Download citation
Download citation
link to html
Sr2PdO3 adopts the Sr2CuO3 structure type. In comparison with previous determinations, the present redetermination results in improved precision of the structural parameters.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989018017176/wm5474sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989018017176/wm5474Isup2.hkl
Contains datablock I

CCDC reference: 1882781

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](Pd-O) = 0.001 Å
  • R factor = 0.009
  • wR factor = 0.021
  • Data-to-parameter ratio = 11.1

checkCIF/PLATON results

No syntax errors found



Alert level G PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension 1 Info PLAT794_ALERT_5_G Tentative Bond Valency for Pd1 (II) . 2.16 Info PLAT961_ALERT_5_G Dataset Contains no Negative Intensities ....... Please Check
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 0 ALERT level C = Check. Ensure it is not caused by an omission or oversight 3 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 3 ALERT type 5 Informative message, check

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Distrontium palladium trioxide top
Crystal data top
Sr2PdO3Dx = 6.057 Mg m3
Mr = 329.64Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, ImmmCell parameters from 1490 reflections
a = 3.5342 (2) Åθ = 3.2–29.9°
b = 3.9822 (3) ŵ = 34.15 mm1
c = 12.8414 (8) ÅT = 296 K
V = 180.73 (2) Å3Block, yellow-brown
Z = 20.18 × 0.16 × 0.12 mm
F(000) = 292
Data collection top
Bruker APEXII CCD
diffractometer
176 reflections with I > 2σ(I)
φ and ω scansRint = 0.035
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 29.9°, θmin = 3.2°
Tmin = 0.062, Tmax = 0.102h = 44
8304 measured reflectionsk = 55
178 independent reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0092P)2 + 0.2817P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.009(Δ/σ)max < 0.001
wR(F2) = 0.021Δρmax = 0.43 e Å3
S = 1.27Δρmin = 0.51 e Å3
178 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
16 parametersExtinction coefficient: 0.0059 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.50000.00000.50000.00493 (11)
Sr10.50000.00000.14752 (2)0.00656 (11)
O10.50000.00000.34021 (18)0.0085 (5)
O20.50000.50000.50000.0128 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.00765 (19)0.00396 (17)0.00320 (18)0.0000.0000.000
Sr10.00752 (17)0.00760 (16)0.00456 (17)0.0000.0000.000
O10.0117 (13)0.0101 (12)0.0037 (11)0.0000.0000.000
O20.021 (2)0.0035 (15)0.0134 (18)0.0000.0000.000
Geometric parameters (Å, º) top
Pd1—O2i1.9911 (1)Sr1—O1ix2.6668 (2)
Pd1—O21.9911 (1)Sr1—O1vii2.6668 (2)
Pd1—O12.052 (2)Sr1—Pd1xi3.2674 (2)
Pd1—O1ii2.052 (2)Sr1—Pd1xii3.2674 (2)
Pd1—Sr1iii3.2674 (2)Sr1—Pd1xiii3.2674 (2)
Pd1—Sr1iv3.2674 (2)Sr1—Pd1xiv3.2674 (2)
Pd1—Sr1v3.2674 (2)Sr1—Sr1xv3.5342 (2)
Pd1—Sr1vi3.2674 (2)O1—Sr1viii2.6668 (2)
Pd1—Sr1vii3.2674 (2)O1—Sr1iii2.6668 (2)
Pd1—Sr1viii3.2674 (2)O1—Sr1vii2.6668 (2)
Pd1—Sr1ix3.2674 (2)O1—Sr1ix2.6668 (2)
Pd1—Sr1x3.2674 (2)O2—Pd1xvi1.9911 (1)
Sr1—O12.474 (2)O2—Sr1ix2.5906 (3)
Sr1—O2xi2.5906 (3)O2—Sr1iv2.5906 (3)
Sr1—O2xii2.5906 (3)O2—Sr1viii2.5906 (3)
Sr1—O1viii2.6668 (2)O2—Sr1vi2.5906 (3)
Sr1—O1iii2.6668 (2)
O2i—Pd1—O2180.0O1—Sr1—O1vii86.61 (5)
O2i—Pd1—O190.0O2xi—Sr1—O1vii119.68 (4)
O2—Pd1—O190.0O2xii—Sr1—O1vii65.87 (4)
O2i—Pd1—O1ii90.0O1viii—Sr1—O1vii96.597 (9)
O2—Pd1—O1ii90.0O1iii—Sr1—O1vii83.000 (8)
O1—Pd1—O1ii180.0O1ix—Sr1—O1vii173.22 (10)
O2i—Pd1—Sr1iii52.455 (3)O1—Sr1—Pd1xi125.435 (5)
O2—Pd1—Sr1iii127.545 (3)O2xi—Sr1—Pd1xi37.546 (3)
O1—Pd1—Sr1iii54.565 (5)O2xii—Sr1—Pd1xi86.845 (8)
O1ii—Pd1—Sr1iii125.435 (5)O1viii—Sr1—Pd1xi147.95 (5)
O2i—Pd1—Sr1iv127.545 (3)O1iii—Sr1—Pd1xi38.82 (5)
O2—Pd1—Sr1iv52.455 (3)O1ix—Sr1—Pd1xi97.52 (3)
O1—Pd1—Sr1iv125.435 (5)O1vii—Sr1—Pd1xi86.43 (3)
O1ii—Pd1—Sr1iv54.565 (5)O1—Sr1—Pd1xii125.435 (5)
Sr1iii—Pd1—Sr1iv180.0O2xi—Sr1—Pd1xii86.845 (8)
O2i—Pd1—Sr1v52.455 (4)O2xii—Sr1—Pd1xii37.546 (3)
O2—Pd1—Sr1v127.545 (3)O1viii—Sr1—Pd1xii97.52 (3)
O1—Pd1—Sr1v125.435 (5)O1iii—Sr1—Pd1xii86.43 (3)
O1ii—Pd1—Sr1v54.565 (5)O1ix—Sr1—Pd1xii147.95 (5)
Sr1iii—Pd1—Sr1v70.871 (10)O1vii—Sr1—Pd1xii38.82 (5)
Sr1iv—Pd1—Sr1v109.129 (10)Pd1xi—Sr1—Pd1xii65.481 (6)
O2i—Pd1—Sr1vi127.545 (3)O1—Sr1—Pd1xiii125.435 (5)
O2—Pd1—Sr1vi52.455 (4)O2xi—Sr1—Pd1xiii86.845 (9)
O1—Pd1—Sr1vi125.435 (5)O2xii—Sr1—Pd1xiii37.546 (3)
O1ii—Pd1—Sr1vi54.565 (5)O1viii—Sr1—Pd1xiii38.82 (5)
Sr1iii—Pd1—Sr1vi114.520 (6)O1iii—Sr1—Pd1xiii147.95 (5)
Sr1iv—Pd1—Sr1vi65.480 (6)O1ix—Sr1—Pd1xiii86.43 (3)
Sr1v—Pd1—Sr1vi75.090 (7)O1vii—Sr1—Pd1xiii97.52 (3)
O2i—Pd1—Sr1vii52.455 (3)Pd1xi—Sr1—Pd1xiii109.130 (10)
O2—Pd1—Sr1vii127.545 (3)Pd1xii—Sr1—Pd1xiii75.091 (7)
O1—Pd1—Sr1vii54.565 (5)O1—Sr1—Pd1xiv125.435 (5)
O1ii—Pd1—Sr1vii125.435 (5)O2xi—Sr1—Pd1xiv37.546 (3)
Sr1iii—Pd1—Sr1vii65.480 (5)O2xii—Sr1—Pd1xiv86.845 (8)
Sr1iv—Pd1—Sr1vii114.520 (6)O1viii—Sr1—Pd1xiv86.43 (3)
Sr1v—Pd1—Sr1vii104.910 (7)O1iii—Sr1—Pd1xiv97.52 (3)
Sr1vi—Pd1—Sr1vii180.0O1ix—Sr1—Pd1xiv38.82 (5)
O2i—Pd1—Sr1viii127.545 (3)O1vii—Sr1—Pd1xiv147.95 (5)
O2—Pd1—Sr1viii52.455 (3)Pd1xi—Sr1—Pd1xiv75.091 (7)
O1—Pd1—Sr1viii54.565 (5)Pd1xii—Sr1—Pd1xiv109.130 (10)
O1ii—Pd1—Sr1viii125.435 (5)Pd1xiii—Sr1—Pd1xiv65.481 (6)
Sr1iii—Pd1—Sr1viii109.129 (10)O1—Sr1—Sr1xv90.0
Sr1iv—Pd1—Sr1viii70.871 (10)O2xi—Sr1—Sr1xv133.011 (5)
Sr1v—Pd1—Sr1viii180.0O2xii—Sr1—Sr1xv46.991 (5)
Sr1vi—Pd1—Sr1viii104.910 (7)O1viii—Sr1—Sr1xv48.500 (3)
Sr1vii—Pd1—Sr1viii75.090 (7)O1iii—Sr1—Sr1xv131.500 (4)
O2i—Pd1—Sr1ix127.545 (4)O1ix—Sr1—Sr1xv131.500 (4)
O2—Pd1—Sr1ix52.455 (3)O1vii—Sr1—Sr1xv48.500 (4)
O1—Pd1—Sr1ix54.565 (5)Pd1xi—Sr1—Sr1xv122.741 (3)
O1ii—Pd1—Sr1ix125.435 (5)Pd1xii—Sr1—Sr1xv57.260 (3)
Sr1iii—Pd1—Sr1ix75.090 (7)Pd1xiii—Sr1—Sr1xv57.260 (3)
Sr1iv—Pd1—Sr1ix104.910 (7)Pd1xiv—Sr1—Sr1xv122.741 (3)
Sr1v—Pd1—Sr1ix114.520 (6)Pd1—O1—Sr1180.0
Sr1vi—Pd1—Sr1ix70.871 (10)Pd1—O1—Sr1viii86.61 (5)
Sr1vii—Pd1—Sr1ix109.129 (10)Sr1—O1—Sr1viii93.39 (5)
Sr1viii—Pd1—Sr1ix65.480 (6)Pd1—O1—Sr1iii86.61 (5)
O2i—Pd1—Sr1x52.455 (3)Sr1—O1—Sr1iii93.39 (5)
O2—Pd1—Sr1x127.545 (3)Sr1viii—O1—Sr1iii173.23 (10)
O1—Pd1—Sr1x125.435 (5)Pd1—O1—Sr1vii86.61 (5)
O1ii—Pd1—Sr1x54.565 (5)Sr1—O1—Sr1vii93.39 (5)
Sr1iii—Pd1—Sr1x104.910 (7)Sr1viii—O1—Sr1vii96.597 (9)
Sr1iv—Pd1—Sr1x75.090 (7)Sr1iii—O1—Sr1vii83.001 (8)
Sr1v—Pd1—Sr1x65.480 (5)Pd1—O1—Sr1ix86.61 (5)
Sr1vi—Pd1—Sr1x109.129 (10)Sr1—O1—Sr1ix93.39 (5)
Sr1vii—Pd1—Sr1x70.871 (10)Sr1viii—O1—Sr1ix83.001 (8)
Sr1viii—Pd1—Sr1x114.520 (6)Sr1iii—O1—Sr1ix96.597 (9)
Sr1ix—Pd1—Sr1x180.0Sr1vii—O1—Sr1ix173.23 (10)
O1—Sr1—O2xi136.990 (5)Pd1xvi—O2—Pd1180.0
O1—Sr1—O2xii136.990 (5)Pd1xvi—O2—Sr1ix90.0
O2xi—Sr1—O2xii86.020 (11)Pd1—O2—Sr1ix90.0
O1—Sr1—O1viii86.61 (5)Pd1xvi—O2—Sr1iv90.0
O2xi—Sr1—O1viii119.68 (4)Pd1—O2—Sr1iv90.0
O2xii—Sr1—O1viii65.87 (4)Sr1ix—O2—Sr1iv180.0
O1—Sr1—O1iii86.61 (5)Pd1xvi—O2—Sr1viii90.0
O2xi—Sr1—O1iii65.87 (4)Pd1—O2—Sr1viii90.0
O2xii—Sr1—O1iii119.68 (4)Sr1ix—O2—Sr1viii86.018 (11)
O1viii—Sr1—O1iii173.22 (10)Sr1iv—O2—Sr1viii93.982 (11)
O1—Sr1—O1ix86.61 (5)Pd1xvi—O2—Sr1vi90.0
O2xi—Sr1—O1ix65.87 (4)Pd1—O2—Sr1vi90.0
O2xii—Sr1—O1ix119.68 (4)Sr1ix—O2—Sr1vi93.982 (11)
O1viii—Sr1—O1ix83.000 (8)Sr1iv—O2—Sr1vi86.018 (11)
O1iii—Sr1—O1ix96.597 (9)Sr1viii—O2—Sr1vi180.0
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x1/2, y1/2, z+1/2; (vi) x1/2, y+1/2, z+1/2; (vii) x+3/2, y1/2, z+1/2; (viii) x+3/2, y+1/2, z+1/2; (ix) x+1/2, y+1/2, z+1/2; (x) x+1/2, y1/2, z+1/2; (xi) x1/2, y1/2, z1/2; (xii) x+1/2, y1/2, z1/2; (xiii) x+1/2, y+1/2, z1/2; (xiv) x1/2, y+1/2, z1/2; (xv) x+1, y, z; (xvi) x, y+1, z.
Comparison of lattice parameters and bond lengths (Å) in Sr2PdO3 determined in different studies top
1970 worka1971 workb2002 workcThis work
a3.9773.973.9853.5342 (2)
b3.533.5443.5393.9822 (3)
c12.8212.8412.84712.8414 (8)
Pd—O1 (×2)2.082.0452.0682.052 (2)
Pd—O2 (×2)1.991.9851.9931.9911 (1)
Sr—O12.452.5042.4672.474 (2)
Sr—O1 (×4)2.672.6682.6712.6668 (2)
Sr—O2 (×2)2.582.572.5882.5906 (3)
References: (a) Wasel-Nielen & Hoppe (1970); (b) Muller & Roy (1971); (c) Nagata et al. (2002).
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds