Download citation
Download citation
link to html
In the centrosymmetric dimeric CdII title compound, [Cd2(C9H10NO2)4(C6H6N2O)2(H2O)2], each seven-coordin­ated CdII atom is chelated by the carboxyl­ate groups of the two 4-(dimethyl­amino)­benzoate (DMAB) anions; the two monomeric units are bridged through the two O atoms of the two carboxyl groups. In the crystal structure, inter­molecular O—H...O, N—H...O and C—H...O hydrogen bonds link the mol­ecules into a three-dimensional network. π–π contacts between the pyridine rings [centroid–centroid distance = 3.974 (1) Å] may further stabilize the structure. Weak C—H...π inter­actions are also observed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053681002163X/xu2771sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053681002163X/xu2771Isup2.hkl
Contains datablock I

CCDC reference: 786435

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.022
  • wR factor = 0.056
  • Data-to-parameter ratio = 17.9

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 4.43 Ratio PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Cd1 -- O3 .. 12.86 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Cd1 -- O4 .. 10.93 su
Alert level C PLAT222_ALERT_3_C Large Non-Solvent H Uiso(max)/Uso(min) ... 5.53 Rati PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cd1 -- O1 .. 8.74 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cd1 -- O2 .. 6.38 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cd1 -- O4_a .. 7.11 su PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 11 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 41
0 ALERT level A = In general: serious problem 3 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Transition metal complexes with biochemical molecules show interesting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982). Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000). Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974). The nicotinic acid derivative N,N-Diethylnicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972).

The structure-function-coordination relationships of the arylcarboxylate ion in CdII complexes of benzoic acid derivatives may also change depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the pH and temperature of synthesis as in Mn(II) complexes (Shnulin et al., 1981; Antsyshkina et al., 1980; Adiwidjaja et al., 1978). When pyridine and its derivatives are used instead of water molecules, the structure is completely different (Catterick et al., 1974). We report herein the synthesis and the structure of the title compound, (I).

The title compound, (I), consists of dimeric units located around a crystallographic symmetry centre and made up of two Cd cations, four 4-(dimethylamino)benzoato (DMAB) anions, two nicotinamide (NA) ligands and two water molecules (Fig. 1). Each Cd(II) unit is chelated by the carboxylate O atoms of the two DMAB anions, and the two monomeric units are bridged through the two oxygen atoms of the two carboxylate groups about an inversion center. The coordination number of each CdII atom is seven. The Cd1···Cd1i distance is 3.8121 (2) Å and O4—Cd1—O4i angle is 76.87 (4)° (symmetry code: (i) -x, -y, 1 - z).

The average Cd—O bond length (Table 1) is 2.4302 (12) Å, and the Cd atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/C10/O4) by 0.4160 (1) and 0.6395 (1) Å, respectively. In (I), the O1—Cd1—O2 and O3—Cd1—O4 angles are 55.96 (4) and 53.78 (4) °, respectively. The corresponding O—M—O (where M is a metal) angles are 52.91 (4)° and 53.96 (4)° in [Cd(C8H5O3)2(C6H6N2O)2(H2O)].H2O (Hökelek et al., 2009a), 60.70 (4)° in [Co(C9H10NO2)2(C6H6N2O)(H2O)2] (Hökelek et al., 2009b), 58.45 (9)° in [Mn(C9H10NO2)2(C6H6N2O)(H2O)2] (Hökelek et al., 2009c), 60.03 (6)° in [Zn(C8H8NO2)2(C6H6N2O)2].H2O (Hökelek et al., 2009 d), 58.3 (3)° in [Zn2(DENA)2(C7H5O3)4].2H2O (Hökelek & Necefoğlu, 1996) and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) (Greenaway et al., 1984).

The dihedral angles between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C11—C16) are 11.48 (17) and 12.78 (13) °, respectively, while those between rings A, B, C (N3/C19—C23), D (Cd1/O1/O2/C1) and E (Cd1/O3/O4/C10) are A/B = 78.35 (7), A/C = 68.85 (6), B/C = 75.32 (6) and D/E = 61.98 (5)°.

In the crystal structure, intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds (Table 2) link the molecules into a three dimensional network, in which they may be effective in the stabilization of the structure. The ππ contact between the pyridine rings, Cg3—Cg3i [symmetry code: (i) 1 - x, -1 - y, 1 - z, where Cg3 is the centroid of the ring C (N3/C19—C23)] may further stabilize the structure, with centroid-centroid distance of 3.974 (1) Å. There also exist two weak C—H···π interactions (Table 2).

Related literature top

For the applications of transition metal complexes with biochemical molecules in biological systems, see: Antolini et al. (1982). Benzoic acid derivatives such as 4-aminobenzoic acid are used extensively as bifunctional organic ligands in coordination chemistry due to the their various coordination modes, see: Amiraslanov et al. (1979); Chen & Chen (2002); Hauptmann et al. (2000). In pellagra disease, niacin deficiency leads to loss of copper from the body with high serum and urinary copper levels, see: Krishnamachari (1974). The nicotinic acid derivative N,N-diethylnicotinamide (DENA) is an important respiratory stimulant, see: Bigoli et al. (1972). For structure–function–coordination relationships of the arylcarboxylate ion in MnII complexes of benzoic acid derivatives, see: Adiwidjaja et al. (1978); Antsyshkina et al. (1980); Catterick et al. (1974); Shnulin et al. (1981). For related structures, see: Greenaway et al. (1984); Hökelek & Necefoğlu (1996); Hökelek et al. (2009a,b,c,d).

Experimental top

The title compound was prepared by the reaction of 3CdSO4.H2O (1.28 g, 5 mmol) in H2O (30 ml) and NA (1.22 g, 10 mmol) in H2O (20 ml) with sodium 4-(dimethylamino)benzoate (1.88 g, 10 mmol) in H2O (150 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving colorless single crystals.

Refinement top

Atoms H61 and H62 were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically with N—H = 0.86 Å (for NH2) and C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level [symmetry code: (') -x, -y, 1 - z]. Hydrogen atoms are omitted for clarity.
Bis[µ-4-(dimethylamino)benzoato]- κ3O,O':O;κ3O:O,O'-bis{aqua[4- (dimethylamino)benzoato-κ2O,O'](nicotinamide- κN1)cadmium(II)} top
Crystal data top
[Cd2(C9H10NO2)4(C6H6N2O)2(H2O)2]Z = 1
Mr = 1161.83F(000) = 592
Triclinic, P1Dx = 1.655 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5453 (2) ÅCell parameters from 9880 reflections
b = 10.2372 (2) Åθ = 2.4–28.5°
c = 13.5697 (3) ŵ = 0.99 mm1
α = 74.102 (3)°T = 100 K
β = 79.479 (3)°Block, colorless
γ = 66.547 (2)°0.36 × 0.24 × 0.13 mm
V = 1165.85 (5) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5862 independent reflections
Radiation source: fine-focus sealed tube5498 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 28.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.752, Tmax = 0.879k = 1313
21249 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0271P)2 + 0.7237P]
where P = (Fo2 + 2Fc2)/3
5862 reflections(Δ/σ)max < 0.001
328 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Cd2(C9H10NO2)4(C6H6N2O)2(H2O)2]γ = 66.547 (2)°
Mr = 1161.83V = 1165.85 (5) Å3
Triclinic, P1Z = 1
a = 9.5453 (2) ÅMo Kα radiation
b = 10.2372 (2) ŵ = 0.99 mm1
c = 13.5697 (3) ÅT = 100 K
α = 74.102 (3)°0.36 × 0.24 × 0.13 mm
β = 79.479 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5862 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5498 reflections with I > 2σ(I)
Tmin = 0.752, Tmax = 0.879Rint = 0.026
21249 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.67 e Å3
5862 reflectionsΔρmin = 0.49 e Å3
328 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.180220 (12)0.040917 (12)0.492667 (9)0.01404 (4)
O10.10108 (14)0.14484 (13)0.63748 (9)0.0207 (2)
O20.33823 (14)0.01006 (15)0.62185 (10)0.0221 (3)
O30.02478 (14)0.30555 (14)0.40644 (10)0.0212 (2)
O40.02665 (13)0.11559 (13)0.40059 (9)0.0189 (2)
O50.35463 (15)0.60232 (14)0.34334 (13)0.0320 (3)
O60.34839 (15)0.12770 (14)0.37393 (10)0.0208 (3)
H610.438 (3)0.091 (3)0.374 (2)0.039 (7)*
H620.331 (3)0.215 (3)0.364 (2)0.042 (7)*
N10.2767 (2)0.0371 (2)1.10325 (13)0.0338 (4)
N20.2931 (2)0.5498 (2)0.01791 (15)0.0481 (6)
N30.32213 (15)0.17835 (15)0.44145 (11)0.0161 (3)
N40.12133 (18)0.45388 (19)0.38859 (17)0.0367 (5)
H4A0.07960.51100.38140.044*
H4B0.06550.37380.40750.044*
C10.22674 (19)0.06515 (18)0.67584 (13)0.0172 (3)
C20.24275 (19)0.04966 (19)0.78525 (13)0.0188 (3)
C30.1236 (2)0.1251 (2)0.84793 (15)0.0297 (4)
H30.03580.19590.81880.036*
C40.1318 (2)0.0978 (3)0.95279 (15)0.0358 (5)
H40.04980.15060.99250.043*
C50.2614 (2)0.0079 (2)1.00013 (14)0.0241 (4)
C60.3803 (2)0.0844 (3)0.93693 (17)0.0432 (6)
H60.46800.15590.96580.052*
C70.3707 (2)0.0565 (3)0.83278 (17)0.0414 (6)
H70.45200.11010.79300.050*
C80.1518 (3)0.0277 (3)1.17494 (18)0.0522 (7)
H8A0.19260.04091.22960.078*
H8B0.09550.03551.20290.078*
H8C0.08490.12071.13970.078*
C90.4091 (3)0.1524 (3)1.14836 (17)0.0412 (5)
H9A0.40630.14991.21890.062*
H9B0.50020.13951.11140.062*
H9C0.40920.24491.14490.062*
C100.04015 (17)0.25041 (18)0.36627 (13)0.0164 (3)
C110.12533 (19)0.33661 (18)0.27396 (13)0.0188 (3)
C120.1946 (2)0.2771 (2)0.22633 (16)0.0303 (4)
H120.20220.18730.25900.036*
C130.2528 (3)0.3473 (3)0.13181 (18)0.0400 (5)
H130.29860.30400.10220.048*
C140.2439 (2)0.4826 (3)0.07997 (16)0.0353 (5)
C150.1832 (2)0.5474 (2)0.13103 (16)0.0316 (4)
H150.18240.64040.10100.038*
C160.1245 (2)0.4756 (2)0.22524 (14)0.0231 (4)
H160.08350.52070.25690.028*
C170.2400 (3)0.6651 (4)0.07824 (19)0.0612 (9)
H17A0.27560.69700.14570.092*
H17B0.13000.62850.08380.092*
H17C0.27920.74580.04510.092*
C180.3162 (4)0.4603 (4)0.0761 (2)0.0700 (11)
H18A0.34840.51870.14240.105*
H18B0.39350.42310.03960.105*
H18C0.22190.38020.08460.105*
C190.25695 (18)0.26001 (17)0.41870 (12)0.0158 (3)
H190.15060.22880.42510.019*
C200.34143 (18)0.38911 (17)0.38596 (13)0.0160 (3)
C210.50027 (19)0.43196 (18)0.37210 (14)0.0192 (3)
H210.55990.51580.34790.023*
C220.56831 (19)0.34787 (18)0.39492 (14)0.0200 (3)
H220.67420.37420.38610.024*
C230.47585 (18)0.22380 (18)0.43116 (13)0.0183 (3)
H230.52210.16990.44910.022*
C240.27089 (19)0.48910 (18)0.37050 (13)0.0180 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.00975 (6)0.01423 (6)0.01936 (7)0.00424 (4)0.00041 (4)0.00645 (4)
O10.0180 (6)0.0199 (6)0.0216 (6)0.0039 (5)0.0013 (5)0.0055 (5)
O20.0146 (6)0.0317 (7)0.0235 (6)0.0076 (5)0.0011 (5)0.0147 (5)
O30.0175 (6)0.0234 (6)0.0251 (6)0.0106 (5)0.0027 (5)0.0038 (5)
O40.0146 (5)0.0156 (5)0.0242 (6)0.0040 (4)0.0016 (5)0.0032 (5)
O50.0226 (7)0.0207 (6)0.0575 (10)0.0107 (5)0.0111 (6)0.0216 (6)
O60.0140 (6)0.0149 (6)0.0319 (7)0.0055 (5)0.0024 (5)0.0054 (5)
N10.0317 (9)0.0417 (10)0.0189 (8)0.0081 (8)0.0012 (7)0.0031 (7)
N20.0338 (10)0.0590 (14)0.0280 (10)0.0090 (9)0.0135 (8)0.0055 (9)
N30.0130 (6)0.0142 (6)0.0208 (7)0.0052 (5)0.0000 (5)0.0043 (5)
N40.0140 (7)0.0274 (8)0.0800 (14)0.0064 (6)0.0000 (8)0.0343 (9)
C10.0168 (7)0.0183 (7)0.0206 (8)0.0100 (6)0.0016 (6)0.0075 (6)
C20.0173 (8)0.0225 (8)0.0199 (8)0.0098 (7)0.0013 (6)0.0077 (6)
C30.0241 (9)0.0290 (10)0.0219 (9)0.0031 (8)0.0010 (7)0.0050 (7)
C40.0273 (10)0.0416 (12)0.0205 (9)0.0025 (9)0.0055 (8)0.0067 (8)
C50.0227 (9)0.0290 (9)0.0204 (8)0.0116 (7)0.0015 (7)0.0040 (7)
C60.0231 (10)0.0654 (16)0.0308 (11)0.0066 (10)0.0103 (8)0.0243 (11)
C70.0182 (9)0.0676 (16)0.0304 (11)0.0054 (10)0.0056 (8)0.0284 (11)
C80.0413 (14)0.0785 (19)0.0211 (10)0.0141 (13)0.0112 (9)0.0075 (11)
C90.0452 (13)0.0485 (13)0.0272 (10)0.0092 (11)0.0155 (9)0.0083 (10)
C100.0094 (7)0.0177 (7)0.0194 (8)0.0030 (6)0.0010 (6)0.0045 (6)
C110.0132 (7)0.0172 (7)0.0217 (8)0.0000 (6)0.0023 (6)0.0054 (6)
C120.0327 (10)0.0223 (9)0.0367 (11)0.0064 (8)0.0141 (8)0.0060 (8)
C130.0404 (12)0.0380 (12)0.0417 (12)0.0030 (10)0.0223 (10)0.0141 (10)
C140.0227 (9)0.0399 (11)0.0263 (10)0.0078 (8)0.0082 (8)0.0061 (8)
C150.0222 (9)0.0298 (10)0.0290 (10)0.0014 (8)0.0015 (8)0.0023 (8)
C160.0169 (8)0.0226 (8)0.0262 (9)0.0050 (7)0.0004 (7)0.0039 (7)
C170.0276 (12)0.083 (2)0.0278 (12)0.0100 (12)0.0016 (9)0.0126 (12)
C180.0556 (17)0.085 (2)0.0421 (15)0.0227 (16)0.0289 (13)0.0291 (15)
C190.0124 (7)0.0151 (7)0.0199 (8)0.0058 (6)0.0002 (6)0.0040 (6)
C200.0143 (7)0.0138 (7)0.0199 (8)0.0053 (6)0.0002 (6)0.0043 (6)
C210.0136 (7)0.0155 (7)0.0257 (8)0.0032 (6)0.0017 (6)0.0058 (6)
C220.0106 (7)0.0176 (8)0.0293 (9)0.0042 (6)0.0002 (6)0.0038 (7)
C230.0139 (7)0.0169 (7)0.0248 (8)0.0072 (6)0.0011 (6)0.0038 (6)
C240.0164 (7)0.0141 (7)0.0236 (8)0.0057 (6)0.0010 (6)0.0045 (6)
Geometric parameters (Å, º) top
Cd1—O12.3511 (12)C8—H8A0.9600
Cd1—O22.3362 (12)C8—H8B0.9600
Cd1—O32.5705 (13)C8—H8C0.9600
Cd1—O4i2.5762 (12)C9—H9A0.9600
Cd1—O62.3170 (12)C9—H9B0.9600
Cd1—N32.3339 (14)C9—H9C0.9600
Cd1—C12.6955 (17)C11—C101.485 (2)
O1—C11.262 (2)C11—C121.385 (3)
O2—C11.278 (2)C11—C161.398 (2)
O3—C101.253 (2)C12—C131.381 (3)
O4—Cd12.2849 (12)C12—H120.9300
O4—Cd1i2.5762 (12)C13—C141.400 (3)
O4—C101.291 (2)C13—H130.9300
O5—C241.228 (2)C14—N21.388 (3)
O6—H610.78 (3)C15—C141.400 (3)
O6—H620.81 (3)C15—H150.9300
N1—C51.371 (2)C16—C151.381 (3)
N1—C81.452 (3)C16—H160.9300
N1—C91.437 (3)C17—N21.455 (4)
N3—C191.344 (2)C17—H17A0.9600
N3—C231.344 (2)C17—H17B0.9600
N4—C241.319 (2)C17—H17C0.9600
N4—H4A0.8600C18—N21.460 (4)
N4—H4B0.8600C18—H18A0.9600
C1—C21.479 (2)C18—H18B0.9600
C2—C31.386 (2)C18—H18C0.9600
C2—C71.391 (3)C19—C201.392 (2)
C3—C41.384 (3)C19—H190.9300
C3—H30.9300C20—C211.392 (2)
C4—H40.9300C20—C241.504 (2)
C5—C41.399 (3)C21—C221.387 (2)
C5—C61.394 (3)C21—H210.9300
C6—C71.376 (3)C22—H220.9300
C6—H60.9300C23—C221.388 (2)
C7—H70.9300C23—H230.9300
O1—Cd1—O380.40 (4)C7—C6—C5121.4 (2)
O1—Cd1—O4i81.03 (4)C7—C6—H6119.3
O1—Cd1—C127.90 (5)C2—C7—H7119.1
O2—Cd1—O155.96 (4)C6—C7—C2121.85 (19)
O2—Cd1—O3121.05 (4)C6—C7—H7119.1
O2—Cd1—O4i95.15 (4)N1—C8—H8A109.5
O2—Cd1—C128.30 (5)N1—C8—H8B109.5
O3—Cd1—O4i116.80 (4)N1—C8—H8C109.5
O3—Cd1—C1103.06 (5)H8A—C8—H8B109.5
O4—Cd1—O1108.51 (4)H8A—C8—H8C109.5
O4—Cd1—O2163.91 (4)H8B—C8—H8C109.5
O4—Cd1—O353.78 (4)N1—C9—H9A109.5
O4—Cd1—O4i76.87 (4)N1—C9—H9B109.5
O4—Cd1—O6102.15 (5)N1—C9—H9C109.5
O4—Cd1—N398.43 (5)H9A—C9—H9B109.5
O4—Cd1—C1135.79 (5)H9A—C9—H9C109.5
O4i—Cd1—C185.18 (4)H9B—C9—H9C109.5
O6—Cd1—O1113.98 (5)O3—C10—O4120.68 (15)
O6—Cd1—O289.36 (5)O3—C10—C11120.28 (15)
O6—Cd1—O373.12 (4)O4—C10—C11118.91 (15)
O6—Cd1—O4i163.97 (4)C12—C11—C10121.50 (16)
O6—Cd1—N384.01 (5)C12—C11—C16117.17 (17)
O6—Cd1—C1105.44 (5)C16—C11—C10120.97 (16)
N3—Cd1—O1142.57 (5)C11—C12—H12119.0
N3—Cd1—O293.88 (5)C13—C12—C11121.9 (2)
N3—Cd1—O3137.02 (4)C13—C12—H12119.0
N3—Cd1—O4i80.34 (4)C12—C13—C14121.0 (2)
N3—Cd1—C1118.10 (5)C12—C13—H13119.5
C1—O1—Cd191.41 (10)C14—C13—H13119.5
C1—O2—Cd191.67 (10)N2—C14—C13121.5 (2)
C10—O3—Cd185.54 (10)N2—C14—C15121.4 (2)
Cd1—O4—Cd1i103.13 (4)C13—C14—C15117.13 (18)
C10—O4—Cd197.69 (10)C14—C15—H15119.4
C10—O4—Cd1i140.80 (10)C16—C15—C14121.2 (2)
Cd1—O6—H61124 (2)C16—C15—H15119.4
Cd1—O6—H62116.2 (19)C11—C16—H16119.3
H61—O6—H62104 (3)C15—C16—C11121.40 (19)
C5—N1—C9120.90 (18)C15—C16—H16119.3
C5—N1—C8122.36 (19)N2—C17—H17A109.5
C9—N1—C8115.94 (18)N2—C17—H17B109.5
C14—N2—C17117.8 (2)N2—C17—H17C109.5
C14—N2—C18117.6 (2)H17A—C17—H17B109.5
C17—N2—C18115.8 (2)H17A—C17—H17C109.5
C19—N3—Cd1122.92 (10)H17B—C17—H17C109.5
C23—N3—Cd1119.01 (11)N2—C18—H18A109.5
C23—N3—C19118.04 (14)N2—C18—H18B109.5
C24—N4—H4A120.0N2—C18—H18C109.5
C24—N4—H4B120.0H18A—C18—H18B109.5
H4A—N4—H4B120.0H18A—C18—H18C109.5
O1—C1—Cd160.69 (9)H18B—C18—H18C109.5
O1—C1—O2119.93 (15)N3—C19—C20122.96 (14)
O1—C1—C2120.45 (15)N3—C19—H19118.5
O2—C1—Cd160.04 (9)C20—C19—H19118.5
O2—C1—C2119.48 (15)C19—C20—C21118.29 (15)
C2—C1—Cd1167.27 (11)C19—C20—C24123.42 (14)
C3—C2—C1121.73 (16)C21—C20—C24118.20 (14)
C3—C2—C7116.93 (17)C20—C21—H21120.5
C7—C2—C1120.76 (16)C22—C21—C20119.03 (15)
C2—C3—H3119.1C22—C21—H21120.5
C4—C3—C2121.74 (18)C21—C22—C23118.92 (15)
C4—C3—H3119.1C21—C22—H22120.5
C3—C4—C5121.17 (18)C23—C22—H22120.5
C3—C4—H4119.4N3—C23—C22122.66 (15)
C5—C4—H4119.4N3—C23—H23118.7
N1—C5—C4123.52 (18)C22—C23—H23118.7
N1—C5—C6119.59 (18)O5—C24—N4122.03 (16)
C6—C5—C4116.89 (18)O5—C24—C20118.99 (15)
C5—C6—H6119.3N4—C24—C20118.97 (15)
O2—Cd1—O1—C15.81 (9)Cd1i—O4—Cd1—C168.68 (7)
O3—Cd1—O1—C1144.01 (10)C10—O4—Cd1—O170.86 (10)
O4—Cd1—O1—C1169.50 (9)C10—O4—Cd1—O285.00 (18)
O4i—Cd1—O1—C196.68 (10)C10—O4—Cd1—O38.44 (9)
O6—Cd1—O1—C177.44 (10)C10—O4—Cd1—O4i146.56 (11)
N3—Cd1—O1—C135.73 (13)C10—O4—Cd1—O649.84 (10)
O1—Cd1—O2—C15.74 (9)C10—O4—Cd1—N3135.48 (10)
O3—Cd1—O2—C155.83 (11)C10—O4—Cd1—C177.88 (11)
O4—Cd1—O2—C110.5 (2)Cd1—O4—C10—O316.40 (16)
O4i—Cd1—O2—C169.80 (10)Cd1i—O4—C10—O3105.49 (18)
O6—Cd1—O2—C1125.61 (10)Cd1—O4—C10—C11159.57 (12)
N3—Cd1—O2—C1150.44 (10)Cd1i—O4—C10—C1178.5 (2)
O1—Cd1—O3—C10130.16 (10)C8—N1—C5—C47.3 (4)
O2—Cd1—O3—C10170.30 (9)C8—N1—C5—C6173.6 (3)
O4—Cd1—O3—C108.64 (9)C9—N1—C5—C4176.6 (2)
O4i—Cd1—O3—C1055.38 (10)C9—N1—C5—C64.3 (3)
O6—Cd1—O3—C10111.01 (10)Cd1—N3—C19—C20178.53 (12)
N3—Cd1—O3—C1050.07 (11)C23—N3—C19—C200.5 (2)
C1—Cd1—O3—C10146.56 (9)Cd1—N3—C23—C22175.85 (13)
O1—Cd1—N3—C19104.17 (13)C19—N3—C23—C222.3 (2)
O1—Cd1—N3—C2377.81 (14)Cd1—C1—C2—C393.7 (6)
O2—Cd1—N3—C19137.60 (13)Cd1—C1—C2—C777.3 (6)
O2—Cd1—N3—C2344.39 (13)O1—C1—C2—C32.3 (3)
O3—Cd1—N3—C1976.20 (14)O1—C1—C2—C7168.71 (19)
O3—Cd1—N3—C23101.82 (13)O2—C1—C2—C3177.86 (17)
O4—Cd1—N3—C1932.01 (13)O2—C1—C2—C76.9 (3)
O4i—Cd1—N3—C1943.03 (12)C1—C2—C3—C4172.1 (2)
O4—Cd1—N3—C23146.00 (12)C7—C2—C3—C40.8 (3)
O4i—Cd1—N3—C23138.96 (13)C1—C2—C7—C6172.4 (2)
O6—Cd1—N3—C19133.45 (13)C3—C2—C7—C61.0 (4)
O6—Cd1—N3—C2344.56 (12)C2—C3—C4—C50.1 (4)
C1—Cd1—N3—C19122.22 (12)N1—C5—C4—C3178.6 (2)
C1—Cd1—N3—C2359.76 (13)C6—C5—C4—C30.5 (4)
O1—Cd1—C1—O2169.81 (16)N1—C5—C6—C7178.8 (3)
O1—Cd1—C1—C298.7 (5)C4—C5—C6—C70.4 (4)
O2—Cd1—C1—O1169.81 (16)C5—C6—C7—C20.4 (4)
O2—Cd1—C1—C291.5 (5)C12—C11—C10—O3178.21 (17)
O3—Cd1—C1—O136.50 (10)C12—C11—C10—O42.2 (2)
O3—Cd1—C1—O2133.31 (10)C16—C11—C10—O35.3 (2)
O3—Cd1—C1—C2135.2 (5)C16—C11—C10—O4170.72 (15)
O4—Cd1—C1—O114.35 (13)C10—C11—C12—C13169.52 (19)
O4i—Cd1—C1—O179.92 (9)C16—C11—C12—C133.7 (3)
O4—Cd1—C1—O2175.84 (9)C10—C11—C16—C15170.03 (16)
O4i—Cd1—C1—O2110.28 (10)C12—C11—C16—C153.2 (3)
O4—Cd1—C1—C284.4 (5)C11—C12—C13—C140.0 (3)
O4i—Cd1—C1—C218.8 (5)C12—C13—C14—N2175.8 (2)
O6—Cd1—C1—O1112.31 (10)C12—C13—C14—C154.1 (3)
O6—Cd1—C1—O257.50 (10)C13—C14—N2—C17162.1 (2)
O6—Cd1—C1—C2149.0 (5)C13—C14—N2—C1815.8 (3)
N3—Cd1—C1—O1156.28 (9)C15—C14—N2—C1717.8 (3)
N3—Cd1—C1—O233.92 (11)C15—C14—N2—C18164.1 (2)
N3—Cd1—C1—C257.5 (5)C16—C15—C14—N2175.34 (19)
Cd1—O1—C1—O210.19 (16)C16—C15—C14—C134.6 (3)
Cd1—O1—C1—C2165.37 (13)C11—C16—C15—C141.0 (3)
Cd1—O2—C1—O110.26 (16)N3—C19—C20—C212.8 (2)
Cd1—O2—C1—C2165.34 (13)N3—C19—C20—C24173.63 (15)
Cd1—O3—C10—O414.44 (14)C19—C20—C21—C222.3 (2)
Cd1—O3—C10—C11161.46 (14)C24—C20—C21—C22174.27 (16)
Cd1i—O4—Cd1—O175.71 (5)C19—C20—C24—O5178.59 (17)
Cd1i—O4—Cd1—O261.56 (17)C19—C20—C24—N40.0 (3)
Cd1i—O4—Cd1—O3138.13 (6)C21—C20—C24—O52.2 (3)
Cd1i—O4—Cd1—O4i0.0C21—C20—C24—N4176.46 (18)
Cd1i—O4—Cd1—O6163.60 (4)C20—C21—C22—C230.2 (3)
Cd1i—O4—Cd1—N377.95 (5)N3—C23—C22—C212.6 (3)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C11–C16 and N3/C19–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N4—H4A···O3ii0.862.072.893 (2)160
N4—H4B···O1i0.862.242.993 (2)147
O6—H61···O2iii0.79 (3)1.97 (3)2.749 (2)176 (2)
O6—H62···O5iv0.82 (3)1.91 (3)2.703 (2)163 (3)
C19—H19···O1i0.932.443.302 (2)155
C23—H23···O2iii0.932.573.372 (2)144
C9—H9A···Cg3v0.962.613.434 (2)144
C17—H17B···Cg2vi0.962.983.887 (3)159
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x, y+1, z; (v) x, y, z+1; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd2(C9H10NO2)4(C6H6N2O)2(H2O)2]
Mr1161.83
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.5453 (2), 10.2372 (2), 13.5697 (3)
α, β, γ (°)74.102 (3), 79.479 (3), 66.547 (2)
V3)1165.85 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.36 × 0.24 × 0.13
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.752, 0.879
No. of measured, independent and
observed [I > 2σ(I)] reflections
21249, 5862, 5498
Rint0.026
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.056, 1.06
No. of reflections5862
No. of parameters328
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.49

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cd1—O12.3511 (12)Cd1—O4i2.5762 (12)
Cd1—O22.3362 (12)Cd1—O62.3170 (12)
Cd1—O32.5705 (13)Cd1—N32.3339 (14)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C11–C16 and N3/C19–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N4—H4A···O3ii0.862.072.893 (2)160
N4—H4B···O1i0.862.242.993 (2)147
O6—H61···O2iii0.79 (3)1.97 (3)2.749 (2)176 (2)
O6—H62···O5iv0.82 (3)1.91 (3)2.703 (2)163 (3)
C19—H19···O1i0.932.443.302 (2)155
C23—H23···O2iii0.932.573.372 (2)144
C9—H9A···Cg3v0.962.613.434 (2)144
C17—H17B···Cg2vi0.962.983.887 (3)159
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x, y+1, z; (v) x, y, z+1; (vi) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds