Download citation
Download citation
link to html
4′-Substituted derivatives of 2,2′:6′,2′′-terpyridine with N-containing hetero­aromatic substituents, such as pyridyl groups, might be able to coordinate metal centres through the extra N-donor atom, in addition to the chelating terpyridine N atoms. The incorporation of these peripheral N-donor sites would also allow for the diversification of the types of noncovalent inter­actions present, such as hydrogen bonding and π–π stacking. The title compound, C24H16N4, consists of a 2,2′:6′,2′′-terpyridine nucleus (tpy), with a pendant iso­quinoline group (isq) bound at the central pyridine (py) ring. The tpy nucleus deviates slightly from planarity, with inter­planar angles between the lateral and central py rings in the range 2.24 (7)–7.90 (7)°, while the isq group is rotated significantly [by 46.57 (6)°] out of this planar scheme, associated with a short Htpy...Hisq contact of 2.32 Å. There are no strong noncovalent inter­actions in the structure, the main ones being of the π–π and C—H...π types, giving rise to columnar arrays along [001], further linked by C—H...N hydrogen bonds into a three-dimensional supra­molecular structure. An Atoms In Mol­ecules (AIM) analysis of the noncovalent inter­actions provided illuminating results, and while confirming the bonding character for all those inter­actions unquestionable from a geometrical point of view, it also provided answers for some cases where geometric parameters are not informative, in particular, the short Htpy...Hisq contact of 2.32 Å to which AIM ascribed an attractive character.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229616016533/wq3124sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616016533/wq3124Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229616016533/wq3124Isup4.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229616016533/wq3124sup4.pdf
Supplementary material

CCDC reference: 1510131

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

4'-(Isoquinolin-4-yl)-2,2':6',2''-terpyridine top
Crystal data top
C24H16N4F(000) = 752
Mr = 360.41Dx = 1.348 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.3897 (3) ÅCell parameters from 6249 reflections
b = 8.7940 (3) Åθ = 3.9–27.7°
c = 17.1791 (6) ŵ = 0.08 mm1
β = 108.369 (3)°T = 170 K
V = 1776.38 (10) Å3Prism, colourless
Z = 40.34 × 0.22 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur CCD (Eos, Gemini)
diffractometer
3138 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 28.9°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1616
Tmin = 0.97, Tmax = 1.00k = 911
18351 measured reflectionsl = 2223
4225 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.4471P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.26 e Å3
4225 reflectionsΔρmin = 0.20 e Å3
254 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0124 (13)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.73444 (9)0.54800 (14)0.11880 (7)0.0274 (3)
N20.51893 (9)0.27644 (13)0.01691 (7)0.0237 (3)
N30.27126 (10)0.03477 (14)0.03023 (7)0.0296 (3)
N40.36475 (11)0.24792 (17)0.34177 (8)0.0412 (4)
C10.82661 (12)0.61388 (17)0.10901 (9)0.0308 (3)
H10.86320.68880.14620.037*
C20.87058 (12)0.57697 (17)0.04677 (9)0.0319 (3)
H20.93510.62570.04240.038*
C30.81662 (12)0.46642 (17)0.00855 (9)0.0324 (3)
H30.84420.43890.05100.039*
C40.72084 (12)0.39693 (16)0.00006 (9)0.0273 (3)
H40.68300.32200.03670.033*
C50.68206 (10)0.44116 (15)0.06438 (8)0.0221 (3)
C60.57955 (10)0.36965 (15)0.07620 (8)0.0224 (3)
C70.55043 (11)0.39990 (15)0.14679 (8)0.0238 (3)
H70.59520.46440.18700.029*
C80.45389 (11)0.33261 (16)0.15643 (8)0.0244 (3)
C90.39205 (11)0.23408 (15)0.09548 (8)0.0247 (3)
H90.32790.18540.10040.030*
C100.42695 (10)0.20867 (15)0.02681 (8)0.0231 (3)
C110.36231 (11)0.10557 (15)0.04007 (8)0.0241 (3)
C120.39502 (12)0.08606 (17)0.10971 (9)0.0305 (3)
H120.45820.13700.11480.037*
C130.33292 (14)0.00957 (18)0.17121 (9)0.0363 (4)
H130.35350.02400.21830.044*
C140.23981 (13)0.08322 (18)0.16149 (9)0.0344 (4)
H140.19650.14890.20160.041*
C150.21250 (12)0.05715 (17)0.09083 (10)0.0338 (3)
H150.14920.10660.08490.041*
C160.41990 (11)0.36066 (16)0.23095 (8)0.0250 (3)
C170.39188 (12)0.23932 (18)0.27095 (9)0.0326 (3)
H170.39140.14350.24790.039*
C180.36569 (13)0.3839 (2)0.37317 (10)0.0412 (4)
H180.34840.39170.42190.049*
C190.39101 (11)0.51904 (19)0.33848 (9)0.0344 (4)
C200.39052 (13)0.6628 (2)0.37540 (11)0.0473 (5)
H200.37460.66930.42470.057*
C210.41314 (15)0.7914 (2)0.33940 (13)0.0550 (5)
H210.41320.88540.36430.066*
C220.43630 (14)0.7822 (2)0.26487 (12)0.0469 (5)
H220.45060.87090.24030.056*
C230.43836 (12)0.64552 (17)0.22752 (10)0.0335 (3)
H230.45340.64230.17780.040*
C240.41772 (11)0.50872 (17)0.26402 (9)0.0277 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0266 (6)0.0296 (7)0.0254 (6)0.0031 (5)0.0073 (5)0.0006 (5)
N20.0244 (5)0.0236 (6)0.0231 (6)0.0003 (4)0.0077 (5)0.0011 (5)
N30.0265 (6)0.0282 (7)0.0328 (7)0.0027 (5)0.0074 (5)0.0008 (5)
N40.0406 (7)0.0548 (9)0.0337 (8)0.0024 (6)0.0197 (6)0.0091 (7)
C10.0277 (7)0.0324 (8)0.0300 (8)0.0057 (6)0.0056 (6)0.0008 (6)
C20.0240 (7)0.0357 (8)0.0372 (8)0.0016 (6)0.0114 (6)0.0093 (7)
C30.0331 (7)0.0365 (9)0.0324 (8)0.0029 (6)0.0171 (6)0.0050 (7)
C40.0296 (7)0.0280 (7)0.0256 (7)0.0003 (6)0.0108 (6)0.0004 (6)
C50.0225 (6)0.0221 (7)0.0211 (7)0.0014 (5)0.0059 (5)0.0033 (5)
C60.0224 (6)0.0215 (7)0.0230 (7)0.0025 (5)0.0065 (5)0.0018 (5)
C70.0244 (6)0.0236 (7)0.0237 (7)0.0001 (5)0.0079 (5)0.0030 (5)
C80.0240 (6)0.0248 (7)0.0252 (7)0.0038 (5)0.0089 (5)0.0012 (6)
C90.0229 (6)0.0254 (7)0.0274 (7)0.0005 (5)0.0104 (5)0.0015 (6)
C100.0229 (6)0.0218 (7)0.0237 (7)0.0024 (5)0.0059 (5)0.0016 (5)
C110.0247 (6)0.0203 (7)0.0251 (7)0.0023 (5)0.0050 (5)0.0026 (5)
C120.0339 (7)0.0312 (8)0.0252 (7)0.0035 (6)0.0078 (6)0.0014 (6)
C130.0456 (9)0.0366 (9)0.0241 (8)0.0000 (7)0.0072 (6)0.0034 (7)
C140.0361 (8)0.0286 (8)0.0286 (8)0.0002 (6)0.0039 (6)0.0021 (6)
C150.0274 (7)0.0291 (8)0.0390 (9)0.0022 (6)0.0020 (6)0.0003 (7)
C160.0209 (6)0.0311 (8)0.0235 (7)0.0017 (5)0.0076 (5)0.0017 (6)
C170.0328 (7)0.0360 (9)0.0322 (8)0.0024 (6)0.0149 (6)0.0045 (7)
C180.0349 (8)0.0669 (12)0.0260 (8)0.0018 (8)0.0158 (7)0.0007 (8)
C190.0220 (7)0.0529 (10)0.0298 (8)0.0003 (6)0.0105 (6)0.0108 (7)
C200.0297 (8)0.0707 (13)0.0457 (10)0.0051 (8)0.0182 (7)0.0284 (9)
C210.0431 (9)0.0526 (12)0.0773 (14)0.0085 (8)0.0302 (10)0.0377 (11)
C220.0444 (9)0.0365 (9)0.0677 (12)0.0018 (7)0.0287 (9)0.0128 (9)
C230.0305 (7)0.0330 (8)0.0406 (9)0.0007 (6)0.0164 (7)0.0066 (7)
C240.0193 (6)0.0367 (8)0.0280 (7)0.0011 (6)0.0086 (5)0.0049 (6)
Geometric parameters (Å, º) top
N1—C11.3376 (17)C10—C111.4845 (19)
N1—C51.3400 (17)C11—C121.3894 (19)
N2—C61.3384 (17)C12—C131.380 (2)
N2—C101.3435 (16)C12—H120.9300
N3—C151.3377 (19)C13—C141.378 (2)
N3—C111.3450 (17)C13—H130.9300
N4—C181.310 (2)C14—C151.378 (2)
N4—C171.3626 (18)C14—H140.9300
C1—C21.383 (2)C15—H150.9300
C1—H10.9300C16—C171.372 (2)
C2—C31.377 (2)C16—C241.4243 (19)
C2—H20.9300C17—H170.9300
C3—C41.3829 (19)C18—C191.409 (2)
C3—H30.9300C18—H180.9300
C4—C51.3938 (18)C19—C201.415 (2)
C4—H40.9300C19—C241.4216 (19)
C5—C61.4873 (17)C20—C211.360 (3)
C6—C71.3955 (18)C20—H200.9300
C7—C81.3903 (18)C21—C221.400 (3)
C7—H70.9300C21—H210.9300
C8—C91.3887 (19)C22—C231.366 (2)
C8—C161.4888 (18)C22—H220.9300
C9—C101.3965 (18)C23—C241.417 (2)
C9—H90.9300C23—H230.9300
C1—N1—C5117.44 (12)C13—C12—H12120.3
C6—N2—C10118.06 (11)C11—C12—H12120.3
C15—N3—C11117.01 (12)C14—C13—C12118.68 (14)
C18—N4—C17116.46 (14)C14—C13—H13120.7
N1—C1—C2123.75 (14)C12—C13—H13120.7
N1—C1—H1118.1C15—C14—C13118.40 (14)
C2—C1—H1118.1C15—C14—H14120.8
C3—C2—C1118.40 (13)C13—C14—H14120.8
C3—C2—H2120.8N3—C15—C14124.16 (14)
C1—C2—H2120.8N3—C15—H15117.9
C2—C3—C4119.05 (13)C14—C15—H15117.9
C2—C3—H3120.5C17—C16—C24118.15 (13)
C4—C3—H3120.5C17—C16—C8119.12 (13)
C3—C4—C5118.85 (13)C24—C16—C8122.72 (12)
C3—C4—H4120.6N4—C17—C16125.22 (15)
C5—C4—H4120.6N4—C17—H17117.4
N1—C5—C4122.51 (12)C16—C17—H17117.4
N1—C5—C6116.60 (11)N4—C18—C19124.76 (14)
C4—C5—C6120.89 (12)N4—C18—H18117.6
N2—C6—C7122.77 (12)C19—C18—H18117.6
N2—C6—C5116.97 (11)C18—C19—C20122.09 (15)
C7—C6—C5120.25 (12)C18—C19—C24118.22 (14)
C8—C7—C6119.35 (12)C20—C19—C24119.70 (15)
C8—C7—H7120.3C21—C20—C19120.57 (15)
C6—C7—H7120.3C21—C20—H20119.7
C9—C8—C7117.82 (12)C19—C20—H20119.7
C9—C8—C16120.88 (12)C20—C21—C22119.91 (16)
C7—C8—C16121.26 (12)C20—C21—H21120.0
C8—C9—C10119.51 (12)C22—C21—H21120.0
C8—C9—H9120.2C23—C22—C21121.34 (17)
C10—C9—H9120.2C23—C22—H22119.3
N2—C10—C9122.47 (12)C21—C22—H22119.3
N2—C10—C11116.44 (11)C22—C23—C24120.42 (15)
C9—C10—C11121.09 (12)C22—C23—H23119.8
N3—C11—C12122.34 (13)C24—C23—H23119.8
N3—C11—C10117.05 (12)C23—C24—C19118.02 (13)
C12—C11—C10120.61 (12)C23—C24—C16124.82 (13)
C13—C12—C11119.41 (14)C19—C24—C16117.15 (13)
Relevant dihedral angles between aromatic rings (°) top
<Cg2–Cg1>7.90 (7)
<Cg2–Cg3>2.24 (7)
<Cg4–Cg5>1.91 (8)
<Cg2–isq>46.57 (6)
Ring codes are as in Fig. 1.
Hydrogen-bond geometry top
Interaction codeD—H···AD—H (Å)H···A (Å)D···A (Å)D—H···A (°)100ρ(r) (a.u)100\nabla2ρ(r) (a.u)
#1C3—H3···N4i0.932.543.389 (2)1521.260.36
#1*C13—H13···N1ii0.932.733.441 (2)1340.800.24
#2C15—H15···Cg5ii0.932.973.665 (2)1320.480.13
Symmetry codes: (i) x+1/2, -y+1/2, z-1/2; (ii) x-1/2, -y+1/2, z-1/2.
ππ contacts top
Interaction codeCg···Cgccd (Å)da (°)sa (°)ipd (Å)100ρ(r) (a.u)100\nabla2ρ(r)(a.u)
#3Cg2···Cg1iii3.7750 (8)7.90 (7)22.2 (18)3.48 (5)0.520.15
#4Cg3···Cg2iii3.7700 (8)2.24 (7)26.1 (11)3.38 (3)0.550.16
#5Cg4···Cg5iv4.1539 (9)11.43 (8)29 (5)3.6 (2)0.300.10
Symmetry codes: (iii) -x+1, -y+1, -z; (iv) -x+1/2, y-1/2, -z+1/2.

Ring codes are as in Fig. 1. Notes : ccd is the center-to-center distance; da is the dihedral angle between rings; sa is the slippage angle; ipd is the interplanar distance, or (mean) distance from one plane to the neighbouring centroid. For details, see Janiak (2000).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds