Download citation
Download citation
link to html
In the crystal structure of 1-[(6-chloro­pyridin-3-yl)sulfon­yl]-1,2,3,4-tetra­hydro­quinoline, the tetra­hydro­pyridine ring of the quinoline system adopts a half-chair conformation and the bond-angle sum at the N atom is 350.0°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989015008099/wm5147sup1.cif
Contains datablocks I, New_Global_Publ_Block

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989015008099/wm5147Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2056989015008099/wm5147Isup3.cml
Supplementary material

CCDC reference: 1061311

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.050
  • wR factor = 0.146
  • Data-to-parameter ratio = 13.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT241_ALERT_2_C High Ueq as Compared to Neighbors for ..... C8 Check PLAT242_ALERT_2_C Low Ueq as Compared to Neighbors for ..... C9 Check PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds ............... 0.0048 Ang. PLAT360_ALERT_2_C Short C(sp3)-C(sp3) Bond C8 - C9 ... 1.43 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H7A .. O1 .. 2.66 Ang.
Alert level G PLAT066_ALERT_1_G Predicted and Reported Tmin&Tmax Range Identical ? Check PLAT154_ALERT_1_G The su's on the Cell Angles are Equal .......... 0.00700 Degree PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 59 % PLAT961_ALERT_5_G Dataset Contains no Negative Intensities ....... Please Check
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 5 ALERT level C = Check. Ensure it is not caused by an omission or oversight 4 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Chemical context top

1,2,3,4-Tetra­hydro­quinoline derivatives play a vital role in developing pharmacological agents and they have been considered as potential drugs (White et al., 1994; Kokwaro & Taylor, 1990; Omura & Nakagawa, 1981) and also antagonists for N-methyl-d-aspartate (NMDA) receptors at the glycine recognition site (Cai et al., 1996).

Recently, we have synthesized a series of 1,2,3,4-tetra­hydro­quinoline derivatives and a few molecules in fact exhibit pharmacological activity (unpublished results). In a continuation of our work on the derivatives of 1,2,3,4-tetra­hydro­quinolines (Jeyaseelan et al., 2014, 2015a,b), we report herein the synthesis and crystal structure of 1-[(6-chloro­pyridin-3-yl)sulfonyl]-1,2,3,4-tetra­hydro­quinoline, (I).

Structural commentary top

The molecular structure of compound (I) is shown in Fig. 1. The dihedral angle between the planes of the aromatic rings is 50.13 (11)°. In comparison, the dihedral angle in the related 1-tosyl-1,2,3,4-tetra­hydro­quinoline, (II), is 47.74 (9)° (Jeyaseelan et al., 2014), and in 1-benzyl­sulfonyl-1,2,3,4-tetra­hydro­quinoline, (III), it is 74.15 (10)° (Jeyaseelan et al., 2015b). In the structures of compounds (II), (III) and 1-methane­sulfonyl-1,2,3,4-tetra­hydro­quinoline, (IV) (Jeyaseelan et al., 2015a), the tetra­hydro­pyridine (C1/C6–C9/N1) ring is in a half-chair conformation, with the methyl­ene C9 atom as the flap. However, the bond-angle sums at the N atom in (I), (II), (III) and (IV) differ somehow, with values of 350.0, 350.2, 354.61 and 347.9°, respectively.

Supra­molecular features top

In the crystal, inversion dimers linked by pairs of C11—H11···O2 hydrogen bonds generate R22(10) loops. In addition, molecules are linked by C7—H7A···O1 hydrogen bonds, generating C(7) chains along [100], as shown in Fig 2. Numerical values of these inter­actions are compiled in Table 1.

Synthesis and crystallization top

To an ice-cold solution of 1,2,3,4-tetra­hydro­quinoline (1.332 g, 10 mmol) and tri­ethyl­amine (1.518 g, 15 mmol) in di­chloro­methane (50 ml), a solution of 6-chloro­pyridine-3-sulfonyl chloride (2.332 g, 11 mmol) in di­chloro­methane (20 ml) was added dropwise and stirred for 30 min. The reaction mixture was diluted with di­chloro­methane (150 ml), the organic layer washed with aqueous 5% NaHCO3 solution and brine, and dried over anhydrous Na2SO4. The solvent was evaporated under reduced pressure to give 1-[(6-chloro­pyridin-3-yl)sulfonyl]-1,2,3,4-tetra­hydro­quinoline, (I). The product was recrystallized from a mixture of di­chloro­methane and n-hexane (1:1 v/v) to obtain crystals suitable for X-ray diffraction studies.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned with idealized geometry using a riding-model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms and with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methyl­ene H atoms.

Related literature top

For pharmacological background of tetrahydroquinolines, see: White et al., (1994); Kokwaro et al., (1990); Omura et al., (1981); Cai et al., (1996). For a related structures, see: Jeyaseelan et al., (2014); Jeyaseelan and Palakshamurthy et al., (2015); Jeyaseelan et al., (2015).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound. Dashed lines indicate the pairs of C—H···O hydrogen bonds which link the molecules into inversion dimers with R22(10) ring motifs and forming C(7) chains along [100].
1-[(6-Chloropyridin-3-yl)sulfonyl]-1,2,3,4-tetrahydroquinoline top
Crystal data top
C14H13ClN2O2SF(000) = 320
Mr = 308.77prism
Triclinic, P1Dx = 1.474 Mg m3
Hall symbol: -P 1Melting point: 413 K
a = 6.5661 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2595 (18) ÅCell parameters from 1980 reflections
c = 11.3490 (19) Åθ = 1.9–25.0°
α = 69.101 (7)°µ = 0.43 mm1
β = 88.219 (7)°T = 296 K
γ = 77.238 (7)°Prism, colourless
V = 695.6 (2) Å30.23 × 0.18 × 0.16 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2454 independent reflections
Radiation source: fine-focus sealed tube1980 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 2.01 pixels mm-1θmax = 25.0°, θmin = 1.9°
phi and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1212
Tmin = 0.912, Tmax = 0.934l = 1313
9865 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.3614P]
where P = (Fo2 + 2Fc2)/3
2454 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.43 e Å3
0 constraints
Crystal data top
C14H13ClN2O2Sγ = 77.238 (7)°
Mr = 308.77V = 695.6 (2) Å3
Triclinic, P1Z = 2
a = 6.5661 (10) ÅMo Kα radiation
b = 10.2595 (18) ŵ = 0.43 mm1
c = 11.3490 (19) ÅT = 296 K
α = 69.101 (7)°0.23 × 0.18 × 0.16 mm
β = 88.219 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
2454 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
1980 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.934Rint = 0.053
9865 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.09Δρmax = 0.59 e Å3
2454 reflectionsΔρmin = 0.43 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3014 (3)0.1696 (3)0.3092 (2)0.0753 (7)
S0.40371 (11)0.28345 (8)0.24768 (6)0.0562 (3)
Cl11.24374 (14)0.01308 (10)0.08760 (9)0.0853 (3)
C100.6392 (4)0.2111 (3)0.1933 (2)0.0479 (6)
N10.4673 (3)0.3394 (2)0.35739 (19)0.0532 (6)
O20.3005 (3)0.4047 (2)0.14401 (19)0.0712 (6)
C110.7513 (4)0.2997 (3)0.1091 (2)0.0504 (6)
H110.69910.39830.07640.060*
N20.9018 (4)0.0058 (3)0.2047 (2)0.0657 (7)
C10.5901 (4)0.4468 (3)0.3217 (2)0.0479 (6)
C131.0055 (4)0.0935 (3)0.1264 (2)0.0545 (7)
C60.7874 (4)0.4136 (3)0.3794 (3)0.0542 (7)
C120.9387 (4)0.2403 (3)0.0750 (3)0.0545 (7)
H121.01880.29650.01900.065*
C140.7193 (5)0.0656 (3)0.2371 (3)0.0615 (8)
H140.64170.00640.29210.074*
C20.5110 (5)0.5812 (3)0.2320 (3)0.0678 (8)
H20.37600.60420.19660.081*
C50.9038 (5)0.5175 (4)0.3419 (3)0.0690 (8)
H51.03620.49750.37980.083*
C90.5138 (5)0.2322 (4)0.4875 (3)0.0733 (10)
H9A0.45440.27660.54700.088*
H9B0.44660.15420.49630.088*
C30.6339 (7)0.6804 (3)0.1957 (3)0.0812 (10)
H30.58300.76940.13350.097*
C40.8292 (6)0.6494 (4)0.2502 (3)0.0766 (10)
H40.91120.71690.22550.092*
C70.8693 (6)0.2732 (4)0.4825 (4)0.0796 (10)
H7A0.99800.22630.45630.096*
H7B0.90420.29170.55660.096*
C80.7326 (7)0.1753 (5)0.5187 (4)0.124 (2)
H8A0.77920.10370.48040.149*
H8B0.75070.12610.60950.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0680 (14)0.0963 (16)0.0687 (13)0.0494 (13)0.0085 (11)0.0202 (12)
S0.0469 (4)0.0698 (5)0.0465 (4)0.0217 (3)0.0027 (3)0.0090 (3)
Cl10.0736 (6)0.0948 (7)0.0859 (6)0.0056 (5)0.0027 (5)0.0446 (5)
C100.0520 (15)0.0511 (15)0.0373 (12)0.0186 (12)0.0063 (11)0.0069 (11)
N10.0489 (12)0.0633 (14)0.0406 (11)0.0183 (11)0.0032 (9)0.0072 (10)
O20.0547 (12)0.0850 (15)0.0553 (11)0.0067 (11)0.0148 (9)0.0068 (11)
C110.0571 (16)0.0441 (14)0.0429 (13)0.0133 (12)0.0019 (12)0.0056 (11)
N20.0813 (19)0.0509 (14)0.0591 (15)0.0116 (13)0.0060 (13)0.0140 (12)
C10.0511 (15)0.0463 (14)0.0435 (13)0.0087 (12)0.0095 (11)0.0146 (11)
C130.0566 (16)0.0595 (17)0.0472 (14)0.0088 (13)0.0096 (12)0.0203 (13)
C60.0566 (16)0.0517 (16)0.0551 (15)0.0155 (13)0.0029 (13)0.0184 (13)
C120.0561 (16)0.0596 (17)0.0482 (14)0.0218 (14)0.0053 (12)0.0149 (13)
C140.078 (2)0.0509 (17)0.0508 (15)0.0255 (16)0.0011 (14)0.0056 (13)
C20.0673 (19)0.0558 (18)0.0628 (18)0.0001 (15)0.0048 (15)0.0088 (14)
C50.070 (2)0.070 (2)0.077 (2)0.0312 (17)0.0105 (16)0.0290 (17)
C90.079 (2)0.093 (2)0.0399 (15)0.0443 (19)0.0005 (14)0.0004 (15)
C30.105 (3)0.0411 (16)0.081 (2)0.0057 (18)0.025 (2)0.0101 (15)
C40.098 (3)0.060 (2)0.084 (2)0.0356 (19)0.033 (2)0.0315 (18)
C70.066 (2)0.068 (2)0.086 (2)0.0170 (17)0.0195 (17)0.0029 (17)
C80.110 (3)0.118 (3)0.089 (3)0.050 (3)0.042 (3)0.047 (3)
Geometric parameters (Å, º) top
O1—S1.428 (2)C6—C51.385 (4)
S—O21.423 (2)C6—C71.492 (4)
S—O11.428 (2)C12—H120.9300
S—N11.644 (2)C14—H140.9300
S—C101.756 (3)C2—C31.378 (5)
Cl1—C131.723 (3)C2—H20.9300
C10—C141.376 (4)C5—C41.374 (5)
C10—C111.383 (3)C5—H50.9300
N1—C11.443 (3)C9—C81.430 (5)
N1—C91.484 (3)C9—H9A0.9700
C11—C121.358 (4)C9—H9B0.9700
C11—H110.9300C3—C41.362 (5)
N2—C131.314 (4)C3—H30.9300
N2—C141.325 (4)C4—H40.9300
C1—C21.386 (4)C7—C81.437 (5)
C1—C61.387 (4)C7—H7A0.9700
C13—C121.378 (4)C8—H8A0.9700
O2—S—O1120.12 (13)C3—C2—C1119.5 (3)
O2—S—N1108.30 (13)C3—C2—H2120.2
O1—S—N1106.51 (12)C1—C2—H2120.2
O2—S—C10106.62 (12)C4—C5—C6121.9 (3)
O1—S—C10107.97 (14)C4—C5—H5119.1
N1—S—C10106.63 (12)C6—C5—H5119.1
C14—C10—C11118.8 (3)C8—C9—N1113.3 (3)
C14—C10—S120.6 (2)C8—C9—H9A108.9
C11—C10—S120.6 (2)N1—C9—H9A108.9
C1—N1—C9115.2 (2)C8—C9—H9B108.9
C1—N1—S117.64 (16)N1—C9—H9B108.9
C9—N1—S117.2 (2)H9A—C9—H9B107.7
C12—C11—C10118.9 (3)C4—C3—C2120.7 (3)
C12—C11—H11120.6C4—C3—H3119.6
C10—C11—H11120.6C2—C3—H3119.6
C13—N2—C14116.3 (2)C3—C4—C5119.4 (3)
C2—C1—C6120.7 (3)C3—C4—H4120.3
C2—C1—N1120.4 (3)C5—C4—H4120.3
C6—C1—N1118.8 (2)C8—C7—C6116.5 (3)
N2—C13—C12125.4 (3)C8—C7—H7A108.2
N2—C13—Cl1115.3 (2)C6—C7—H7A108.2
C12—C13—Cl1119.2 (2)C8—C7—H7B108.2
C5—C6—C1117.8 (3)C6—C7—H7B108.2
C5—C6—C7120.7 (3)H7A—C7—H7B107.3
C1—C6—C7121.5 (2)C9—C8—C7118.0 (4)
C11—C12—C13117.4 (3)C9—C8—H8A107.8
C11—C12—H12121.3C7—C8—H8A107.8
C13—C12—H12121.3C9—C8—H8B107.8
N2—C14—C10123.1 (3)C7—C8—H8B107.8
N2—C14—H14118.4H8A—C8—H8B107.1
C10—C14—H14118.4
O2—S—C10—C14145.4 (2)C9—N1—C1—C627.0 (4)
O2—S—C10—C14145.4 (2)S—N1—C1—C6117.9 (2)
O1—S—C10—C1415.0 (3)C14—N2—C13—C121.0 (4)
O1—S—C10—C1415.0 (3)C14—N2—C13—Cl1179.2 (2)
O1—S—C10—C1415.0 (3)C2—C1—C6—C51.8 (4)
N1—S—C10—C1499.1 (2)N1—C1—C6—C5178.8 (2)
O2—S—C10—C1137.0 (2)C2—C1—C6—C7175.7 (3)
O2—S—C10—C1137.0 (2)N1—C1—C6—C73.7 (4)
O1—S—C10—C11167.3 (2)C10—C11—C12—C130.4 (4)
O1—S—C10—C11167.3 (2)N2—C13—C12—C110.9 (4)
O1—S—C10—C11167.3 (2)Cl1—C13—C12—C11179.2 (2)
N1—S—C10—C1178.6 (2)C13—N2—C14—C100.3 (4)
O2—S—N1—C154.9 (2)C11—C10—C14—N21.5 (4)
O2—S—N1—C154.9 (2)S—C10—C14—N2176.1 (2)
O1—S—N1—C1174.7 (2)C6—C1—C2—C33.1 (4)
O1—S—N1—C1174.7 (2)N1—C1—C2—C3177.6 (3)
O1—S—N1—C1174.7 (2)C1—C6—C5—C40.3 (5)
C10—S—N1—C159.5 (2)C7—C6—C5—C4177.8 (3)
O2—S—N1—C9161.0 (2)C1—N1—C9—C846.6 (5)
O2—S—N1—C9161.0 (2)S—N1—C9—C898.4 (4)
O1—S—N1—C930.5 (2)C1—C2—C3—C42.3 (5)
O1—S—N1—C930.5 (2)C2—C3—C4—C50.2 (5)
O1—S—N1—C930.5 (2)C6—C5—C4—C31.1 (5)
C10—S—N1—C984.6 (2)C5—C6—C7—C8177.1 (4)
C14—C10—C11—C121.6 (4)C1—C6—C7—C80.3 (6)
S—C10—C11—C12176.12 (19)N1—C9—C8—C743.5 (6)
C9—N1—C1—C2152.4 (3)C6—C7—C8—C920.5 (7)
S—N1—C1—C262.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O2i0.932.603.309 (3)134
C7—H7A···O1ii0.972.663.586 (5)160
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O2i0.932.603.309 (3)134.0
C7—H7A···O1ii0.972.663.586 (5)160.1
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H13ClN2O2S
Mr308.77
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.5661 (10), 10.2595 (18), 11.3490 (19)
α, β, γ (°)69.101 (7), 88.219 (7), 77.238 (7)
V3)695.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.23 × 0.18 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2013)
Tmin, Tmax0.912, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
9865, 2454, 1980
Rint0.053
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.146, 1.09
No. of reflections2454
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.43

Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds