![e logo](https://journals.iucr.org/logos/jicons/e_36x36.png)
![...](/logos/entities/ctdot_rmgif.gif)
![...](/logos/entities/ctdot_rmgif.gif)
![...](/logos/entities/ctdot_rmgif.gif)
![...](/logos/entities/ctdot_rmgif.gif)
Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807042869/wn2188sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S1600536807042869/wn2188Isup2.hkl |
CCDC reference: 663742
To a stirred suspension of phosphorus pentachloride (2.08 g, 10 mmol) in dry CCl4 (35 ml), 4-pyridinecarboxylic acid amide (1.22 g, 10 mmol) was added at 298 K. The mixture was then heated at the reflux temperature (353–355 K) for 24 h. The mixture was cooled to room temperature and the reaction flask was placed in an ice bath. Formic acid (0.46 g, 10 mmol) was added dropwise to the mixture to release CO and HCl and finally to oxidize the phosphoramidate. After stirring for 24 h, a white precipitate was obtained, which was filtered and washed with H2O (40 ml) and dried in air. The white precipitate (0.406 g, 2 mmol) was added to Hg2Cl2 (0.472 g,1 mmol) in hot ethanol (20 ml) to synthesize the Hg complex; however, catalytic hydrolysis of the phosphoramidate occurred. The product of this reaction was filtered and washed with ethanol (10 ml) and then recrystallized from distilled water at 298 K (yield 65%; m.p. 429–431 K).
All H atoms were located in a difference synthesis and refined isotropically [C—H = 0.88 (4) - 0.95 (4) Å, N—H = 0.87 (5) - 0.96 (4) Å, and O—H = 0.76 (5) - 0.81 (4) Å].
Research on phosphate compounds has attracted attention due to their applications as O-donor ligands in coordination chemistry (Szemes et al., 1996; Kortz et al., 2000; Pope et al., 2005; Chippindale, 2006; Oh et al., 2006). The crystal structures of two phosphate compounds (Chieh & Palenik, 1971; Okabe et al., 1993) a dichlorophosphate (Gholivand & Pourayoubi, 2004) and a dioxophosphate (Gholivand et al., 2005) have been reported. Recently, considerable attention has been paid to the subtle manipulation of hydrogen bonding in solid state structures (Steiner, 2002).
We have synthesized the title compound and report here its crystal structure. An ORTEP view of the molecular structure is presented in Fig. 1. The cation and anion are connected to each other via the intermolecular hydrogen bond N1—H1···O5.
In the anion, the bond lengths are P1—O3 1.571 (2), P1—O4 1.550 (2), P1—O5 1.508 (2) and P1—O6 1.498 (2) Å. These are in excellent agreement with the values found in the Cambridge Structural Database (Version of November, 2006; 313 hits; Allen, 2002): P—OH 1.550, P═O 1.504 and P—O- 1.504 Å. The coordination geometry around the phosphorus atom is slightly distorted tetrahedral. The sum of the angles around the atoms N1 and N2 are 359.5° and 358°, respectively. These results show that the nitrogen atoms deviate slightly from planarity (i.e. from 360.0°).
The packing diagram of the title compound (Fig. 2) shows the four cations and anions in the unit cell. Each H2PO4- anion is connected to other anions by intermolecular O3—H3B···O5 and O4—H4B···O6 hydrogen bonds, whereas the 4-pyridinium carboxylic acid amide cation is linked to another cation by the intermolecular N2—H2B···O2 hydrogen bond. All these hydrogen bonds, together with weak intermolecular C3—H3A···O2 and C4—-H4A···O6 hydrogen bonds produce a three dimensional polymeric chain in the crystal structure (Table 1).
For related literature, see: Allen (2002); Chieh & Palenik (1971); Chippindale (2006); Gholivand & Pourayoubi (2004); Gholivand et al. (2005); Kortz (2000); Oh et al. (2006); Okabe et al. (1993); Pope et al. (2005); Steiner (2002); Szemes et al. (1996).
Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
C6H7N2O+·H2PO4− | F(000) = 456 |
Mr = 220.12 | Dx = 1.601 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
a = 4.7748 (7) Å | Cell parameters from 2500 reflections |
b = 23.629 (7) Å | θ = 1.8–27.9° |
c = 8.340 (3) Å | µ = 0.30 mm−1 |
β = 103.94 (3)° | T = 293 K |
V = 913.2 (5) Å3 | Block, colourless |
Z = 4 | 0.35 × 0.25 × 0.06 mm |
STOE IPDS II diffractometer | 1820 reflections with I > 2σ(I) |
rotation method scans | Rint = 0.023 |
Absorption correction: numerical (shape of crystal determined optically) | θmax = 27.9°, θmin = 1.7° |
Tmin = 0.910, Tmax = 0.980 | h = −5→6 |
4586 measured reflections | k = −30→30 |
1858 independent reflections | l = −10→10 |
Refinement on F2 | All H-atom parameters refined |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0273P)2 + 0.979P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.024 | (Δ/σ)max = 0.004 |
wR(F2) = 0.086 | Δρmax = 0.19 e Å−3 |
S = 1.27 | Δρmin = −0.26 e Å−3 |
1858 reflections | Absolute structure: Flack (1983), 3363 Friedel pairs |
163 parameters | Absolute structure parameter: 0.14 (11) |
2 restraints |
C6H7N2O+·H2PO4− | V = 913.2 (5) Å3 |
Mr = 220.12 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 4.7748 (7) Å | µ = 0.30 mm−1 |
b = 23.629 (7) Å | T = 293 K |
c = 8.340 (3) Å | 0.35 × 0.25 × 0.06 mm |
β = 103.94 (3)° |
STOE IPDS II diffractometer | 1858 independent reflections |
Absorption correction: numerical (shape of crystal determined optically) | 1820 reflections with I > 2σ(I) |
Tmin = 0.910, Tmax = 0.980 | Rint = 0.023 |
4586 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | All H-atom parameters refined |
wR(F2) = 0.086 | Δρmax = 0.19 e Å−3 |
S = 1.27 | Δρmin = −0.26 e Å−3 |
1858 reflections | Absolute structure: Flack (1983), 3363 Friedel pairs |
163 parameters | Absolute structure parameter: 0.14 (11) |
2 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4437 (6) | 0.24832 (11) | −0.4892 (4) | 0.0339 (6) | |
C2 | 0.3191 (6) | 0.19021 (10) | −0.4761 (3) | 0.0278 (5) | |
C3 | 0.1908 (7) | 0.17827 (11) | −0.3488 (4) | 0.0345 (6) | |
H3A | 0.177 (7) | 0.2049 (13) | −0.269 (4) | 0.027 (7)* | |
C4 | 0.0827 (7) | 0.12493 (12) | −0.3384 (4) | 0.0377 (6) | |
H4A | 0.001 (8) | 0.1135 (15) | −0.261 (5) | 0.041 (9)* | |
C5 | 0.2227 (8) | 0.09561 (12) | −0.5738 (4) | 0.0423 (8) | |
H5 | 0.234 (9) | 0.0650 (15) | −0.645 (5) | 0.043 (9)* | |
C6 | 0.3409 (8) | 0.14827 (13) | −0.5879 (4) | 0.0393 (6) | |
H6 | 0.442 (10) | 0.1551 (17) | −0.669 (5) | 0.061 (12)* | |
N1 | 0.0962 (6) | 0.08611 (10) | −0.4504 (3) | 0.0359 (5) | |
H1 | −0.003 (9) | 0.0540 (19) | −0.437 (5) | 0.062 (12)* | |
N2 | 0.2814 (6) | 0.29148 (11) | −0.4720 (5) | 0.0490 (8) | |
H2A | 0.339 (9) | 0.3298 (16) | −0.484 (5) | 0.046 (9)* | |
H2B | 0.099 (11) | 0.2873 (19) | −0.475 (6) | 0.067 (14)* | |
O2 | 0.6852 (6) | 0.25244 (9) | −0.5158 (4) | 0.0563 (8) | |
O3 | −0.4720 (5) | −0.03277 (10) | −0.6565 (3) | 0.0440 (5) | |
H3B | −0.377 (10) | −0.0199 (18) | −0.716 (5) | 0.062 (13)* | |
O4 | −0.5034 (5) | −0.08807 (9) | −0.4108 (3) | 0.0374 (5) | |
H4B | −0.663 (11) | −0.0822 (18) | −0.444 (6) | 0.059 (14)* | |
O5 | −0.1924 (5) | −0.00130 (8) | −0.3746 (3) | 0.0404 (5) | |
O6 | −0.0475 (5) | −0.09051 (8) | −0.4977 (3) | 0.0341 (4) | |
P1 | −0.29004 (11) | −0.05229 (2) | −0.48238 (8) | 0.02305 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0295 (14) | 0.0300 (13) | 0.0434 (14) | −0.0039 (10) | 0.0113 (11) | 0.0071 (11) |
C2 | 0.0255 (12) | 0.0250 (11) | 0.0342 (12) | −0.0009 (9) | 0.0098 (11) | 0.0037 (9) |
C3 | 0.0448 (17) | 0.0278 (12) | 0.0346 (14) | −0.0012 (11) | 0.0169 (13) | −0.0006 (10) |
C4 | 0.0470 (18) | 0.0334 (14) | 0.0364 (14) | −0.0024 (12) | 0.0170 (14) | 0.0087 (11) |
C5 | 0.060 (2) | 0.0305 (14) | 0.0369 (16) | −0.0009 (13) | 0.0126 (16) | −0.0068 (11) |
C6 | 0.0517 (19) | 0.0347 (14) | 0.0368 (15) | 0.0016 (13) | 0.0213 (14) | 0.0007 (11) |
N1 | 0.0416 (14) | 0.0236 (10) | 0.0401 (13) | −0.0055 (9) | 0.0050 (11) | 0.0049 (9) |
N2 | 0.0386 (17) | 0.0236 (10) | 0.090 (2) | −0.0046 (8) | 0.0256 (18) | 0.0017 (12) |
O2 | 0.0342 (12) | 0.0442 (11) | 0.097 (2) | −0.0012 (10) | 0.0272 (15) | 0.0221 (12) |
O3 | 0.0345 (12) | 0.0595 (13) | 0.0350 (11) | −0.0087 (10) | 0.0028 (9) | 0.0145 (10) |
O4 | 0.0218 (11) | 0.0431 (11) | 0.0477 (13) | −0.0055 (8) | 0.0092 (9) | 0.0164 (9) |
O5 | 0.0518 (13) | 0.0302 (9) | 0.0441 (11) | −0.0118 (9) | 0.0213 (10) | −0.0122 (8) |
O6 | 0.0266 (10) | 0.0308 (9) | 0.0465 (12) | −0.0011 (7) | 0.0116 (9) | −0.0015 (8) |
P1 | 0.0231 (3) | 0.0211 (2) | 0.0264 (3) | −0.0036 (2) | 0.0086 (2) | 0.0005 (2) |
C1—O2 | 1.230 (4) | C5—H5 | 0.95 (4) |
C1—N2 | 1.310 (4) | C6—H6 | 0.93 (4) |
C1—C2 | 1.511 (3) | N1—H1 | 0.92 (4) |
C2—C3 | 1.376 (3) | N2—H2A | 0.96 (4) |
C2—C6 | 1.382 (4) | N2—H2B | 0.87 (5) |
C3—C4 | 1.373 (4) | O3—P1 | 1.571 (2) |
C3—H3A | 0.93 (3) | O3—H3B | 0.81 (4) |
C4—N1 | 1.322 (4) | O4—P1 | 1.550 (2) |
C4—H4A | 0.88 (4) | O4—H4B | 0.76 (5) |
C5—N1 | 1.332 (4) | O5—P1 | 1.5084 (19) |
C5—C6 | 1.383 (4) | O6—P1 | 1.498 (2) |
O2—C1—N2 | 124.3 (3) | C2—C6—H6 | 120 (3) |
O2—C1—C2 | 119.2 (2) | C5—C6—H6 | 121 (3) |
N2—C1—C2 | 116.5 (2) | C4—N1—C5 | 122.5 (3) |
C3—C2—C6 | 119.6 (2) | C4—N1—H1 | 112 (3) |
C3—C2—C1 | 119.9 (2) | C5—N1—H1 | 125 (3) |
C6—C2—C1 | 120.5 (2) | C1—N2—H2A | 122 (2) |
C4—C3—C2 | 118.7 (2) | C1—N2—H2B | 121 (3) |
C4—C3—H3A | 119.1 (18) | H2A—N2—H2B | 115 (4) |
C2—C3—H3A | 122.1 (18) | P1—O3—H3B | 114 (3) |
N1—C4—C3 | 120.7 (3) | P1—O4—H4B | 117 (3) |
N1—C4—H4A | 114 (2) | O6—P1—O5 | 113.46 (13) |
C3—C4—H4A | 125 (2) | O6—P1—O4 | 107.30 (11) |
N1—C5—C6 | 119.2 (3) | O5—P1—O4 | 110.09 (13) |
N1—C5—H5 | 118 (2) | O6—P1—O3 | 111.38 (13) |
C6—C5—H5 | 123 (2) | O5—P1—O3 | 109.83 (14) |
C2—C6—C5 | 119.3 (3) | O4—P1—O3 | 104.35 (13) |
O2—C1—C2—C3 | 133.7 (3) | C2—C3—C4—N1 | −1.4 (5) |
N2—C1—C2—C3 | −46.7 (4) | C3—C2—C6—C5 | 2.7 (5) |
O2—C1—C2—C6 | −44.2 (4) | C1—C2—C6—C5 | −179.4 (3) |
N2—C1—C2—C6 | 135.4 (3) | N1—C5—C6—C2 | −1.5 (5) |
C6—C2—C3—C4 | −1.2 (4) | C3—C4—N1—C5 | 2.6 (5) |
C1—C2—C3—C4 | −179.2 (3) | C6—C5—N1—C4 | −1.1 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O5i | 0.92 (4) | 1.74 (2) | 2.643 (6) | 169 (2) |
N2—H2A···O6ii | 0.96 (4) | 1.97 (2) | 2.928 (8) | 177 (2) |
N2—H2B···O2iii | 0.87 (5) | 2.09 (2) | 2.936 (7) | 162 (2) |
O3—H3B···O5iv | 0.81 (4) | 1.83 (1) | 2.628 (7) | 171 (2) |
O4—H4B···O6iii | 0.76 (5) | 1.79 (1) | 2.524 (8) | 162 (2) |
C3—H3A···O2v | 0.93 (3) | 2.33 (1) | 2.229 (7) | 162 (2) |
C4—H4A···O6iii | 0.88 (4) | 2.33 (1) | 2.158 (6) | 159 (2) |
Symmetry codes: (i) x−1, −y, z−1/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) x−1, y, z; (iv) x, −y, z+1/2; (v) x−1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C6H7N2O+·H2PO4− |
Mr | 220.12 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 293 |
a, b, c (Å) | 4.7748 (7), 23.629 (7), 8.340 (3) |
β (°) | 103.94 (3) |
V (Å3) | 913.2 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.30 |
Crystal size (mm) | 0.35 × 0.25 × 0.06 |
Data collection | |
Diffractometer | STOE IPDS II |
Absorption correction | Numerical (shape of crystal determined optically) |
Tmin, Tmax | 0.910, 0.980 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4586, 1858, 1820 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.086, 1.27 |
No. of reflections | 1858 |
No. of parameters | 163 |
No. of restraints | 2 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.19, −0.26 |
Absolute structure | Flack (1983), 3363 Friedel pairs |
Absolute structure parameter | 0.14 (11) |
Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O5i | 0.92 (4) | 1.74 (2) | 2.643 (6) | 169 (2) |
N2—H2A···O6ii | 0.96 (4) | 1.97 (2) | 2.928 (8) | 177 (2) |
N2—H2B···O2iii | 0.87 (5) | 2.09 (2) | 2.936 (7) | 162 (2) |
O3—H3B···O5iv | 0.81 (4) | 1.83 (1) | 2.628 (7) | 171 (2) |
O4—H4B···O6iii | 0.76 (5) | 1.79 (1) | 2.524 (8) | 162 (2) |
C3—H3A···O2v | 0.93 (3) | 2.33 (1) | 2.229 (7) | 162 (2) |
C4—H4A···O6iii | 0.88 (4) | 2.33 (1) | 2.158 (6) | 159 (2) |
Symmetry codes: (i) x−1, −y, z−1/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) x−1, y, z; (iv) x, −y, z+1/2; (v) x−1/2, −y+1/2, z+1/2. |
Research on phosphate compounds has attracted attention due to their applications as O-donor ligands in coordination chemistry (Szemes et al., 1996; Kortz et al., 2000; Pope et al., 2005; Chippindale, 2006; Oh et al., 2006). The crystal structures of two phosphate compounds (Chieh & Palenik, 1971; Okabe et al., 1993) a dichlorophosphate (Gholivand & Pourayoubi, 2004) and a dioxophosphate (Gholivand et al., 2005) have been reported. Recently, considerable attention has been paid to the subtle manipulation of hydrogen bonding in solid state structures (Steiner, 2002).
We have synthesized the title compound and report here its crystal structure. An ORTEP view of the molecular structure is presented in Fig. 1. The cation and anion are connected to each other via the intermolecular hydrogen bond N1—H1···O5.
In the anion, the bond lengths are P1—O3 1.571 (2), P1—O4 1.550 (2), P1—O5 1.508 (2) and P1—O6 1.498 (2) Å. These are in excellent agreement with the values found in the Cambridge Structural Database (Version of November, 2006; 313 hits; Allen, 2002): P—OH 1.550, P═O 1.504 and P—O- 1.504 Å. The coordination geometry around the phosphorus atom is slightly distorted tetrahedral. The sum of the angles around the atoms N1 and N2 are 359.5° and 358°, respectively. These results show that the nitrogen atoms deviate slightly from planarity (i.e. from 360.0°).
The packing diagram of the title compound (Fig. 2) shows the four cations and anions in the unit cell. Each H2PO4- anion is connected to other anions by intermolecular O3—H3B···O5 and O4—H4B···O6 hydrogen bonds, whereas the 4-pyridinium carboxylic acid amide cation is linked to another cation by the intermolecular N2—H2B···O2 hydrogen bond. All these hydrogen bonds, together with weak intermolecular C3—H3A···O2 and C4—-H4A···O6 hydrogen bonds produce a three dimensional polymeric chain in the crystal structure (Table 1).