Download citation
Download citation
link to html
We report a redetermination based on single-crystal neutron diffraction data and Raman spectra for glycine zinc sulfate penta­hydrate.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989016014304/wm5318sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989016014304/wm5318Isup2.hkl
Contains datablock I

txt

Text file https://doi.org/10.1107/S2056989016014304/wm5318sup3.txt
Raman spectrum of glycine zinc sulfate pentahydrate. Raman shift is in units of reciprocal centimetre and the intensity is in arbitrary units.

CCDC reference: 1503478

Key indicators

  • Single-crystal neutron study
  • T = 10 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.089
  • wR factor = 0.246
  • Data-to-parameter ratio = 28.5

checkCIF/PLATON results

No syntax errors found



Alert level A TYPE031_ALERT_1_A _diffrn_radiation_wavelength is not of type numb.
Author Response: Data was collected with polychromatic neutrons wavelength is given as a range rather than a number.
CELL004_ALERT_1_A  _cell_measurement_theta_min is missing
            Minimum theta of reflections used to measure unit cell.
            The following tests will not be performed.
            CELLT_01
Author Response: Test not relevant for polychromatic radiation, see _exptl_special_details.
CELL005_ALERT_1_A  _cell_measurement_theta_max is missing
            Maximum theta of reflections used to measure unit cell.
            The following tests will not be performed.
            CELLT_01
Author Response: Test not relevant for polychromatic radiation, see _exptl_special_details.
TYPE036_ALERT_1_A  _exptl_absorpt_coefficient_mu is not of type numb.
Author Response: Data was collected with polychromatic neutrons and so the absorption, being wavelength dependent, is given as a an expression rather than a number.
PLAT184_ALERT_1_A Missing _cell_measurement_theta_min value ......     Please Do !
Author Response: Test not relevant for polychromatic neutrons, see _exptl_special_details for further information.
PLAT185_ALERT_1_A Missing _cell_measurement_theta_max value ......     Please Do !
Author Response: Test not relevant for polychromatic neutrons, see _exptl_special_details for further information.

Alert level B DIFMN02_ALERT_2_B The minimum difference density is < -0.1*ZMAX*1.00 _refine_diff_density_min given = -3.470 Test value = -3.000
Author Response: Value is in Fermi per cubic angstrom; test not relevant for polychromatic neutrons.
DIFMX01_ALERT_2_B  The maximum difference density is > 0.1*ZMAX*1.00
            _refine_diff_density_max given =      3.197
            Test value =      3.000
Author Response: Value is in Fermi per cubic angstrom; test not relevant for polychromatic neutrons.

Alert level C CELLK01_ALERT_1_C Check that the cell measurement temperature is in Kelvin. Value of measurement temperature given = 10.000
Author Response: The measurement was made at 10 Kelvin.
DIFMN03_ALERT_1_C  The minimum difference density is < -0.1*ZMAX*0.75
            The relevant atom site should be identified.
Author Response: Value is in Fermi per cubic angstrom; test not relevant for polychromatic neutrons.
DIFMX02_ALERT_1_C  The maximum difference density is > 0.1*ZMAX*0.75
            The relevant atom site should be identified.
Author Response: Value is in Fermi per cubic angstrom; test not relevant for polychromatic neutrons.
PLAT480_ALERT_4_C Long H...A H-Bond Reported H2A    ..  O2      ..       2.68 Ang.
Author Response: This is expected for a weak C-H...O bond, as discussed in the main text.
PLAT480_ALERT_4_C Long H...A H-Bond Reported H2A    ..  O5      ..       2.72 Ang.
Author Response: This is expected for a weak C-H...O bond, as discussed in the main text.
PLAT918_ALERT_3_C Reflection(s) with I(obs) much Smaller I(calc) .          4 Check
Author Response: Examination of the SHELX .LST file reveals that F(obs)^2^ and F(calc)^2^ for these reflections, (3 5 1), (1 -2 -2), (2 0 6) and ( 0 2 3) differ by between 5 and 8 times the measurement ESD, which is within the limit of acceptability for SXD data.
PLAT977_ALERT_2_C Check the Negative Difference Density on     H2B      -0.66 eA-3
Author Response: Test not relevant for polychromatic neutrons.
PLAT977_ALERT_2_C Check the Negative Difference Density on     H2N      -1.06 eA-3
Author Response: Test not relevant for polychromatic neutrons.
PLAT977_ALERT_2_C Check the Negative Difference Density on     H3N      -0.49 eA-3
Author Response: Test not relevant for polychromatic neutrons.
PLAT977_ALERT_2_C Check the Negative Difference Density on     H9A      -0.74 eA-3
Author Response: Test not relevant for polychromatic neutrons.
PLAT977_ALERT_2_C Check the Negative Difference Density on    H10B      -0.54 eA-3
Author Response: Test not relevant for polychromatic neutrons.
PLAT977_ALERT_2_C Check the Negative Difference Density on    H11B      -0.90 eA-3
Author Response: Test not relevant for polychromatic neutrons.
PLAT978_ALERT_2_C Number C-C Bonds with Positive Residual Density           0 Note
Author Response: Test not relevant for polychromatic neutrons.

Alert level G ABSMU01_ALERT_1_G Calculation of _exptl_absorpt_correction_mu not performed for this radiation type. PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ... 2 Report
Author Response: Light restraint applied to Uij of the zinc atoms using the SHELX ISOR command as described in the main text.
PLAT072_ALERT_2_G SHELXL First  Parameter in WGHT  Unusually Large       0.14 Report
Author Response: Test not relevant for polychromatic neutrons.
PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT  Unusually Large      36.25 Why ?
Author Response: Test not relevant for polychromatic neutrons.
PLAT164_ALERT_4_G Nr. of Refined C-H H-Atoms in Heavy-Atom Struct.          2 Note
Author Response: This is entirely appropriate for a single crystal neutron refinement.
PLAT186_ALERT_4_G The CIF-Embedded .res File Contains ISOR Records          1 Report
Author Response: Light restraints applied to Uij of both zinc atoms using the SHELX ISOR command as described in the main text.
PLAT794_ALERT_5_G Tentative Bond Valency for Zn2     (II)    .....       2.12 Note
Author Response: Noted. The Zn-O bond lengths in both coordination polyhedra are normal.
PLAT860_ALERT_3_G Number of Least-Squares Restraints .............         12 Note
Author Response: These correspond to the twelve lightly-restrained Uij of the zinc atoms.
PLAT871_ALERT_4_G Laue technique Related ALERTS are Suppressed ...          ! Info
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L=  0.600      17744 Note
PLAT933_ALERT_2_G Number of OMIT records in Embedded RES .........         11 Note
Author Response: Outlying reflections were omitted; these typically occur near the edges of detectors and are thus poorly measured/integrated.
PLAT958_ALERT_1_G Calculated (ThMax) and Actual (FCF) Lmax Differ           7 Units
PLAT961_ALERT_5_G Dataset Contains no Negative Intensities .......     Please Check

6 ALERT level A = Most likely a serious problem - resolve or explain 2 ALERT level B = A potentially serious problem, consider carefully 13 ALERT level C = Check. Ensure it is not caused by an omission or oversight 13 ALERT level G = General information/check it is not something unexpected 11 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 13 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Computing details top

Data collection: SXD2001 (Gutmann, 2005); cell refinement: SXD2001 (Gutmann, 2005); data reduction: SXD2001 (Gutmann, 2005); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a; Gruene et al., 2014); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b; Gruene et al., 2014); molecular graphics: DIAMOND (Putz & Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Hexaaquazinc(II) tetraaquadiglycinezinc(II) bis(sulfate) top
Crystal data top
[Zn(H2O)6][Zn(C2H5NO2)2(H2O)4](SO4)2Z = 1
Mr = 653.20F(000) = 336
Triclinic, P1Dx = 2.086 Mg m3
a = 5.9601 (15) ÅNeutron radiation, λ = 0.48-7.0 Å
b = 6.7670 (17) ÅCell parameters from 550 reflections
c = 13.112 (4) ŵ = 5.02 + 0.0182 * λ mm1
α = 84.955 (18)°T = 10 K
β = 83.25 (2)°Tabular, colourless
γ = 83.042 (19)°4 × 2.5 × 1 mm
V = 519.8 (2) Å3
Data collection top
SXD
diffractometer
8296 reflections with I > 2σ(I)
Radiation source: ISIS neutron spallation sourceRint = 0.089
time–of–flight LAUE diffraction scansθmax = 87.4°, θmin = 8.2°
Absorption correction: numerical
The linear absorption coefficient is wavelength dependent and is calculated as: µ = 5.0165 + 0.0182 * λ [cm-1] as determined by Gaussian integration in SXD2001 (Gutmann, 2005)
h = 1515
k = 1816
8296 measured reflectionsl = 2829
8296 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.089 w = 1/[σ2(Fo2) + (0.1376P)2 + 36.2519P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.246(Δ/σ)max < 0.001
S = 1.09Δρmax = 3.20 e Å3
8296 reflectionsΔρmin = 3.47 e Å3
291 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
12 restraintsExtinction coefficient: 0.0386 (18)
Special details top

Experimental. For peak integration a local UB matrix refined for each frame, using approximately 50 reflections from each of the 11 detectors. Hence _cell_measurement_reflns_used 550 For final cell dimensions a weighted average of all local cells was calculated Because of the nature of the experiment, it is not possible to give values of theta_min and theta_max for the cell determination. The same applies for the wavelength used for the experiment. The range of wavelengths used was 0.48–7.0 Angstroms, BUT the bulk of the diffraction information is obtained from wavelengths in the range 0.7–2.5 Angstroms. The data collection procedures on the SXD instrument used for the single-crystal neutron data collection are most recently summarized in the Appendix to the following paper Wilson, C.C. (1997). J. Mol. Struct. 405, 207–217

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The variable wavelength nature of the data collection procedure means that sensible values of _diffrn_reflns_theta_min & _diffrn_reflns_theta_max cannot be given instead the following limits are given _diffrn_reflns_sin(theta)/lambda_min 0.06 _diffrn_reflns_sin(theta)/lambda_max 1.38 _refine_diff_density_max/min is given in Fermi per angstrom cubed not electons per angstrom cubed. Another way to consider the _refine_diff_density_ is as a percentage of the scattering density of a given atom: _refine_diff_density_max = 5.7 % of hydrogen _refine_diff_density_min = -6.1 % of hydrogen Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.0141 (6)0.9128 (6)0.1847 (4)0.0008 (6)
O10.1809 (4)1.0196 (3)0.1159 (2)0.0036 (4)
O20.0249 (4)0.7303 (3)0.1375 (2)0.0037 (4)
O30.2027 (4)1.0416 (3)0.2010 (2)0.0040 (4)
O40.1050 (4)0.8522 (4)0.2845 (2)0.0038 (3)
Zn10.50000.00000.50000.0017 (4)
O50.1954 (4)0.1618 (4)0.5392 (2)0.0049 (4)
H5A0.0913 (11)0.1389 (11)0.6009 (6)0.0198 (11)
H5B0.0998 (10)0.2109 (9)0.4826 (6)0.0170 (10)
O60.4360 (4)0.0464 (4)0.3456 (2)0.0043 (4)
H6A0.5654 (10)0.0305 (9)0.2922 (5)0.0162 (10)
H6B0.3082 (10)0.0116 (10)0.3229 (6)0.0179 (11)
O70.6512 (4)0.2793 (4)0.4768 (2)0.0037 (3)
O80.9812 (4)0.3195 (4)0.3809 (2)0.0060 (4)
N10.3991 (2)0.5025 (2)0.34432 (14)0.0044 (2)
H1N0.3634 (11)0.5559 (12)0.4165 (6)0.0218 (13)
H2N0.3159 (12)0.6073 (10)0.2963 (7)0.0212 (12)
H3N0.3294 (11)0.3719 (9)0.3435 (6)0.0199 (12)
C10.7711 (3)0.3465 (3)0.39746 (19)0.0029 (3)
C20.6484 (3)0.4781 (3)0.3163 (2)0.0041 (3)
H2A0.7111 (11)0.6233 (9)0.3086 (7)0.0220 (13)
H2B0.6871 (11)0.4134 (12)0.2420 (6)0.0222 (13)
Zn20.50000.50000.00000.0008 (3)
O90.2958 (4)0.3897 (3)0.1320 (2)0.0045 (4)
H9A0.2434 (11)0.2593 (8)0.1279 (6)0.0175 (11)
H9B0.1606 (10)0.4824 (9)0.1443 (6)0.0190 (11)
O100.7911 (4)0.3443 (4)0.0509 (2)0.0048 (4)
H10A0.7828 (12)0.2322 (9)0.1030 (6)0.0180 (10)
H10B0.8989 (11)0.2959 (10)0.0061 (6)0.0197 (11)
O110.5434 (4)0.7298 (4)0.0881 (2)0.0054 (4)
H11A0.6938 (9)0.7484 (9)0.1036 (6)0.0182 (11)
H11B0.4422 (10)0.8523 (8)0.0915 (7)0.0200 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0006 (10)0.0009 (11)0.0010 (18)0.0001 (8)0.0003 (9)0.0000 (11)
O10.0027 (6)0.0037 (7)0.0038 (10)0.0006 (5)0.0016 (5)0.0001 (7)
O20.0029 (6)0.0028 (6)0.0058 (11)0.0007 (5)0.0007 (6)0.0012 (7)
O30.0017 (6)0.0040 (7)0.0053 (11)0.0018 (5)0.0010 (6)0.0000 (7)
O40.0039 (6)0.0054 (7)0.0018 (10)0.0001 (5)0.0015 (6)0.0011 (7)
Zn10.0015 (4)0.0017 (4)0.0017 (5)0.0001 (3)0.0001 (3)0.0000 (3)
O50.0036 (7)0.0071 (8)0.0032 (11)0.0014 (5)0.0002 (6)0.0011 (7)
H5A0.015 (2)0.028 (3)0.014 (3)0.0027 (18)0.0046 (18)0.002 (2)
H5B0.015 (2)0.019 (2)0.016 (3)0.0017 (15)0.0065 (17)0.004 (2)
O60.0041 (7)0.0064 (7)0.0021 (11)0.0005 (5)0.0004 (6)0.0002 (7)
H6A0.0142 (18)0.021 (2)0.013 (3)0.0020 (15)0.0034 (16)0.005 (2)
H6B0.017 (2)0.023 (2)0.017 (3)0.0076 (17)0.0052 (18)0.005 (2)
O70.0042 (6)0.0041 (7)0.0026 (10)0.0011 (5)0.0004 (6)0.0014 (7)
O80.0028 (7)0.0091 (9)0.0050 (12)0.0008 (5)0.0001 (6)0.0022 (8)
N10.0030 (4)0.0057 (5)0.0041 (7)0.0012 (3)0.0013 (4)0.0004 (5)
H1N0.017 (2)0.033 (3)0.015 (3)0.002 (2)0.0004 (19)0.009 (3)
H2N0.019 (2)0.020 (2)0.025 (4)0.0015 (18)0.011 (2)0.006 (2)
H3N0.018 (2)0.015 (2)0.027 (4)0.0066 (16)0.001 (2)0.001 (2)
C10.0020 (5)0.0034 (6)0.0032 (9)0.0000 (4)0.0011 (5)0.0007 (6)
C20.0042 (6)0.0047 (6)0.0030 (9)0.0002 (4)0.0004 (5)0.0017 (6)
H2A0.020 (2)0.013 (2)0.033 (4)0.0078 (17)0.005 (2)0.007 (2)
H2B0.018 (2)0.035 (3)0.013 (3)0.007 (2)0.0031 (19)0.006 (3)
Zn20.0008 (4)0.0008 (4)0.0009 (5)0.0001 (3)0.0001 (3)0.0001 (3)
O90.0045 (7)0.0035 (7)0.0050 (11)0.0005 (5)0.0005 (6)0.0004 (7)
H9A0.021 (2)0.0115 (17)0.021 (3)0.0064 (15)0.001 (2)0.001 (2)
H9B0.0135 (19)0.016 (2)0.024 (4)0.0064 (14)0.0009 (18)0.001 (2)
O100.0039 (7)0.0047 (7)0.0050 (11)0.0019 (5)0.0012 (6)0.0010 (7)
H10A0.024 (3)0.015 (2)0.013 (3)0.0011 (17)0.0002 (19)0.0054 (19)
H10B0.020 (2)0.020 (2)0.016 (3)0.0065 (17)0.0040 (19)0.002 (2)
O110.0033 (6)0.0048 (7)0.0086 (12)0.0002 (5)0.0015 (6)0.0033 (8)
H11A0.0091 (16)0.022 (2)0.025 (3)0.0030 (15)0.0057 (17)0.004 (2)
H11B0.017 (2)0.0118 (18)0.031 (4)0.0059 (14)0.003 (2)0.006 (2)
Geometric parameters (Å, º) top
S1—O31.473 (4)N1—H1N1.033 (7)
S1—O11.474 (5)N1—C21.481 (2)
S1—O41.480 (6)C1—C21.523 (4)
S1—O21.484 (4)C2—H2A1.085 (6)
Zn1—O52.039 (2)C2—H2B1.091 (7)
Zn1—O5i2.039 (2)Zn2—O102.067 (3)
Zn1—O62.093 (3)Zn2—O10ii2.067 (3)
Zn1—O6i2.094 (3)Zn2—O11ii2.075 (2)
Zn1—O7i2.173 (2)Zn2—O112.075 (2)
Zn1—O72.173 (2)Zn2—O92.129 (3)
O5—H5A0.973 (7)Zn2—O9ii2.129 (3)
O5—H5B0.997 (7)O9—H9B0.966 (6)
O6—H6A0.981 (6)O9—H9A0.979 (5)
O6—H6B0.985 (6)O10—H10A0.977 (8)
O7—C11.272 (4)O10—H10B0.979 (6)
O8—C11.240 (3)O11—H11B0.966 (6)
N1—H3N1.022 (6)O11—H11A0.966 (6)
N1—H2N1.027 (8)
O3—S1—O1110.2 (3)O8—C1—O7126.0 (3)
O3—S1—O4110.1 (3)O8—C1—C2116.2 (2)
O1—S1—O4109.5 (3)O7—C1—C2117.7 (2)
O3—S1—O2109.3 (3)H2A—C2—H2B107.9 (7)
O1—S1—O2109.3 (3)H2A—C2—N1109.5 (4)
O4—S1—O2108.4 (3)H2B—C2—N1109.5 (4)
O5—Zn1—O5i180.0H2A—C2—C1108.5 (5)
O5—Zn1—O688.59 (11)H2B—C2—C1109.7 (4)
O5i—Zn1—O691.41 (11)O10—Zn2—O10ii180.0
O5—Zn1—O6i91.41 (11)O10—Zn2—O11ii91.57 (10)
O5i—Zn1—O6i88.59 (11)O10ii—Zn2—O11ii88.43 (10)
O6—Zn1—O6i180.0O10—Zn2—O1188.43 (10)
O5—Zn1—O7i92.01 (9)O10ii—Zn2—O1191.57 (10)
O5i—Zn1—O7i87.99 (9)O11ii—Zn2—O11180.0
O6—Zn1—O7i93.38 (10)O10—Zn2—O991.52 (11)
O6i—Zn1—O7i86.62 (10)O10ii—Zn2—O988.48 (11)
O5—Zn1—O787.99 (9)O11ii—Zn2—O994.16 (10)
O5i—Zn1—O792.01 (9)O11—Zn2—O985.84 (10)
O6—Zn1—O786.62 (10)O10—Zn2—O9ii88.48 (11)
O6i—Zn1—O793.38 (10)O10ii—Zn2—O9ii91.52 (11)
O7i—Zn1—O7180.0O11ii—Zn2—O9ii85.84 (10)
H5A—O5—H5B106.7 (6)O11—Zn2—O9ii94.16 (10)
H6A—O6—H6B108.1 (6)O9—Zn2—O9ii180.00 (12)
C1—O7—Zn1128.26 (18)H9B—O9—H9A106.2 (6)
H3N—N1—H2N107.6 (6)H10A—O10—H10B106.1 (6)
H3N—N1—H1N109.8 (7)H11B—O11—H11A111.4 (6)
H2N—N1—H1N105.0 (6)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4iii0.973 (7)1.793 (7)2.755 (4)169.0 (7)
O5—H5B···O8iv0.997 (7)1.656 (8)2.642 (4)168.9 (6)
O6—H6A···O3v0.981 (6)1.722 (6)2.696 (3)170.8 (5)
O6—H6B···O4vi0.985 (6)1.751 (5)2.729 (3)171.8 (7)
O9—H9A···O1vi0.979 (5)1.732 (5)2.707 (3)173.8 (6)
O9—H9B···O20.966 (6)1.895 (6)2.811 (3)157.2 (6)
O10—H10A···O3v0.977 (8)1.740 (8)2.713 (4)173.0 (7)
O10—H10B···O2ii0.979 (6)1.811 (7)2.745 (4)158.5 (7)
O11—H11A···O2vii0.966 (6)1.772 (6)2.726 (3)168.6 (6)
O11—H11B···O10.966 (6)1.824 (6)2.750 (3)159.5 (7)
C2—H2A···O2vii1.085 (6)2.682 (9)3.351 (4)119.4 (6)
C2—H2A···O5viii1.085 (6)2.716 (8)3.489 (3)127.9 (6)
C2—H2B···O101.091 (7)2.579 (8)3.649 (4)166.7 (7)
N1—H1N···O7viii1.033 (7)1.853 (7)2.848 (3)160.8 (7)
N1—H2N···O41.027 (8)1.961 (7)2.877 (3)147.0 (7)
N1—H3N···O61.022 (6)2.216 (7)3.066 (3)139.5 (5)
Symmetry codes: (ii) x+1, y+1, z; (iii) x, y+1, z+1; (iv) x1, y, z; (v) x+1, y1, z; (vi) x, y1, z; (vii) x+1, y, z; (viii) x+1, y+1, z+1.
Comparison of bond lengths (Å), polyhedral volumes (Å3) and various distortion metrics (cf., Robinson et al., 1971) in glyc·ZnSO4·5H2O from this work and the three preceding single-crystal X-ray diffraction studies top
The distortion index and quadratic elongation are dimensionless, whereas the bond-angle variance is in units of degrees squared.
This workBalamurugan et al. (2011)Tepavitcharova et al. (2012)Oguey et al. (2013c)
Single-crystal neutronSingle-crystal X-raySingle-crystal X-raySingle-crystal X-ray
T = 10 KT = 293 KT = 150 KT = 153 K
S—O1*1.474 (5)1.472 (2)1.472 (1)1.473 (2)
S—O21.484 (4)1.478 (2)1.482 (1)1.485 (2)
S—O3*1.473 (4)1.472 (2)1.477 (1)1.481 (2)
S—O41.480 (5)1.481 (2)1.484 (1)1.479 (2)
Mean S—O1.4781.4761.4791.479
SO4 volume1.6561.6491.6591.661
Distortion index0.00280.00250.00270.0022
Quadratic elongation1.0001.0001.0001.000
Bond-angle variance0.4100.2680.3200.420
Zn1—O52.039 (2)2.024 (3)2.032 (1)2.035 (2)
Zn1—O62.093 (2)2.101 (3)2.098 (1)2.098 (2)
Zn1—O72.173 (2)2.181 (3)2.177 (1)2.176 (2)
Mean Zn1—O2.1022.1022.1022.103
ZnO6 volume12.33812.33912.33912.336
Distortion index0.02270.02510.02380.0232
Quadratic elongation1.0031.0031.0031.003
Bond-angle variance6.3084.8155.9756.292
Zn2—O92.129 (3)2.141 (3)2.133 (1)2.135 (2)
Zn2—O102.067 (3)2.071 (3)2.070 (1)2.072 (2)
Zn2—O112.075 (2)2.063 (3)2.065 (2)2.065 (2)
Mean Zn2—O2.0902.0922.0892.091
ZnO6 volume12.12712.17612.12312.145
Distortion index0.01240.01560.01390.0142
Quadratic elongation1.0031.0021.0021.002
Bond-angle variance7.9825.9426.6176.541
C1—O71.272 (4)1.272 (5)1.274 (2)1.278 (3)
C1—O81.240 (3)1.228 (5)1.236 (2)1.234 (3)
C1—C21.523 (4)1.516 (5)1.525 (3)1.522 (3)
C2—N11.481 (2)1.478 (5)1.480 (2)1.480 (3)
*Denotes sulfate oxygens accepting two hydrogen bonds instead of three. Denotes carboxylate oxygen ligand instead of water oxygen.
Comparison of X—H(D) bond lengths (Å) from earlier work (ae) with our own (f) top
Element symbols indicate the cation in each compound. `X-ray' denotes single-crystal X-ray diffraction; `NPD' denotes a neutron powder diffraction experiment on a deuterated analogue carried out at 10 K; `neutron' indicates single-crystal neutron diffraction on a protonated analogue carried out at 10 K. Note that the atom symbols employed in our work are the same as those used by Elayaraja et al. (2007) and by Howard et al. (2016). Although other authors have used different atom labels – and indeed use them inconsistently in their own reports – we list equivalent contacts in this table.
Mg, X-ray(a)Mg, NPD(b)Co, X-ray(c)Mg, X-ray(c)Zn, X-ray(c)Zn, X-ray(d)Zn, X-ray(e)Zn, neutron(f)
N—H1N0.87 (4)1.008 (4)0.847 (1)0.849 (1)0.881 (2)0.85 (2)0.910 (2)1.033 (7)
N—H2N0.87 (4)0.982 (4)0.907 (1)0.898 (1)0.904 (1)0.83 (3)0.911 (2)1.028 (8)
N—H3N0.87 (5)0.991 (5)0.904 (1)0.902 (1)0.946 (1)absent0.910 (2)1.022 (6)
Average N—H0.870.9950.8770.8740.8920.840.9111.030
C—H2A0.970 (4)1.077 (4)0.961 (1)0.960 (1)0.967 (2)0.970 (3)0.990 (2)1.085 (6)
C—H2B0.970 (3)1.083 (4)0.901 (1)1.014 (1)1.050 (2)0.970 (3)0.990 (2)1.091 (7)
Average C—H0.9701.0800.9310.9871.0090.9700.9901.088
O5—H5A0.84 (3)0.975 (5)0.880 (1)0.789 (1)0.879 (2)0.85 (2)0.83 (3)0.973 (7)
O5—H5B0.85 (3)0.946 (5)0.914 (1)0.930 (1)0.838 (1)0.85 (3)0.85 (3)0.997 (7)
O6—H6A0.84 (2)0.987 (5)0.964 (1)0.875 (1)0.864 (1)0.83 (3)0.86 (3)0.981 (6)
O6—H6B0.83 (3)0.988 (5)0.906 (1)0.897 (1)0.886 (1)0.84 (3)0.85 (2)0.985 (6)
O9—H9A0.83 (2)0.977 (5)0.864 (1)0.871 (1)0.881 (2)0.87 (3)0.86 (2)0.979 (5)
O9—H9b0.84 (2)0.984 (4)0.884 (1)0.901 (1)0.964 (1)0.87 (2)0.87 (3)0.966 (6)
O10—H10A0.84 (4)0.954 (5)0.972 (1)0.911 (1)0.887 (1)0.82 (2)0.87 (2)0.977 (8)
O10—H10B0.84 (3)0.972 (5)0.855 (1)0.821 (1)0.913 (1)0.84 (2)0.85 (2)0.978 (6)
O11—H11A0.84 (3)1.002 (5)0.822 (1)0.884 (1)0.808 (1)0.83 (3)0.86 (2)0.966 (6)
O11—H11B0.83 (3)0.965 (5)0.906 (1)0.859 (1)0.900 (1)0.84 (2)0.84 (2)0.966 (6)
Average O—H0.840.9750.8970.8740.8820.850.850.977
(a) Elayaraja et al. (2007); (b) Howard et al. (2016); (c) Tepavitcharova et al. (2012); (d) Balamurugan et al. (2011); (e) Oguey et al. (2013c); (f) this work.
Raman vibrational frequencies and mode assignments of α-glycine (cf., Stenbäck, 1976: Rosado et al., 1998: Yang et al., 2008), Glyc·MgSO4·5H2O (Howard et al., 2016) and the title compound top
Meaning of symbols: ν = stretch; δ = deformation; ρ = rock; ω = wag; Γ = twist; (A) = asymmetric; (S) = symmetric.
α-GlycineaGlyc·MgSO4·5H2OaGlyc·ZnSO4·5H2O
Vibrational mode180 s, 18 mW1400 s, 18 mW540 s, 18 mW
δ M2+—O (?)208203
236220
δ CCN+356361382
ρ COO-
δ(S) SO42-453451
ρ COO-497522527
ω COO-601597582
599
δ(A) SO42-623626
645644
δ COO-696
unknown794
ν C—C+893890890
ν C—N905906
ν C—O
ρ CH2922
ν(S) SO42-983.8983.2
ν C—N103610201021
ν(A) SO42-10771078
11001101
ρ NH3+110811391141
1140
ω CH2132513051306
Γ CH213281327
ν(S) COO-141013951391
δ(S) CH2144114341433
1457
δ(A) NH3+1502
δ(S) NH3+151614881488
1569
ν C—C+163415971590
ω CH2
ν(A) COO-167016311614
ν(S) CH2297229972996
ν(A) CH2300930383037
ν(S) NH3+3143
ν(S) H2O32483204
3233
ν(A) H2O33843331
3405
aHoward et al. (2016).
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds