Download citation
Download citation
link to html
In the mol­ecule of the title compound, [ZnBr2(C10H8N2)(C2H6OS)], the ZnII atom is five-coordinated in a distorted trigonal–bipyramidal configuration by two N atoms from one 2,2′-bipyridine, one O atom from one dimethyl­sulfoxide molecule and two Br atoms. Inter­molecular π–π stacking between parallel pyridine rings [face-to-face distance 3.32 (4) Å] and C—H...Br and C—H...O hydrogen-bonding interactions are present in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810017551/xu2761sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810017551/xu2761Isup2.hkl
Contains datablock I

CCDC reference: 781224

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.058
  • wR factor = 0.140
  • Data-to-parameter ratio = 24.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for S1 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang .. 7 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 3 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 35
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

There are several ZnII complexes containing 2,2'-bipyridine and 2,2'-bipyridine derivatives such as, [ZnCl2(bipy)], (II), (Khan & Tuck, 1984), [ZnCl2(5,5'-dmbpy)], (III), (Khalighi et al., 2008), [ZnCl2(6-mbpy)], (IV), (Ahmadi, et al., 2008), [ZnCl2(6,6'-dmbpy)], (V), (Alizadeh, Kalateh, Ebadi, et al., 2009), [ZnBr2(6,6'-dmbpy)], (VI), (Alizadeh, Khoshtarkib et al., 2009), [ZnI2(6,6'-dmbpy)], (VII), (Alizadeh, Kalateh, Khoshtarkib et al., 2009), [ZnCl2(bipy)(DMSO)], (VIII), (Marjani et al., 2007) and [ZnBr2(4,4'-(dtbpy)].(Et2O), (IX), (Blake et al., 2007) [where bipy is 2,2'-bipyridine, 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine, 6,6'-dmbpy is 6,6'-dimethyl-2,2'-bipyridine, DMSO is dimethyl sulfoxide and dtbpy is 4,4'-di-tert-butyl-2,2'-bipyridine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound (I).

In the molecule of the title compound, (I), (Fig. 1), the ZnII atom is five-coordinate in a distorted trigonal-bipyramidal configurations by two N atoms from one 2,2'-bipyridine, one atom from one dimethyl sulfoxide and two Br atoms. The Zn—N and Zn—O bond lengths and angles (Table 1) are within normal range (VIII) and Zn—Br bond lengths and angles are within normal range (VI).

The π-π contacts between the pyridine rings, Cg1···Cg3i, Cg2···Cg2ii, Cg2···Cg3i, Cg3···Cg1i and Cg3···Cg2i [symmetry cods: (i) 1-X,1-Y,1-Z, (ii) 1-X,-Y,1-Z, where Cg1, Cg2 and Cg3 are centroids of the rings (Zn1/N1/C5—C6/N2), (N1/C1—C5) and (N2/C6—C10), respectively] with centroid-centroid distance of 3.475 (3), 3.661 (3), 3.721 (3), 3.476 (3) and 3.721 (3) Å, respectively, and intramolecular C—H···O and C—H···Br hydrogen bonding it seems effective in the stabilization of the crystal structure (Fig. 2).

Related literature top

For related structures, see: Ahmadi et al. (2008); Alizadeh, Kalateh, Ebadi et al. (2009); Alizadeh, Kalateh, Khoshtarkib et al. (2009); Alizadeh, Khoshtarkib et al. (2009); Blake et al. (2007); Khan & Tuck (1984); Marjani et al. (2007); Khalighi et al. (2008).

Experimental top

For the preparation of the title compound, (I), a solution of 2,2'-bipyridine (0.17 g, 1.10 mmol) in methanol (10 ml) was added to a solution of ZnBr2 (0.25 g, 1.10 mmol) in methanol (5 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion to a colorless solution in DMSO. Suitable crystals were isolated after one week (yield; 0.36 g, 71.2%).

Refinement top

H atoms were positioned geometrically with C—H = 0.93 Å for aromatic and 0.96 Å for methyl, and constrained to ride on their parent atoms with Uiso(H)=1.2Ueq(C).

Structure description top

There are several ZnII complexes containing 2,2'-bipyridine and 2,2'-bipyridine derivatives such as, [ZnCl2(bipy)], (II), (Khan & Tuck, 1984), [ZnCl2(5,5'-dmbpy)], (III), (Khalighi et al., 2008), [ZnCl2(6-mbpy)], (IV), (Ahmadi, et al., 2008), [ZnCl2(6,6'-dmbpy)], (V), (Alizadeh, Kalateh, Ebadi, et al., 2009), [ZnBr2(6,6'-dmbpy)], (VI), (Alizadeh, Khoshtarkib et al., 2009), [ZnI2(6,6'-dmbpy)], (VII), (Alizadeh, Kalateh, Khoshtarkib et al., 2009), [ZnCl2(bipy)(DMSO)], (VIII), (Marjani et al., 2007) and [ZnBr2(4,4'-(dtbpy)].(Et2O), (IX), (Blake et al., 2007) [where bipy is 2,2'-bipyridine, 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine, 6,6'-dmbpy is 6,6'-dimethyl-2,2'-bipyridine, DMSO is dimethyl sulfoxide and dtbpy is 4,4'-di-tert-butyl-2,2'-bipyridine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound (I).

In the molecule of the title compound, (I), (Fig. 1), the ZnII atom is five-coordinate in a distorted trigonal-bipyramidal configurations by two N atoms from one 2,2'-bipyridine, one atom from one dimethyl sulfoxide and two Br atoms. The Zn—N and Zn—O bond lengths and angles (Table 1) are within normal range (VIII) and Zn—Br bond lengths and angles are within normal range (VI).

The π-π contacts between the pyridine rings, Cg1···Cg3i, Cg2···Cg2ii, Cg2···Cg3i, Cg3···Cg1i and Cg3···Cg2i [symmetry cods: (i) 1-X,1-Y,1-Z, (ii) 1-X,-Y,1-Z, where Cg1, Cg2 and Cg3 are centroids of the rings (Zn1/N1/C5—C6/N2), (N1/C1—C5) and (N2/C6—C10), respectively] with centroid-centroid distance of 3.475 (3), 3.661 (3), 3.721 (3), 3.476 (3) and 3.721 (3) Å, respectively, and intramolecular C—H···O and C—H···Br hydrogen bonding it seems effective in the stabilization of the crystal structure (Fig. 2).

For related structures, see: Ahmadi et al. (2008); Alizadeh, Kalateh, Ebadi et al. (2009); Alizadeh, Kalateh, Khoshtarkib et al. (2009); Alizadeh, Khoshtarkib et al. (2009); Blake et al. (2007); Khan & Tuck (1984); Marjani et al. (2007); Khalighi et al. (2008).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram for (I).
(2,2'-Bipyridine-κ2N,N')dibromido(dimethyl sulfoxide-κO)zinc(II) top
Crystal data top
[ZnBr2(C10H8N2)(C2H6OS)]F(000) = 896
Mr = 459.51Dx = 1.938 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 653 reflections
a = 9.4802 (10) Åθ = 2.1–29.2°
b = 8.3449 (7) ŵ = 6.76 mm1
c = 19.989 (2) ÅT = 298 K
β = 95.185 (8)°Block, colorless
V = 1574.9 (3) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4245 independent reflections
Radiation source: fine-focus sealed tube3229 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
φ and ω scansθmax = 29.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.148, Tmax = 0.260k = 1111
12674 measured reflectionsl = 2725
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0602P)2 + 1.8278P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.005
4245 reflectionsΔρmax = 1.08 e Å3
175 parametersΔρmin = 1.46 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0087 (7)
Crystal data top
[ZnBr2(C10H8N2)(C2H6OS)]V = 1574.9 (3) Å3
Mr = 459.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4802 (10) ŵ = 6.76 mm1
b = 8.3449 (7) ÅT = 298 K
c = 19.989 (2) Å0.30 × 0.25 × 0.20 mm
β = 95.185 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4245 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3229 reflections with I > 2σ(I)
Tmin = 0.148, Tmax = 0.260Rint = 0.078
12674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.13Δρmax = 1.08 e Å3
4245 reflectionsΔρmin = 1.46 e Å3
175 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5556 (5)0.1151 (7)0.3831 (3)0.0377 (10)
H10.52860.09800.33780.045*
C20.6783 (5)0.0424 (7)0.4117 (3)0.0425 (12)
H20.73330.02080.38590.051*
C30.7166 (6)0.0660 (7)0.4788 (3)0.0462 (13)
H30.79820.01850.49920.055*
C40.6335 (5)0.1603 (6)0.5155 (3)0.0383 (10)
H40.65810.17720.56110.046*
C50.5129 (5)0.2297 (6)0.4840 (2)0.0295 (9)
C60.4154 (5)0.3323 (6)0.5190 (2)0.0311 (9)
C70.4311 (6)0.3600 (7)0.5883 (2)0.0406 (11)
H70.50560.31370.61500.049*
C80.3346 (6)0.4570 (7)0.6166 (3)0.0432 (12)
H80.34330.47710.66250.052*
C90.2254 (5)0.5234 (7)0.5759 (3)0.0422 (12)
H90.15890.58890.59390.051*
C100.2162 (5)0.4915 (7)0.5085 (3)0.0395 (11)
H100.14210.53660.48120.047*
C110.2234 (7)0.7783 (10)0.2635 (4)0.0621 (18)
H11A0.31670.74120.25640.075*
H11B0.23020.86830.29350.075*
H11C0.17500.80990.22130.075*
C120.0109 (6)0.7414 (10)0.3256 (4)0.0650 (19)
H12A0.02810.82810.35290.078*
H12B0.06980.67650.35140.078*
H12C0.06650.78380.28720.078*
N10.4750 (4)0.2084 (5)0.41813 (19)0.0324 (8)
N20.3090 (4)0.3984 (5)0.48005 (19)0.0324 (8)
O10.2163 (4)0.5774 (5)0.36384 (18)0.0440 (9)
Zn10.29167 (5)0.33824 (7)0.37552 (3)0.03244 (16)
Br10.37506 (6)0.34269 (8)0.26199 (3)0.04918 (19)
Br20.07887 (6)0.17861 (8)0.37356 (3)0.05171 (19)
S10.12833 (14)0.62307 (17)0.29876 (7)0.0413 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.040 (2)0.040 (3)0.033 (2)0.006 (2)0.0043 (19)0.001 (2)
C20.042 (3)0.038 (3)0.049 (3)0.009 (2)0.012 (2)0.001 (2)
C30.041 (3)0.044 (3)0.052 (3)0.009 (2)0.002 (2)0.008 (3)
C40.038 (2)0.041 (3)0.035 (2)0.001 (2)0.0051 (18)0.004 (2)
C50.032 (2)0.028 (2)0.028 (2)0.0061 (17)0.0007 (16)0.0022 (17)
C60.0297 (19)0.031 (2)0.032 (2)0.0062 (17)0.0025 (16)0.0013 (19)
C70.043 (3)0.047 (3)0.031 (2)0.006 (2)0.0026 (19)0.001 (2)
C80.052 (3)0.049 (3)0.029 (2)0.008 (2)0.008 (2)0.003 (2)
C90.046 (3)0.040 (3)0.043 (3)0.000 (2)0.018 (2)0.001 (2)
C100.037 (2)0.043 (3)0.039 (2)0.005 (2)0.0079 (19)0.004 (2)
C110.047 (3)0.080 (5)0.060 (4)0.005 (3)0.010 (3)0.026 (4)
C120.040 (3)0.071 (5)0.086 (5)0.006 (3)0.014 (3)0.022 (4)
N10.0333 (18)0.034 (2)0.0299 (18)0.0003 (15)0.0015 (14)0.0026 (16)
N20.0278 (17)0.039 (2)0.0309 (18)0.0022 (15)0.0029 (14)0.0005 (17)
O10.053 (2)0.041 (2)0.0352 (18)0.0093 (16)0.0089 (15)0.0020 (16)
Zn10.0303 (3)0.0378 (3)0.0285 (3)0.0010 (2)0.00125 (19)0.0005 (2)
Br10.0467 (3)0.0704 (4)0.0309 (2)0.0102 (3)0.0059 (2)0.0055 (3)
Br20.0373 (3)0.0562 (4)0.0604 (4)0.0122 (2)0.0025 (2)0.0009 (3)
S10.0409 (6)0.0409 (7)0.0397 (6)0.0015 (5)0.0084 (5)0.0036 (5)
Geometric parameters (Å, º) top
C1—N11.333 (6)C9—H90.9300
C1—C21.388 (7)C10—N21.338 (6)
C1—H10.9300C10—H100.9300
C2—C31.372 (8)C11—S11.761 (7)
C2—H20.9300C11—H11A0.9600
C3—C41.372 (8)C11—H11B0.9600
C3—H30.9300C11—H11C0.9600
C4—C51.382 (6)C12—S11.770 (7)
C4—H40.9300C12—H12A0.9600
C5—N11.345 (6)C12—H12B0.9600
C5—C61.480 (6)C12—H12C0.9600
C6—N21.336 (6)Zn1—N12.157 (4)
C6—C71.401 (6)Zn1—N22.141 (4)
C7—C81.380 (8)S1—O11.529 (4)
C7—H70.9300Zn1—O12.125 (4)
C8—C91.374 (8)Zn1—Br12.4701 (8)
C8—H80.9300Zn1—Br22.4148 (8)
C9—C101.369 (7)
N1—C1—C2122.6 (5)S1—C11—H11B109.5
N1—C1—H1118.7H11A—C11—H11B109.5
C2—C1—H1118.7S1—C11—H11C109.5
C3—C2—C1118.5 (5)H11A—C11—H11C109.5
C3—C2—H2120.7H11B—C11—H11C109.5
C1—C2—H2120.7S1—C12—H12A109.5
C2—C3—C4119.4 (5)S1—C12—H12B109.5
C2—C3—H3120.3H12A—C12—H12B109.5
C4—C3—H3120.3S1—C12—H12C109.5
C3—C4—C5119.2 (5)H12A—C12—H12C109.5
C3—C4—H4120.4H12B—C12—H12C109.5
C5—C4—H4120.4C1—N1—C5118.4 (4)
N1—C5—C4121.8 (5)C1—N1—Zn1124.5 (3)
N1—C5—C6114.5 (4)C5—N1—Zn1117.1 (3)
C4—C5—C6123.6 (4)C6—N2—C10118.9 (4)
N2—C6—C7121.0 (4)C6—N2—Zn1117.3 (3)
N2—C6—C5115.8 (4)C10—N2—Zn1123.7 (3)
C7—C6—C5123.2 (4)S1—O1—Zn1118.7 (2)
C8—C7—C6119.1 (5)O1—Zn1—N283.24 (15)
C8—C7—H7120.4O1—Zn1—N1139.98 (15)
C6—C7—H7120.4N2—Zn1—N175.19 (15)
C9—C8—C7119.1 (5)O1—Zn1—Br2104.13 (11)
C9—C8—H8120.4N2—Zn1—Br297.80 (11)
C7—C8—H8120.4N1—Zn1—Br2111.81 (11)
C10—C9—C8118.8 (5)O1—Zn1—Br190.99 (11)
C10—C9—H9120.6N2—Zn1—Br1152.93 (11)
C8—C9—H9120.6N1—Zn1—Br193.27 (11)
N2—C10—C9123.1 (5)Br2—Zn1—Br1109.25 (3)
N2—C10—H10118.5O1—S1—C11105.3 (3)
C9—C10—H10118.5O1—S1—C12104.2 (3)
S1—C11—H11A109.5C11—S1—C1297.7 (4)
N1—C1—C2—C31.0 (9)C9—C10—N2—C60.4 (8)
C1—C2—C3—C40.2 (9)C9—C10—N2—Zn1177.1 (4)
C2—C3—C4—C50.1 (8)S1—O1—Zn1—N2159.5 (3)
C3—C4—C5—N10.5 (8)S1—O1—Zn1—N1143.3 (2)
C3—C4—C5—C6179.5 (5)S1—O1—Zn1—Br263.2 (3)
N1—C5—C6—N24.3 (6)S1—O1—Zn1—Br147.0 (3)
C4—C5—C6—N2175.7 (4)C6—N2—Zn1—O1146.3 (4)
N1—C5—C6—C7175.5 (4)C10—N2—Zn1—O136.9 (4)
C4—C5—C6—C74.5 (7)C6—N2—Zn1—N10.3 (3)
N2—C6—C7—C80.1 (8)C10—N2—Zn1—N1177.1 (4)
C5—C6—C7—C8179.7 (5)C6—N2—Zn1—Br2110.3 (3)
C6—C7—C8—C90.2 (8)C10—N2—Zn1—Br266.5 (4)
C7—C8—C9—C100.2 (8)C6—N2—Zn1—Br167.5 (5)
C8—C9—C10—N20.1 (8)C10—N2—Zn1—Br1115.7 (4)
C2—C1—N1—C51.5 (8)C1—N1—Zn1—O1119.4 (4)
C2—C1—N1—Zn1175.5 (4)C5—N1—Zn1—O157.6 (4)
C4—C5—N1—C11.2 (7)C1—N1—Zn1—N2179.1 (4)
C6—C5—N1—C1178.8 (4)C5—N1—Zn1—N22.2 (3)
C4—C5—N1—Zn1175.9 (4)C1—N1—Zn1—Br288.3 (4)
C6—C5—N1—Zn14.0 (5)C5—N1—Zn1—Br294.7 (3)
C7—C6—N2—C100.4 (7)C1—N1—Zn1—Br124.0 (4)
C5—C6—N2—C10179.4 (4)C5—N1—Zn1—Br1153.0 (3)
C7—C6—N2—Zn1177.3 (4)Zn1—O1—S1—C11120.4 (4)
C5—C6—N2—Zn12.5 (5)Zn1—O1—S1—C12137.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br10.932.863.413 (6)119
C10—H10···O10.932.532.979 (7)110

Experimental details

Crystal data
Chemical formula[ZnBr2(C10H8N2)(C2H6OS)]
Mr459.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.4802 (10), 8.3449 (7), 19.989 (2)
β (°) 95.185 (8)
V3)1574.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)6.76
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.148, 0.260
No. of measured, independent and
observed [I > 2σ(I)] reflections
12674, 4245, 3229
Rint0.078
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.140, 1.13
No. of reflections4245
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.08, 1.46

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Zn1—N12.157 (4)Zn1—Br12.4701 (8)
Zn1—N22.141 (4)Zn1—Br22.4148 (8)
Zn1—O12.125 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br10.93002.86003.413 (6)119.00
C10—H10···O10.93002.53002.979 (7)110.00
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds