Fe270.09 (16)C17—Fe2—C1568.68 (14)
C22—C21—C20106.5 (3)C23—Fe2—C15152.02 (13)
C22—C21—Fe269.97 (16)C22—Fe2—C15119.25 (13)
C20—C21—Fe268.35 (15)C20—Fe2—C16163.92 (15)
C22—C21—H21126.8C14—Fe2—C1668.29 (12)
C20—C21—H21126.8C18—Fe2—C1668.48 (14)
Fe2—C21—H21126.5C24—Fe2—C16151.81 (14)
C23—C22—C21109.4 (3)C21—Fe2—C16124.25 (14)
C23—C22—Fe269.87 (17)C17—Fe2—C1640.56 (16)
C21—C22—Fe269.44 (16)C23—Fe2—C16116.77 (13)
C23—C22—H22125.3C22—Fe2—C16105.22 (12)
C21—C22—H22125.3C15—Fe2—C1640.37 (14)
Fe2—C22—H22127.0C32—Fe3—C26111.01 (12)
C22—C23—C24108.7 (3)C32—Fe3—C30126.88 (13)
C22—C23—Fe269.89 (17)C26—Fe3—C3041.77 (12)
C24—C23—Fe269.12 (17)C32—Fe3—C3641.50 (12)
C22—C23—H23125.6C26—Fe3—C36123.05 (12)
C24—C23—H23125.6C30—Fe3—C36106.54 (12)
Fe2—C23—H23126.9C32—Fe3—C3341.23 (13)
C23—C24—C20106.7 (3)C26—Fe3—C33127.68 (12)
C23—C24—Fe269.99 (17)C30—Fe3—C33165.43 (13)
C20—C24—Fe268.58 (16)C36—Fe3—C3369.70 (12)
C23—C24—H24126.7C32—Fe3—C3568.46 (12)
C20—C24—H24126.7C26—Fe3—C35156.48 (13)
Fe2—C24—H24126.3C30—Fe3—C35118.37 (13)
N3—C25—C26177.5 (3)C36—Fe3—C3540.57 (13)
C25—C26—C27125.8 (3)C33—Fe3—C3568.51 (13)
C25—C26—C30125.7 (3)C32—Fe3—C27124.00 (12)
C27—C26—C30108.4 (3)C26—Fe3—C2741.37 (12)
C25—C26—Fe3123.5 (2)C30—Fe3—C2769.99 (12)
C27—C26—Fe370.12 (15)C36—Fe3—C27159.91 (13)
C30—C26—Fe369.51 (15)C33—Fe3—C27108.45 (12)
C28—C27—C26106.8 (3)C35—Fe3—C27158.82 (13)
C28—C27—Fe369.97 (16)C32—Fe3—C29161.44 (13)
C26—C27—Fe368.51 (16)C26—Fe3—C2968.70 (12)
C28—C27—H27126.6C30—Fe3—C2940.39 (13)
C26—C27—H27126.6C36—Fe3—C29121.97 (12)
Fe3—C27—H27126.5C33—Fe3—C29153.64 (13)
C27—C28—C29108.8 (3)C35—Fe3—C29104.07 (12)
C27—C28—Fe369.46 (16)C27—Fe3—C2968.91 (12)
C29—C28—Fe369.45 (17)C32—Fe3—C28157.65 (12)
C27—C28—H28125.6C26—Fe3—C2868.54 (12)
C29—C28—H28125.6C30—Fe3—C2868.72 (12)
Fe3—C28—H28127.1C36—Fe3—C28158.11 (12)
C30—C29—C28108.8 (3)C33—Fe3—C28120.10 (12)
C30—C29—Fe369.30 (16)C35—Fe3—C28121.38 (12)
C28—C29—Fe369.80 (16)C27—Fe3—C2840.57 (12)
C30—C29—H29125.6C29—Fe3—C2840.75 (12)
C28—C29—H29125.6C32—Fe3—C3468.04 (12)
Fe3—C29—H29126.9C26—Fe3—C34162.55 (13)
C29—C30—C26107.1 (3)C30—Fe3—C34153.04 (13)
C29—C30—Fe370.31 (16)C36—Fe3—C3468.66 (13)
C26—C30—Fe368.72 (15)C33—Fe3—C3440.01 (13)
C29—C30—H30126.4C35—Fe3—C3440.72 (14)
C26—C30—H30126.4C27—Fe3—C34123.56 (13)
Fe3—C30—H30126.1C29—Fe3—C34118.09 (13)
N6—C31—C32179.4 (3)C28—Fe3—C34105.38 (12)
C31—C32—C33125.2 (3)N1—Cu1—N3126.02 (11)
C31—C32—C36126.1 (3)N1—Cu1—N2116.24 (11)
C33—C32—C36108.6 (3)N3—Cu1—N2114.92 (11)
C31—C32—Fe3122.43 (19)N1—Cu1—O193.09 (9)
C33—C32—Fe370.08 (17)N3—Cu1—O197.54 (9)
C36—C32—Fe369.77 (17)N2—Cu1—O196.17 (9)
C34—C33—C32107.3 (3)N4—Cu2—N5128.97 (11)
C34—C33—Fe370.43 (17)N4—Cu2—N6117.11 (11)
C32—C33—Fe368.69 (16)N5—Cu2—N6113.63 (11)
C34—C33—H33126.4C38—O1—Cu1128.4 (2)
C32—C33—H33126.4F4—B1—F392.2 (9)
Fe3—C33—H33126.1F4—B1—F2116.4 (12)
C33—C34—C35108.9 (3)F3—B1—F2111.8 (12)
C33—C34—Fe369.56 (16)F4—B1—F3'108.4 (10)
C35—C34—Fe369.30 (16)F3—B1—F3'16.2 (13)
C33—C34—H34125.5F2—B1—F3'103.2 (12)
C35—C34—H34125.5F4—B1—F1113.4 (12)
Fe3—C34—H34127.2F3—B1—F1109.4 (13)
C36—C35—C34108.6 (3)F2—B1—F1112.0 (14)
C36—C35—Fe369.45 (16)F3'—B1—F1101.9 (13)
C34—C35—Fe369.97 (17)F4—B1—F2'109.0 (12)
C36—C35—H35125.7F3—B1—F2'114.6 (13)
C34—C35—H35125.7F2—B1—F2'7.4 (16)
Fe3—C35—H35126.5F3'—B1—F2'107.6 (10)
C35—C36—C32106.6 (3)F1—B1—F2'115.9 (16)
C35—C36—Fe369.99 (17)F4—B1—F1'113.5 (11)
C32—C36—Fe368.74 (16)F3—B1—F1'117.8 (13)
C35—C36—H36126.7F2—B1—F1'105.5 (15)
C32—C36—H36126.7F3'—B1—F1'109.3 (11)
Fe3—C36—H36126.1F1—B1—F1'9 (2)
C38—C37—H37A109.5F2'—B1—F1'108.8 (12)
C38—C37—H37B109.5F4—B1—F4'18.1 (9)
H37A—C37—H37B109.5F3—B1—F4'110.3 (8)
C38—C37—H37C109.5F2—B1—F4'106.7 (11)
H37A—C37—H37C109.5F3'—B1—F4'126.5 (10)
H37B—C37—H37C109.5F1—B1—F4'106.5 (13)
O1—C38—C39122.5 (3)F2'—B1—F4'99.3 (11)
O1—C38—C37120.6 (3)F1'—B1—F4'104.1 (9)
C39—C38—C37116.9 (3)F7—B2—F6108.5 (3)
C38—C39—H39A109.5F7—B2—F8110.9 (4)
C38—C39—H39B109.5F6—B2—F8109.7 (3)
H39A—C39—H39B109.5F7—B2—F5110.4 (3)
C38—C39—H39C109.5F6—B2—F5108.7 (3)
H39A—C39—H39C109.5F8—B2—F5108.7 (3)
H39B—C39—H39C109.5
N1—C1—C2—C3141 (17)C13—C14—Fe2—C2450.2 (3)
N1—C1—C2—C642 (17)C18—C14—Fe2—C2471.3 (2)
N1—C1—C2—Fe1130 (17)C15—C14—Fe2—C24169.03 (18)
C1—C2—C3—C4177.9 (3)C13—C14—Fe2—C2139.3 (3)
C6—C2—C3—C40.5 (3)C18—C14—Fe2—C21160.74 (19)
Fe1—C2—C3—C459.8 (2)C15—C14—Fe2—C2179.6 (2)
C1—C2—C3—Fe1118.1 (3)C13—C14—Fe2—C17159.4 (3)
C6—C2—C3—Fe159.32 (19)C18—C14—Fe2—C1737.9 (2)
C2—C3—C4—C50.5 (3)C15—C14—Fe2—C1781.8 (2)
Fe1—C3—C4—C558.5 (2)C13—C14—Fe2—C2392.4 (5)
C2—C3—C4—Fe159.03 (19)C18—C14—Fe2—C2329.1 (5)
C3—C4—C5—C60.4 (3)C15—C14—Fe2—C23148.7 (4)
Fe1—C4—C5—C659.1 (2)C13—C14—Fe2—C2279.1 (4)
C3—C4—C5—Fe158.7 (2)C18—C14—Fe2—C22159.5 (3)
C4—C5—C6—C20.1 (3)C15—C14—Fe2—C2239.8 (4)
Fe1—C5—C6—C259.15 (19)C13—C14—Fe2—C15118.9 (4)
C4—C5—C6—Fe159.2 (2)C18—C14—Fe2—C15119.7 (3)
C1—C2—C6—C5177.7 (3)C13—C14—Fe2—C16156.9 (3)
C3—C2—C6—C50.3 (3)C18—C14—Fe2—C1681.7 (2)
Fe1—C2—C6—C559.65 (19)C15—C14—Fe2—C1638.0 (2)
C1—C2—C6—Fe1118.1 (3)C17—C18—Fe2—C20155.9 (2)
C3—C2—C6—Fe159.38 (19)C14—C18—Fe2—C2085.6 (2)
N4—C7—C8—C1229 (33)C17—C18—Fe2—C14118.4 (3)
N4—C7—C8—C9157 (32)C17—C18—Fe2—C24113.2 (2)
N4—C7—C8—Fe1116 (32)C14—C18—Fe2—C24128.34 (19)
C7—C8—C9—C10175.9 (3)C17—C18—Fe2—C21168.7 (3)
C12—C8—C9—C101.1 (3)C14—C18—Fe2—C2150.2 (4)
Fe1—C8—C9—C1060.8 (2)C14—C18—Fe2—C17118.4 (3)
C7—C8—C9—Fe1115.0 (3)C17—C18—Fe2—C2371.4 (2)
C12—C8—C9—Fe159.71 (19)C14—C18—Fe2—C23170.15 (18)
C8—C9—C10—C110.9 (3)C17—C18—Fe2—C2238.7 (5)
Fe1—C9—C10—C1158.5 (2)C14—C18—Fe2—C22157.2 (3)
C8—C9—C10—Fe159.34 (19)C17—C18—Fe2—C1580.6 (2)
C9—C10—C11—C120.3 (3)C14—C18—Fe2—C1537.82 (19)
Fe1—C10—C11—C1258.2 (2)C17—C18—Fe2—C1637.3 (2)
C9—C10—C11—Fe157.9 (2)C14—C18—Fe2—C1681.2 (2)
C10—C11—C12—C80.4 (3)C23—C24—Fe2—C20118.1 (3)
Fe1—C11—C12—C858.89 (19)C23—C24—Fe2—C14162.39 (18)
C10—C11—C12—Fe158.5 (2)C20—C24—Fe2—C1479.5 (2)
C7—C8—C12—C11175.8 (3)C23—C24—Fe2—C18121.63 (19)
C9—C8—C12—C111.0 (3)C20—C24—Fe2—C18120.30 (18)
Fe1—C8—C12—C1160.38 (19)C23—C24—Fe2—C2180.26 (19)
C7—C8—C12—Fe1115.4 (3)C20—C24—Fe2—C2137.80 (18)
C9—C8—C12—Fe159.43 (19)C23—C24—Fe2—C1779.2 (2)
N2—C13—C14—C18113 (7)C20—C24—Fe2—C17162.76 (18)
N2—C13—C14—C1568 (7)C20—C24—Fe2—C23118.1 (3)
N2—C13—C14—Fe2157 (7)C23—C24—Fe2—C2236.76 (18)
C13—C14—C15—C16179.9 (3)C20—C24—Fe2—C2281.31 (19)
C18—C14—C15—C160.6 (3)C23—C24—Fe2—C15165.1 (5)
Fe2—C14—C15—C1659.9 (2)C20—C24—Fe2—C1547.0 (6)
C13—C14—C15—Fe2120.0 (3)C23—C24—Fe2—C1645.7 (4)
C18—C14—C15—Fe259.27 (19)C20—C24—Fe2—C16163.8 (3)
C14—C15—C16—C170.5 (3)C22—C21—Fe2—C20118.0 (3)
Fe2—C15—C16—C1758.4 (2)C22—C21—Fe2—C14157.19 (19)
C14—C15—C16—Fe258.96 (19)C20—C21—Fe2—C1484.8 (2)
C15—C16—C17—C180.3 (3)C22—C21—Fe2—C18165.4 (3)
Fe2—C16—C17—C1858.9 (2)C20—C21—Fe2—C1847.4 (4)
C15—C16—C17—Fe258.6 (2)C22—C21—Fe2—C2480.3 (2)
C16—C17—C18—C140.1 (3)C20—C21—Fe2—C2437.71 (17)
Fe2—C17—C18—C1459.29 (19)C22—C21—Fe2—C1736.1 (5)
C16—C17—C18—Fe259.2 (2)C20—C21—Fe2—C17154.1 (4)
C13—C14—C18—C17179.7 (3)C22—C21—Fe2—C2336.46 (19)
C15—C14—C18—C170.4 (3)C20—C21—Fe2—C2381.53 (19)
Fe2—C14—C18—C1759.9 (2)C20—C21—Fe2—C22118.0 (3)
C13—C14—C18—Fe2119.8 (3)C22—C21—Fe2—C15113.9 (2)
C15—C14—C18—Fe259.50 (19)C20—C21—Fe2—C15128.08 (18)
N5—C19—C20—C24100 (7)C22—C21—Fe2—C1672.2 (2)
N5—C19—C20—C2172 (7)C20—C21—Fe2—C16169.85 (18)
N5—C19—C20—Fe213 (7)C18—C17—Fe2—C2055.6 (4)
C19—C20—C21—C22173.5 (3)C16—C17—Fe2—C20175.6 (3)
C24—C20—C21—C220.4 (3)C18—C17—Fe2—C1438.6 (2)
Fe2—C20—C21—C2259.90 (18)C16—C17—Fe2—C1481.4 (2)
C19—C20—C21—Fe2113.6 (3)C16—C17—Fe2—C18119.9 (3)
C24—C20—C21—Fe259.47 (19)C18—C17—Fe2—C2483.7 (2)
C20—C21—C22—C230.3 (3)C16—C17—Fe2—C24156.37 (19)
Fe2—C21—C22—C2358.6 (2)C18—C17—Fe2—C21168.3 (3)
C20—C21—C22—Fe258.86 (18)C16—C17—Fe2—C2148.4 (5)
C21—C22—C23—C240.1 (3)C18—C17—Fe2—C23125.2 (2)
Fe2—C22—C23—C2458.4 (2)C16—C17—Fe2—C23114.8 (2)
C21—C22—C23—Fe258.3 (2)C18—C17—Fe2—C22164.8 (2)
C22—C23—C24—C200.2 (3)C16—C17—Fe2—C2275.3 (2)
Fe2—C23—C24—C2059.03 (19)C18—C17—Fe2—C1583.2 (2)
C22—C23—C24—Fe258.8 (2)C16—C17—Fe2—C1536.71 (19)
C19—C20—C24—C23173.3 (3)C18—C17—Fe2—C16119.9 (3)
C21—C20—C24—C230.4 (3)C22—C23—Fe2—C2081.53 (18)
Fe2—C20—C24—C2359.94 (19)C24—C23—Fe2—C2038.82 (18)
C19—C20—C24—Fe2113.4 (3)C22—C23—Fe2—C14174.8 (4)
C21—C20—C24—Fe259.55 (19)C24—C23—Fe2—C1454.5 (5)
N3—C25—C26—C27153 (7)C22—C23—Fe2—C18162.68 (18)
N3—C25—C26—C3031 (7)C24—C23—Fe2—C1877.0 (2)
N3—C25—C26—Fe3119 (7)C22—C23—Fe2—C24120.3 (2)
C25—C26—C27—C28177.3 (3)C22—C23—Fe2—C2136.77 (17)
C30—C26—C27—C280.6 (3)C24—C23—Fe2—C2183.57 (19)
Fe3—C26—C27—C2859.75 (19)C22—C23—Fe2—C17123.27 (19)
C25—C26—C27—Fe3117.6 (3)C24—C23—Fe2—C17116.4 (2)
C30—C26—C27—Fe359.15 (18)C24—C23—Fe2—C22120.3 (2)
C26—C27—C28—C290.4 (3)C22—C23—Fe2—C1552.3 (3)
Fe3—C27—C28—C2958.43 (19)C24—C23—Fe2—C15172.6 (3)
C26—C27—C28—Fe358.82 (19)C22—C23—Fe2—C1681.9 (2)
C27—C28—C29—C300.0 (3)C24—C23—Fe2—C16157.75 (19)
Fe3—C28—C29—C3058.5 (2)C23—C22—Fe2—C2082.00 (19)
C27—C28—C29—Fe358.43 (19)C21—C22—Fe2—C2039.00 (18)
C28—C29—C30—C260.3 (3)C23—C22—Fe2—C14176.1 (3)
Fe3—C29—C30—C2659.11 (18)C21—C22—Fe2—C1455.1 (4)
C28—C29—C30—Fe358.8 (2)C23—C22—Fe2—C1844.3 (4)
C25—C26—C30—C29177.3 (3)C21—C22—Fe2—C18165.3 (3)
C27—C26—C30—C290.6 (3)C23—C22—Fe2—C2437.33 (18)
Fe3—C26—C30—C2960.12 (19)C21—C22—Fe2—C2483.67 (19)
C25—C26—C30—Fe3117.2 (3)C23—C22—Fe2—C21121.0 (3)
C27—C26—C30—Fe359.53 (19)C23—C22—Fe2—C1773.0 (2)
N6—C31—C32—C33109 (33)C21—C22—Fe2—C17166.0 (2)
N6—C31—C32—C3677 (33)C21—C22—Fe2—C23121.0 (3)
N6—C31—C32—Fe3164 (100)C23—C22—Fe2—C15154.83 (18)
C31—C32—C33—C34176.4 (3)C21—C22—Fe2—C1584.2 (2)
C36—C32—C33—C340.8 (3)C23—C22—Fe2—C16113.6 (2)
Fe3—C32—C33—C3460.14 (19)C21—C22—Fe2—C16125.4 (2)
C31—C32—C33—Fe3116.3 (3)C16—C15—Fe2—C20163.7 (2)
C36—C32—C33—Fe359.3 (2)C14—C15—Fe2—C2078.3 (2)
C32—C33—C34—C350.8 (3)C16—C15—Fe2—C14118.0 (3)
Fe3—C33—C34—C3558.2 (2)C16—C15—Fe2—C1880.4 (2)
C32—C33—C34—Fe359.03 (19)C14—C15—Fe2—C1837.66 (18)
C33—C34—C35—C360.5 (3)C16—C15—Fe2—C24158.1 (5)
Fe3—C34—C35—C3658.9 (2)C14—C15—Fe2—C2440.1 (6)
C33—C34—C35—Fe358.4 (2)C16—C15—Fe2—C21121.8 (2)
C34—C35—C36—C320.0 (3)C14—C15—Fe2—C21120.20 (18)
Fe3—C35—C36—C3259.24 (19)C16—C15—Fe2—C1736.9 (2)
C34—C35—C36—Fe359.2 (2)C14—C15—Fe2—C1781.1 (2)
C31—C32—C36—C35176.1 (3)C16—C15—Fe2—C2343.0 (4)
C33—C32—C36—C350.5 (3)C14—C15—Fe2—C23161.0 (2)
Fe3—C32—C36—C3560.0 (2)C16—C15—Fe2—C2278.8 (2)
C31—C32—C36—Fe3116.0 (3)C14—C15—Fe2—C22163.18 (17)
C33—C32—C36—Fe359.52 (19)C14—C15—Fe2—C16118.0 (3)
C2—C1—N1—Cu181 (18)C15—C16—Fe2—C2052.6 (5)
C14—C13—N2—Cu121 (7)C17—C16—Fe2—C20173.3 (4)
C26—C25—N3—Cu1135 (6)C15—C16—Fe2—C1438.96 (19)
C8—C7—N4—Cu295 (33)C17—C16—Fe2—C1481.8 (2)
C20—C19—N5—Cu216 (9)C15—C16—Fe2—C1883.5 (2)
C32—C31—N6—Cu254 (34)C17—C16—Fe2—C1837.24 (19)
C7—C8—Fe1—C25.3 (3)C15—C16—Fe2—C24169.4 (3)
C12—C8—Fe1—C2124.68 (18)C17—C16—Fe2—C2448.6 (4)
C9—C8—Fe1—C2115.53 (19)C15—C16—Fe2—C2177.6 (2)
C7—C8—Fe1—C9120.8 (3)C17—C16—Fe2—C21161.72 (18)
C12—C8—Fe1—C9119.8 (3)C15—C16—Fe2—C17120.7 (3)
C7—C8—Fe1—C579.6 (4)C15—C16—Fe2—C23159.01 (19)
C12—C8—Fe1—C539.8 (4)C17—C16—Fe2—C2380.3 (2)
C9—C8—Fe1—C5159.6 (3)C15—C16—Fe2—C22117.5 (2)
C7—C8—Fe1—C12119.4 (3)C17—C16—Fe2—C22121.8 (2)
C9—C8—Fe1—C12119.8 (3)C17—C16—Fe2—C15120.7 (3)
C7—C8—Fe1—C639.7 (3)C31—C32—Fe3—C264.0 (3)
C12—C8—Fe1—C679.7 (2)C33—C32—Fe3—C26123.73 (18)
C9—C8—Fe1—C6160.49 (19)C36—C32—Fe3—C26116.59 (18)
C7—C8—Fe1—C349.7 (3)C31—C32—Fe3—C3048.7 (3)
C12—C8—Fe1—C3169.10 (17)C33—C32—Fe3—C30168.44 (17)
C9—C8—Fe1—C371.1 (2)C36—C32—Fe3—C3071.9 (2)
C7—C8—Fe1—C490.2 (4)C31—C32—Fe3—C36120.6 (3)
C12—C8—Fe1—C4150.4 (4)C33—C32—Fe3—C36119.7 (2)
C9—C8—Fe1—C430.6 (5)C31—C32—Fe3—C33119.7 (3)
C7—C8—Fe1—C10158.9 (3)C36—C32—Fe3—C33119.7 (2)
C12—C8—Fe1—C1081.70 (19)C31—C32—Fe3—C35158.8 (3)
C9—C8—Fe1—C1038.10 (19)C33—C32—Fe3—C3581.53 (19)
C7—C8—Fe1—C11157.5 (3)C36—C32—Fe3—C3538.15 (18)
C12—C8—Fe1—C1138.10 (18)C31—C32—Fe3—C2740.7 (3)
C9—C8—Fe1—C1181.7 (2)C33—C32—Fe3—C2779.0 (2)
C1—C2—Fe1—C81.4 (3)C36—C32—Fe3—C27161.30 (17)
C3—C2—Fe1—C8121.77 (18)C31—C32—Fe3—C2989.5 (4)
C6—C2—Fe1—C8118.40 (18)C33—C32—Fe3—C29150.8 (3)
C1—C2—Fe1—C944.1 (3)C36—C32—Fe3—C2931.1 (4)
C3—C2—Fe1—C976.3 (2)C31—C32—Fe3—C2880.4 (4)
C6—C2—Fe1—C9163.86 (17)C33—C32—Fe3—C2839.3 (4)
C1—C2—Fe1—C5158.1 (3)C36—C32—Fe3—C28159.0 (3)
C3—C2—Fe1—C581.50 (19)C31—C32—Fe3—C34157.2 (3)
C6—C2—Fe1—C538.34 (18)C33—C32—Fe3—C3437.54 (18)
C1—C2—Fe1—C1245.6 (3)C36—C32—Fe3—C3482.15 (19)
C3—C2—Fe1—C12165.98 (18)C25—C26—Fe3—C322.4 (3)
C6—C2—Fe1—C1274.2 (2)C27—C26—Fe3—C32118.05 (18)
C1—C2—Fe1—C6119.8 (3)C30—C26—Fe3—C32122.34 (19)
C3—C2—Fe1—C6119.8 (2)C25—C26—Fe3—C30120.0 (3)
C1—C2—Fe1—C3120.4 (3)C27—C26—Fe3—C30119.6 (3)
C6—C2—Fe1—C3119.8 (2)C25—C26—Fe3—C3642.6 (3)
C1—C2—Fe1—C4158.3 (3)C27—C26—Fe3—C36163.04 (18)
C3—C2—Fe1—C437.89 (18)C30—C26—Fe3—C3677.4 (2)
C6—C2—Fe1—C481.95 (19)C25—C26—Fe3—C3346.2 (3)
C1—C2—Fe1—C1082.5 (4)C27—C26—Fe3—C3374.2 (2)
C3—C2—Fe1—C1037.9 (4)C30—C26—Fe3—C33166.19 (18)
C6—C2—Fe1—C10157.8 (3)C25—C26—Fe3—C3581.7 (4)
C1—C2—Fe1—C1186.8 (5)C27—C26—Fe3—C35157.9 (3)
C3—C2—Fe1—C11152.8 (4)C30—C26—Fe3—C3538.3 (4)
C6—C2—Fe1—C1133.0 (5)C25—C26—Fe3—C27120.4 (3)
C10—C9—Fe1—C8117.5 (3)C30—C26—Fe3—C27119.6 (3)
C10—C9—Fe1—C2156.48 (18)C25—C26—Fe3—C29157.7 (3)
C8—C9—Fe1—C286.1 (2)C27—C26—Fe3—C2981.85 (19)
C10—C9—Fe1—C543.0 (4)C30—C26—Fe3—C2937.75 (18)
C8—C9—Fe1—C5160.4 (3)C25—C26—Fe3—C28158.4 (3)
C10—C9—Fe1—C1279.7 (2)C27—C26—Fe3—C2837.95 (17)
C8—C9—Fe1—C1237.71 (18)C30—C26—Fe3—C2881.65 (19)
C10—C9—Fe1—C6171.0 (3)C25—C26—Fe3—C3485.9 (5)
C8—C9—Fe1—C653.5 (4)C27—C26—Fe3—C3434.6 (5)
C10—C9—Fe1—C3114.64 (19)C30—C26—Fe3—C34154.2 (4)
C8—C9—Fe1—C3127.91 (19)C29—C30—Fe3—C32161.29 (17)
C10—C9—Fe1—C473.7 (2)C26—C30—Fe3—C3280.4 (2)
C8—C9—Fe1—C4168.84 (18)C29—C30—Fe3—C26118.3 (3)
C8—C9—Fe1—C10117.5 (3)C29—C30—Fe3—C36120.22 (18)
C10—C9—Fe1—C1136.48 (19)C26—C30—Fe3—C36121.44 (19)
C8—C9—Fe1—C1181.0 (2)C29—C30—Fe3—C33167.0 (4)
C4—C5—Fe1—C8174.9 (3)C26—C30—Fe3—C3348.7 (6)
C6—C5—Fe1—C854.3 (4)C29—C30—Fe3—C3578.0 (2)
C4—C5—Fe1—C281.4 (2)C26—C30—Fe3—C35163.69 (18)
C6—C5—Fe1—C239.14 (19)C29—C30—Fe3—C2780.63 (18)
C4—C5—Fe1—C942.4 (4)C26—C30—Fe3—C2737.70 (18)
C6—C5—Fe1—C9162.9 (3)C26—C30—Fe3—C29118.3 (3)
C4—C5—Fe1—C12155.58 (19)C29—C30—Fe3—C2837.16 (17)
C6—C5—Fe1—C1283.9 (2)C26—C30—Fe3—C2881.17 (19)
C4—C5—Fe1—C6120.6 (3)C29—C30—Fe3—C3444.9 (3)
C4—C5—Fe1—C336.79 (19)C26—C30—Fe3—C34163.3 (3)
C6—C5—Fe1—C383.8 (2)C35—C36—Fe3—C32117.9 (3)
C6—C5—Fe1—C4120.6 (3)C35—C36—Fe3—C26157.23 (19)
C4—C5—Fe1—C1073.5 (2)C32—C36—Fe3—C2684.8 (2)
C6—C5—Fe1—C10165.97 (19)C35—C36—Fe3—C30114.5 (2)
C4—C5—Fe1—C11114.4 (2)C32—C36—Fe3—C30127.53 (17)
C6—C5—Fe1—C11125.09 (19)C35—C36—Fe3—C3380.3 (2)
C11—C12—Fe1—C8117.8 (3)C32—C36—Fe3—C3337.63 (17)
C11—C12—Fe1—C2163.72 (18)C32—C36—Fe3—C35117.9 (3)
C8—C12—Fe1—C278.5 (2)C35—C36—Fe3—C27168.6 (3)
C11—C12—Fe1—C979.9 (2)C32—C36—Fe3—C2750.7 (4)
C8—C12—Fe1—C937.88 (18)C35—C36—Fe3—C2973.2 (2)
C11—C12—Fe1—C578.1 (2)C32—C36—Fe3—C29168.83 (17)
C8—C12—Fe1—C5164.09 (18)C35—C36—Fe3—C2840.6 (4)
C11—C12—Fe1—C6121.33 (19)C32—C36—Fe3—C28158.5 (3)
C8—C12—Fe1—C6120.88 (18)C35—C36—Fe3—C3437.4 (2)
C11—C12—Fe1—C3155.8 (5)C32—C36—Fe3—C3480.55 (19)
C8—C12—Fe1—C338.0 (6)C34—C33—Fe3—C32118.5 (3)
C11—C12—Fe1—C441.2 (4)C34—C33—Fe3—C26162.69 (19)
C8—C12—Fe1—C4159.0 (3)C32—C33—Fe3—C2678.8 (2)
C11—C12—Fe1—C1036.83 (19)C34—C33—Fe3—C30158.1 (4)
C8—C12—Fe1—C1080.95 (19)C32—C33—Fe3—C3039.6 (6)
C8—C12—Fe1—C11117.8 (3)C34—C33—Fe3—C3680.6 (2)
C5—C6—Fe1—C8158.71 (19)C32—C33—Fe3—C3637.86 (17)
C2—C6—Fe1—C883.6 (2)C34—C33—Fe3—C3537.1 (2)
C5—C6—Fe1—C2117.7 (3)C32—C33—Fe3—C3581.41 (19)
C5—C6—Fe1—C9160.8 (3)C34—C33—Fe3—C27120.6 (2)
C2—C6—Fe1—C943.2 (4)C32—C33—Fe3—C27120.92 (18)
C2—C6—Fe1—C5117.7 (3)C34—C33—Fe3—C2941.0 (4)
C5—C6—Fe1—C12115.1 (2)C32—C33—Fe3—C29159.5 (2)
C2—C6—Fe1—C12127.28 (18)C34—C33—Fe3—C2877.7 (2)
C5—C6—Fe1—C380.0 (2)C32—C33—Fe3—C28163.85 (16)
C2—C6—Fe1—C337.62 (17)C32—C33—Fe3—C34118.5 (3)
C5—C6—Fe1—C436.8 (2)C36—C35—Fe3—C3239.01 (19)
C2—C6—Fe1—C480.86 (19)C34—C35—Fe3—C3280.9 (2)
C5—C6—Fe1—C1035.9 (4)C36—C35—Fe3—C2654.4 (4)
C2—C6—Fe1—C10153.5 (3)C34—C35—Fe3—C26174.3 (3)
C5—C6—Fe1—C1172.9 (2)C36—C35—Fe3—C3082.3 (2)
C2—C6—Fe1—C11169.48 (17)C34—C35—Fe3—C30157.73 (19)
C4—C3—Fe1—C8161.02 (18)C34—C35—Fe3—C36119.9 (3)
C2—C3—Fe1—C880.8 (2)C36—C35—Fe3—C3383.5 (2)
C4—C3—Fe1—C2118.2 (2)C34—C35—Fe3—C3336.45 (19)
C4—C3—Fe1—C9120.14 (18)C36—C35—Fe3—C27169.2 (3)
C2—C3—Fe1—C9121.69 (18)C34—C35—Fe3—C2749.2 (4)
C4—C3—Fe1—C536.85 (18)C36—C35—Fe3—C29123.1 (2)
C2—C3—Fe1—C581.33 (19)C34—C35—Fe3—C29116.9 (2)
C4—C3—Fe1—C12168.4 (4)C36—C35—Fe3—C28163.49 (18)
C2—C3—Fe1—C1250.2 (5)C34—C35—Fe3—C2876.6 (2)
C4—C3—Fe1—C680.43 (19)C36—C35—Fe3—C34119.9 (3)
C2—C3—Fe1—C637.74 (17)C28—C27—Fe3—C32158.05 (17)
C2—C3—Fe1—C4118.2 (2)C26—C27—Fe3—C3283.6 (2)
C4—C3—Fe1—C1078.6 (2)C28—C27—Fe3—C26118.4 (2)
C2—C3—Fe1—C10163.25 (17)C28—C27—Fe3—C3080.30 (19)
C4—C3—Fe1—C1146.2 (3)C26—C27—Fe3—C3038.06 (18)
C2—C3—Fe1—C11164.4 (2)C28—C27—Fe3—C36163.8 (3)
C5—C4—Fe1—C8174.2 (3)C26—C27—Fe3—C3645.4 (4)
C3—C4—Fe1—C853.6 (4)C28—C27—Fe3—C33115.04 (18)
C5—C4—Fe1—C281.8 (2)C26—C27—Fe3—C33126.60 (18)
C3—C4—Fe1—C238.83 (17)C28—C27—Fe3—C3537.1 (4)
C5—C4—Fe1—C9162.41 (19)C26—C27—Fe3—C35155.4 (3)
C3—C4—Fe1—C977.0 (2)C28—C27—Fe3—C2937.05 (17)
C3—C4—Fe1—C5120.6 (3)C26—C27—Fe3—C2981.31 (18)
C5—C4—Fe1—C1253.0 (3)C26—C27—Fe3—C28118.4 (2)
C3—C4—Fe1—C12173.6 (2)C28—C27—Fe3—C3473.4 (2)
C5—C4—Fe1—C637.00 (19)C26—C27—Fe3—C34168.21 (18)
C3—C4—Fe1—C683.59 (19)C30—C29—Fe3—C3253.8 (4)
C5—C4—Fe1—C3120.6 (3)C28—C29—Fe3—C32174.2 (3)
C5—C4—Fe1—C10122.7 (2)C30—C29—Fe3—C2639.00 (17)
C3—C4—Fe1—C10116.68 (19)C28—C29—Fe3—C2681.42 (18)
C5—C4—Fe1—C1181.8 (2)C28—C29—Fe3—C30120.4 (2)
C3—C4—Fe1—C11157.58 (18)C30—C29—Fe3—C3677.5 (2)
C9—C10—Fe1—C839.52 (19)C28—C29—Fe3—C36162.05 (17)
C11—C10—Fe1—C881.74 (19)C30—C29—Fe3—C33172.7 (2)
C9—C10—Fe1—C254.2 (4)C28—C29—Fe3—C3352.3 (3)
C11—C10—Fe1—C2175.4 (3)C30—C29—Fe3—C35117.47 (18)
C11—C10—Fe1—C9121.3 (3)C28—C29—Fe3—C35122.11 (18)
C9—C10—Fe1—C5162.14 (19)C30—C29—Fe3—C2783.52 (18)
C11—C10—Fe1—C576.6 (2)C28—C29—Fe3—C2736.89 (17)
C9—C10—Fe1—C1284.4 (2)C30—C29—Fe3—C28120.4 (2)
C11—C10—Fe1—C1236.87 (18)C30—C29—Fe3—C34158.72 (18)
C9—C10—Fe1—C6171.2 (3)C28—C29—Fe3—C3480.86 (19)
C11—C10—Fe1—C650.0 (4)C27—C28—Fe3—C3254.6 (4)
C9—C10—Fe1—C381.5 (2)C29—C28—Fe3—C32175.1 (3)
C11—C10—Fe1—C3157.24 (18)C27—C28—Fe3—C2638.68 (17)
C9—C10—Fe1—C4122.3 (2)C29—C28—Fe3—C2681.86 (18)
C11—C10—Fe1—C4116.41 (19)C27—C28—Fe3—C3083.69 (18)
C9—C10—Fe1—C11121.3 (3)C29—C28—Fe3—C3036.85 (17)
C12—C11—Fe1—C839.15 (18)C27—C28—Fe3—C36165.1 (3)
C10—C11—Fe1—C881.39 (19)C29—C28—Fe3—C3644.5 (4)
C12—C11—Fe1—C252.6 (5)C27—C28—Fe3—C3383.4 (2)
C10—C11—Fe1—C2173.1 (4)C29—C28—Fe3—C33156.05 (17)
C12—C11—Fe1—C984.2 (2)C27—C28—Fe3—C35165.22 (18)
C10—C11—Fe1—C936.35 (18)C29—C28—Fe3—C3574.2 (2)
C12—C11—Fe1—C5118.85 (19)C29—C28—Fe3—C27120.5 (2)
C10—C11—Fe1—C5120.61 (19)C27—C28—Fe3—C29120.5 (2)
C10—C11—Fe1—C12120.5 (3)C27—C28—Fe3—C34124.06 (19)
C12—C11—Fe1—C678.6 (2)C29—C28—Fe3—C34115.40 (18)
C10—C11—Fe1—C6160.89 (18)C33—C34—Fe3—C3238.65 (19)
C12—C11—Fe1—C3167.5 (2)C35—C34—Fe3—C3282.0 (2)
C10—C11—Fe1—C347.0 (3)C33—C34—Fe3—C2651.7 (5)
C12—C11—Fe1—C4160.64 (18)C35—C34—Fe3—C26172.4 (4)
C10—C11—Fe1—C478.8 (2)C33—C34—Fe3—C30168.1 (3)
C12—C11—Fe1—C10120.5 (3)C35—C34—Fe3—C3047.4 (4)
C19—C20—Fe2—C142.4 (3)C33—C34—Fe3—C3683.5 (2)
C24—C20—Fe2—C14123.31 (19)C35—C34—Fe3—C3637.23 (19)
C21—C20—Fe2—C14116.92 (18)C35—C34—Fe3—C33120.7 (3)
C19—C20—Fe2—C1842.5 (3)C33—C34—Fe3—C35120.7 (3)
C24—C20—Fe2—C1878.5 (2)C33—C34—Fe3—C2778.5 (2)
C21—C20—Fe2—C18161.77 (18)C35—C34—Fe3—C27160.82 (19)
C19—C20—Fe2—C24120.9 (3)C33—C34—Fe3—C29160.70 (18)
C21—C20—Fe2—C24119.8 (2)C35—C34—Fe3—C2978.6 (2)
C19—C20—Fe2—C21119.3 (3)C33—C34—Fe3—C28118.76 (19)
C24—C20—Fe2—C21119.8 (2)C35—C34—Fe3—C28120.54 (19)
C19—C20—Fe2—C1782.0 (4)C1—N1—Cu1—N3136 (5)
C24—C20—Fe2—C1738.9 (4)C1—N1—Cu1—N223 (5)
C21—C20—Fe2—C17158.7 (3)C1—N1—Cu1—O1122 (5)
C19—C20—Fe2—C23159.2 (3)C25—N3—Cu1—N195 (6)
C24—C20—Fe2—C2338.30 (19)C25—N3—Cu1—N265 (6)
C21—C20—Fe2—C2381.47 (19)C25—N3—Cu1—O1165 (6)
C19—C20—Fe2—C22157.4 (3)C13—N2—Cu1—N1128.5 (8)
C24—C20—Fe2—C2281.6 (2)C13—N2—Cu1—N369.4 (8)
C21—C20—Fe2—C2238.12 (18)C13—N2—Cu1—O131.9 (8)
C19—C20—Fe2—C1546.4 (3)C7—N4—Cu2—N5112.1 (15)
C24—C20—Fe2—C15167.36 (18)C7—N4—Cu2—N661.3 (16)
C21—C20—Fe2—C1572.9 (2)C19—N5—Cu2—N4111.5 (15)
C19—C20—Fe2—C1687.6 (5)C19—N5—Cu2—N674.9 (15)
C24—C20—Fe2—C16151.5 (4)C31—N6—Cu2—N4123 (2)
C21—C20—Fe2—C1631.7 (5)C31—N6—Cu2—N551 (2)
C13—C14—Fe2—C205.9 (3)C39—C38—O1—Cu113.3 (4)
C18—C14—Fe2—C20115.6 (2)C37—C38—O1—Cu1166.6 (2)
C15—C14—Fe2—C20124.72 (19)N1—Cu1—O1—C38175.9 (3)
C13—C14—Fe2—C18121.5 (4)N3—Cu1—O1—C3848.9 (3)
C15—C14—Fe2—C18119.7 (3)N2—Cu1—O1—C3867.3 (3)
ππ interactions (Å, °) for (I). top
The angle α is described by calculating the respective ππ bond relative to the centroid of the involved aromatic C5 ring.
Involved atomsdistanceα
Cu2 ··· C26A—C27A3.1520 (6)93.23 (1)
C26—C27··· Cu2B3.1520 (6)93.23 (1)
C23···C23C3.167 (6)92.2 (2)
Symmetry codes: (A) x - 1, y, z; (B) 1 + x, y, z; (C) -x, 1 -y, 1 - z.
Plane intersection angles (°) for (I) top
p defines a plane calculated by the following atom sequence.
Cp···CpαCp···N3α
p(C2–C6)···p(C14–C18)11.7 (3)p(C2–C6)···p(N1–N3)11.8 (2)
p(C14–C18)···p(C26–C30)23.8 (2)p(C14–C18)···p(N1–N3)18.2 (2)
p(C26–C30)···p(C2–C6)13.3 (2)p(C26–C30)···p(N1–N3)8.9 (2)
p(C8–C12)···p(C32–C36)12.8 (2)p(C8–C12)···p(N4–N6)8.5 (2)
p(C20–C24)···p(C32–C36)23.7 (2)p(C20–C24)···p(N4–N6)19.66 (19)
p(C20–C24)···p(C8–C12)11.1 (2)p(C20–C24)···p(N4–N6)5.3 (2)

Experimental details

Crystal data
Chemical formula[Cu2Fe3(C6H4N)6(C3H6O)](BF4)2·C3H6O
Mr1125.02
Crystal system, space groupTriclinic, P1
Temperature (K)110
a, b, c (Å)7.9947 (6), 13.9384 (18), 19.923 (2)
α, β, γ (°)72.942 (10), 82.968 (7), 87.936 (8)
V3)2106.4 (4)
Z2
Radiation typeCu Kα
µ (mm1)9.92
Crystal size (mm)0.4 × 0.4 × 0.4
Data collection
DiffractometerOxford Gemini CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.427, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
18279, 7318, 6793
Rint0.042
(sin θ/λ)max1)0.593
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.05
No. of reflections7318
No. of parameters623
No. of restraints148
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.49

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds