Download citation
Download citation
link to html
In the structure of BaCu1/3Ta2/3S3, the Cu and Ta atoms are occupationally disordered on the same site in a ratio of 1/3:2/3.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989017005266/wm5362sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989017005266/wm5362Isup3.hkl
Contains datablock I

CCDC reference: 1542709

Key indicators

Structure: I
  • Single-crystal X-ray study
  • T = 297 K
  • Mean [sigma]() = 0.000 Å
  • Disorder in main residue
  • R factor = 0.043
  • wR factor = 0.113
  • Data-to-parameter ratio = 11.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT041_ALERT_1_C Calc. and Reported SumFormula Strings Differ Please Check PLAT077_ALERT_4_C Unitcell contains non-integer number of atoms .. Please Check PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of S Check PLAT906_ALERT_3_C Large K value in the Analysis of Variance ...... 10.408 Check PLAT971_ALERT_2_C Check Calcd Residual Density 1.03A From Ta 1.58 eA-3 PLAT972_ALERT_2_C Check Calcd Residual Density 1.86A From S -1.61 eA-3
Alert level G PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension 1 Info PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ Please Check PLAT045_ALERT_1_G Calculated and Reported Z Differ by a Factor ... 0.50 Check PLAT068_ALERT_1_G Reported F000 Differs from Calcd (or Missing)... Please Check PLAT171_ALERT_4_G The CIF-Embedded .res File Contains EADP Records 1 Report PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Ta -- S .. 9.7 s.u. PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Cu -- S .. 9.7 s.u. PLAT301_ALERT_3_G Main Residue Disorder ..............(Resd 1).. 21 % Note PLAT811_ALERT_5_G No ADDSYM Analysis: Too Many Excluded Atoms .... ! Info PLAT860_ALERT_3_G Number of Least-Squares Restraints ............. 2 Note
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 6 ALERT level C = Check. Ensure it is not caused by an omission or oversight 10 ALERT level G = General information/check it is not something unexpected 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).

Barium copper(II) tantalum(V) trisulfide top
Crystal data top
BaCu0.33Ta0.67S3Dx = 5.280 Mg m3
Mr = 375.14Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mmcCell parameters from 1738 reflections
a = 6.8350 (6) Åθ = 3.4–25.9°
c = 5.8318 (5) ŵ = 26.34 mm1
V = 235.94 (5) Å3T = 297 K
Z = 2Plate, black
F(000) = 3250.04 × 0.03 × 0.01 mm
Data collection top
Bruker D8 QUEST
diffractometer
106 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1Rint = 0.042
phi and ω scansθmax = 27.3°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 88
Tmin = 0.44, Tmax = 0.86k = 88
4312 measured reflectionsl = 76
125 independent reflections
Refinement top
Refinement on F211 parameters
Least-squares matrix: full2 restraints
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0503P)2 + 4.8137P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max < 0.001
S = 1.25Δρmax = 1.50 e Å3
125 reflectionsΔρmin = 1.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba0.66670.33330.750.0341 (7)
Ta000.50.0707 (12)0.6666 (8)
Cu000.50.0707 (12)0.3334 (18)
S0.1689 (4)0.3378 (8)0.750.0449 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba0.0246 (7)0.0246 (7)0.0529 (13)0.0123 (4)00
Ta0.0306 (8)0.0306 (8)0.151 (3)0.0153 (4)00
Cu0.0306 (8)0.0306 (8)0.151 (3)0.0153 (4)00
S0.0217 (18)0.015 (2)0.096 (4)0.0074 (10)00
Geometric parameters (Å, º) top
Ba—Si3.4176 (3)Ta—S2.475 (4)
Ba—Sii3.4176 (3)Ta—Sxiii2.475 (4)
Ba—Siii3.4176 (3)Ta—Svii2.475 (4)
Ba—Siv3.4176 (3)Ta—Sxiv2.475 (4)
Ba—S3.4176 (3)Ta—Taxv2.9159 (3)
Ba—Sv3.4176 (3)Ta—Cuxvi2.9159 (3)
Ba—Svi3.506 (3)Ta—Cuxv2.9159 (3)
Ba—Svii3.506 (3)Ta—Taxvi2.9159 (3)
Ba—Sviii3.506 (3)S—Cuxv2.475 (4)
Ba—Six3.506 (3)S—Taxv2.475 (4)
Ba—Sx3.506 (3)S—Baxvii3.4176 (3)
Ba—Sxi3.506 (3)S—Bavi3.506 (3)
Ta—Sxii2.475 (4)S—Baix3.506 (3)
Ta—Siii2.475 (4)
Si—Ba—Sii60.89 (16)Sxii—Ta—Siii180.0
Si—Ba—Siii120.0010 (10)Sxii—Ta—S91.18 (10)
Sii—Ba—Siii59.11 (17)Siii—Ta—S88.82 (10)
Si—Ba—Siv59.11 (17)Sxii—Ta—Sxiii88.82 (10)
Sii—Ba—Siv120.0010 (10)Siii—Ta—Sxiii91.18 (10)
Siii—Ba—Siv179.11 (16)S—Ta—Sxiii180.0
Si—Ba—S179.11 (17)Sxii—Ta—Svii88.82 (10)
Sii—Ba—S120.0000 (10)Siii—Ta—Svii91.18 (10)
Siii—Ba—S60.89 (17)S—Ta—Svii91.18 (10)
Siv—Ba—S119.9990 (10)Sxiii—Ta—Svii88.82 (10)
Si—Ba—Sv120.0000 (10)Sxii—Ta—Sxiv91.18 (10)
Sii—Ba—Sv179.11 (17)Siii—Ta—Sxiv88.82 (10)
Siii—Ba—Sv119.9990 (10)S—Ta—Sxiv88.82 (10)
Siv—Ba—Sv60.89 (17)Sxiii—Ta—Sxiv91.18 (10)
S—Ba—Sv59.11 (17)Svii—Ta—Sxiv180.0
Si—Ba—Svi89.75 (5)Sxii—Ta—Taxv126.10 (7)
Sii—Ba—Svi118.88 (3)Siii—Ta—Taxv53.90 (7)
Siii—Ba—Svi118.88 (3)S—Ta—Taxv53.90 (7)
Siv—Ba—Svi61.40 (8)Sxiii—Ta—Taxv126.10 (7)
S—Ba—Svi89.75 (5)Svii—Ta—Taxv126.10 (7)
Sv—Ba—Svi61.40 (8)Sxiv—Ta—Taxv53.90 (7)
Si—Ba—Svii118.88 (3)Sxii—Ta—Cuxvi53.90 (7)
Sii—Ba—Svii89.75 (5)Siii—Ta—Cuxvi126.10 (7)
Siii—Ba—Svii61.40 (8)S—Ta—Cuxvi126.10 (7)
Siv—Ba—Svii118.88 (3)Sxiii—Ta—Cuxvi53.90 (7)
S—Ba—Svii61.40 (8)Svii—Ta—Cuxvi53.90 (7)
Sv—Ba—Svii89.75 (5)Sxiv—Ta—Cuxvi126.10 (7)
Svi—Ba—Svii147.76 (6)Taxv—Ta—Cuxvi180.0
Si—Ba—Sviii118.88 (3)Sxii—Ta—Cuxv126.10 (7)
Sii—Ba—Sviii89.75 (5)Siii—Ta—Cuxv53.90 (7)
Siii—Ba—Sviii61.40 (8)S—Ta—Cuxv53.90 (7)
Siv—Ba—Sviii118.88 (3)Sxiii—Ta—Cuxv126.10 (7)
S—Ba—Sviii61.40 (8)Svii—Ta—Cuxv126.10 (7)
Sv—Ba—Sviii89.75 (5)Sxiv—Ta—Cuxv53.90 (7)
Svi—Ba—Sviii57.48 (11)Taxv—Ta—Cuxv0
Svii—Ba—Sviii112.55 (14)Cuxvi—Ta—Cuxv180.0
Si—Ba—Six89.75 (5)Sxii—Ta—Taxvi53.90 (7)
Sii—Ba—Six118.88 (3)Siii—Ta—Taxvi126.10 (7)
Siii—Ba—Six118.88 (3)S—Ta—Taxvi126.10 (7)
Siv—Ba—Six61.40 (8)Sxiii—Ta—Taxvi53.90 (7)
S—Ba—Six89.75 (5)Svii—Ta—Taxvi53.90 (7)
Sv—Ba—Six61.40 (8)Sxiv—Ta—Taxvi126.10 (7)
Svi—Ba—Six112.55 (14)Taxv—Ta—Taxvi180.0
Svii—Ba—Six57.48 (11)Cuxvi—Ta—Taxvi0
Sviii—Ba—Six147.76 (6)Cuxv—Ta—Taxvi180.0
Si—Ba—Sx61.40 (8)Ta—S—Cuxv72.2
Sii—Ba—Sx61.40 (8)Ta—S—Taxv72.19 (13)
Siii—Ba—Sx89.75 (5)Cuxv—S—Taxv0
Siv—Ba—Sx89.75 (5)Ta—S—Ba89.64 (7)
S—Ba—Sx118.88 (3)Cuxv—S—Ba89.64 (7)
Sv—Ba—Sx118.88 (3)Taxv—S—Ba89.64 (7)
Svi—Ba—Sx57.48 (11)Ta—S—Baxvii89.64 (7)
Svii—Ba—Sx147.76 (6)Cuxv—S—Baxvii89.64 (7)
Sviii—Ba—Sx57.48 (11)Taxv—S—Baxvii89.64 (7)
Six—Ba—Sx147.76 (6)Ba—S—Baxvii179.11 (16)
Si—Ba—Sxi61.40 (8)Ta—S—Bavi159.82 (13)
Sii—Ba—Sxi61.40 (8)Cuxv—S—Bavi87.629 (7)
Siii—Ba—Sxi89.75 (5)Taxv—S—Bavi87.629 (7)
Siv—Ba—Sxi89.75 (5)Ba—S—Bavi90.25 (5)
S—Ba—Sxi118.88 (3)Baxvii—S—Bavi90.25 (5)
Sv—Ba—Sxi118.88 (3)Ta—S—Baix87.629 (7)
Svi—Ba—Sxi147.76 (6)Cuxv—S—Baix159.82 (13)
Svii—Ba—Sxi57.48 (11)Taxv—S—Baix159.82 (13)
Sviii—Ba—Sxi147.76 (6)Ba—S—Baix90.25 (5)
Six—Ba—Sxi57.48 (11)Baxvii—S—Baix90.25 (5)
Sx—Ba—Sxi112.55 (13)Bavi—S—Baix112.55 (13)
Symmetry codes: (i) x+1, y, z; (ii) y+1, xy, z; (iii) x+y, x, z; (iv) x+y+1, x+1, z; (v) y+1, xy+1, z; (vi) x+1, y+1, z+2; (vii) y, x+y, z+1; (viii) y, x+y, z+2; (ix) x+1, y+1, z+1; (x) xy+1, x, z+2; (xi) xy+1, x, z+1; (xii) xy, x, z+1; (xiii) x, y, z+1; (xiv) y, xy, z; (xv) x, y, z+1/2; (xvi) x, y, z1/2; (xvii) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds