Download citation
Download citation
link to html
In the title complex, [Ni(C8H5O3)2(C6H6N2O)2(H2O)2], the NiII cation is located on an inversion center and is coordinated by two 4-formyl­benzoate (FB) anions, two nicotinamide (NA) ligands and two water mol­ecules. The four O atoms in the equatorial plane around the NiII cation form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination is completed by the two N atoms of the NA ligands in the axial positions. The dihedral angle between the carboxyl­ate group and the adjacent benzene ring is 23.67 (8)°, while the pyridine and benzene rings are oriented at an angle of 89.04 (4)°. The coordinating water mol­ecule links with the carboxyl­ate group via an O—H...O hydrogen bond. In the crystal, N—H...O, O—H...O and weak C—H...O hydrogen bonds link the mol­ecules into a three-dimensional supra­molecular network. π–π contacts between benzene rings [centroid–centroid distance = 3.8414 (7) Å] may further stabilize the structure. A weak C—H...π inter­action also occurs.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536812026943/xu5564sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536812026943/xu5564Isup2.hkl
Contains datablock I

CCDC reference: 889972

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.023
  • wR factor = 0.063
  • Data-to-parameter ratio = 16.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 1 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 4 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 23
Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ? PLAT164_ALERT_4_G Nr. of Refined C-H H-Atoms in Heavy-Atom Struct. 1 PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Ni1 -- O1 .. 5.5 su PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Ni1 -- O5 .. 5.0 su PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Ni1 -- N1 .. 5.5 su PLAT432_ALERT_2_G Short Inter X...Y Contact O3 .. C14 .. 2.95 Ang. PLAT961_ALERT_5_G Dataset Contains no Negative Intensities ....... !
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 7 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

As a part of our ongoing investigations of transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The asymmetric unit of the title mononuclear NiII complex, (Fig. 1), contains one-half molecule. It consists of two nicotinamide (NA), two 4-formylbenzoate (FB) ligands and two coordinated water molecules, all ligands coordinating in a monodentate manner. The crystal structures of similar complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H5O2)2(C10H14N2O)2] (Hökelek et al., 1996), [Cu(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Necefoğlu et al., 2011a), [Co(C6H6N2O)2(C7H4NO4)2(H2O)2] (Hökelek & Necefouglu, 1998), [Co(C9H9O2)2(C10H14N2O)2(H2O)2] (Necefoğlu et al., 2011b), [Co(C7H4IO2)2(C6H6N2O)2(H2O)2] (Aydın et al., 2012), [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009a), [Mn(C9H10NO2)2(H2O)4].2H2O (Hökelek & Necefoğlu, 2007) and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009b) have also been reported. In the copper(II) complex mentioned above the two benzoate ions coordinate to the CuII atom as bidentate ligands, while in the other structures all the ligands coordinate in a monodentate manner.

In the title complex, the four symmetry related O atoms (O1, O1', O5 and O5') in the equatorial plane around the NiII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two symmetry related N atoms of the NA ligands (N1 and N1') in the axial positions. The near equalities of the C1—O1 [1.2603 (13) Å] and C1—O2 [1.2594 (13) Å] bonds in the carboxylate group indicate delocalized bonding arrangement, rather than localized single and double bonds. The Ni—O bond lengths are 2.0650 (8) Å (for benzoate oxygens) and 2.0879 (8) Å (for water oxygens), and the Ni—N bond length is 2.0773 (9) Å, close to standard values (Allen et al., 1987). The Ni atom is displaced out of the mean-plane of the carboxylate group (O1/C1/O2) by -0.5451 (1) Å. The dihedral angle between the planar carboxylate group and the adjacent benzene ring A (C2—C7) is 23.67 (8)°. The benzene A (C2—C7) and the pyridine B (N1/C9—C13) rings are oriented at a dihedral angle of A/B = 89.04 (4)°.

In the crystal, intermolecular N—H···O, O—H···O and weak C—H···O hydrogen bonds (Table 1) link the molecules into a three-dimensional supramolecular network, in which they may be effective in the stabilization of the structure. The ππ contact between the benzene rings, Cg1—Cg1i [symmetry code: (i) 1 - x, 1 - y, 2 - z, where Cg1 is the centroid of the ring A (C2-C7)] may further stabilize the structure, with centroid-centroid distance of 3.8414 (7) Å]. A weak C-H···π interaction is also found in the crystal structure.

Related literature top

For background to niacin, see: Krishnamachari (1974). For information on the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Aydın et al. (2012); Hökelek et al. (1996, 2009a,b); Hökelek & Necefoğlu (1998, 2007); Necefoğlu et al. (2011a,b). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the reaction of NiSO4.6H2O (1.31 g, 5 mmol) in H2O (25 ml) and NA (1.22 g, 10 mmol) in H2O (50 ml) with sodium 4-formylbenzoate (1.72 g, 10 mmol) in H2O (100 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving blue single crystals.

Refinement top

Atoms H8 (for CH), H21 and H22 (for NH2) and H51 and H52 (for H2O) were located in a difference Fourier map and were refined freely. The C-bound H-atoms were positioned geometrically with C—H = 0.93 Å for aromatic H-atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

As a part of our ongoing investigations of transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The asymmetric unit of the title mononuclear NiII complex, (Fig. 1), contains one-half molecule. It consists of two nicotinamide (NA), two 4-formylbenzoate (FB) ligands and two coordinated water molecules, all ligands coordinating in a monodentate manner. The crystal structures of similar complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H5O2)2(C10H14N2O)2] (Hökelek et al., 1996), [Cu(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Necefoğlu et al., 2011a), [Co(C6H6N2O)2(C7H4NO4)2(H2O)2] (Hökelek & Necefouglu, 1998), [Co(C9H9O2)2(C10H14N2O)2(H2O)2] (Necefoğlu et al., 2011b), [Co(C7H4IO2)2(C6H6N2O)2(H2O)2] (Aydın et al., 2012), [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009a), [Mn(C9H10NO2)2(H2O)4].2H2O (Hökelek & Necefoğlu, 2007) and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009b) have also been reported. In the copper(II) complex mentioned above the two benzoate ions coordinate to the CuII atom as bidentate ligands, while in the other structures all the ligands coordinate in a monodentate manner.

In the title complex, the four symmetry related O atoms (O1, O1', O5 and O5') in the equatorial plane around the NiII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two symmetry related N atoms of the NA ligands (N1 and N1') in the axial positions. The near equalities of the C1—O1 [1.2603 (13) Å] and C1—O2 [1.2594 (13) Å] bonds in the carboxylate group indicate delocalized bonding arrangement, rather than localized single and double bonds. The Ni—O bond lengths are 2.0650 (8) Å (for benzoate oxygens) and 2.0879 (8) Å (for water oxygens), and the Ni—N bond length is 2.0773 (9) Å, close to standard values (Allen et al., 1987). The Ni atom is displaced out of the mean-plane of the carboxylate group (O1/C1/O2) by -0.5451 (1) Å. The dihedral angle between the planar carboxylate group and the adjacent benzene ring A (C2—C7) is 23.67 (8)°. The benzene A (C2—C7) and the pyridine B (N1/C9—C13) rings are oriented at a dihedral angle of A/B = 89.04 (4)°.

In the crystal, intermolecular N—H···O, O—H···O and weak C—H···O hydrogen bonds (Table 1) link the molecules into a three-dimensional supramolecular network, in which they may be effective in the stabilization of the structure. The ππ contact between the benzene rings, Cg1—Cg1i [symmetry code: (i) 1 - x, 1 - y, 2 - z, where Cg1 is the centroid of the ring A (C2-C7)] may further stabilize the structure, with centroid-centroid distance of 3.8414 (7) Å]. A weak C-H···π interaction is also found in the crystal structure.

For background to niacin, see: Krishnamachari (1974). For information on the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Aydın et al. (2012); Hökelek et al. (1996, 2009a,b); Hökelek & Necefoğlu (1998, 2007); Necefoğlu et al. (2011a,b). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (') -x, -y, -z].
Diaquabis(4-formylbenzoato-κO1)bis(nicotinamide- κN1)nickel(II) top
Crystal data top
[Ni(C8H5O3)2(C6H6N2O)2(H2O)2]Z = 1
Mr = 637.22F(000) = 330
Triclinic, P1Dx = 1.522 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7633 (2) ÅCell parameters from 9915 reflections
b = 9.8173 (3) Åθ = 2.2–28.5°
c = 9.8222 (3) ŵ = 0.76 mm1
α = 78.260 (3)°T = 100 K
β = 71.489 (2)°Block, blue
γ = 86.584 (3)°0.52 × 0.32 × 0.30 mm
V = 695.01 (4) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3492 independent reflections
Radiation source: fine-focus sealed tube3429 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 28.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.693, Tmax = 0.805k = 1311
12101 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0285P)2 + 0.3781P]
where P = (Fo2 + 2Fc2)/3
3492 reflections(Δ/σ)max < 0.001
216 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Ni(C8H5O3)2(C6H6N2O)2(H2O)2]γ = 86.584 (3)°
Mr = 637.22V = 695.01 (4) Å3
Triclinic, P1Z = 1
a = 7.7633 (2) ÅMo Kα radiation
b = 9.8173 (3) ŵ = 0.76 mm1
c = 9.8222 (3) ÅT = 100 K
α = 78.260 (3)°0.52 × 0.32 × 0.30 mm
β = 71.489 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3492 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3429 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.805Rint = 0.017
12101 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.40 e Å3
3492 reflectionsΔρmin = 0.42 e Å3
216 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00000.00000.01015 (6)
O10.12386 (11)0.17618 (8)0.01075 (9)0.01391 (16)
O20.11022 (11)0.27566 (9)0.15727 (9)0.01583 (16)
O30.49635 (15)0.66730 (13)0.32149 (15)0.0408 (3)
O40.43537 (11)0.00326 (9)0.33242 (9)0.01767 (17)
O50.25997 (11)0.08088 (9)0.07688 (9)0.01421 (16)
H510.342 (3)0.039 (2)0.144 (2)0.032 (5)*
H520.234 (3)0.148 (2)0.110 (2)0.040 (5)*
N10.00291 (12)0.09073 (10)0.20966 (10)0.01250 (17)
N20.32830 (15)0.13256 (11)0.55956 (11)0.0177 (2)
H210.244 (2)0.1839 (19)0.627 (2)0.028 (4)*
H220.413 (3)0.1004 (19)0.584 (2)0.030 (4)*
C10.05648 (14)0.26130 (11)0.09359 (12)0.01225 (19)
C20.18641 (14)0.34931 (11)0.12534 (12)0.0124 (2)
C30.12507 (15)0.47036 (12)0.18010 (13)0.0170 (2)
H30.00750.50140.18760.020*
C40.23857 (16)0.54394 (13)0.22305 (14)0.0194 (2)
H40.19810.62490.25860.023*
C50.41423 (15)0.49603 (12)0.21275 (13)0.0170 (2)
C60.47692 (15)0.37788 (12)0.15551 (13)0.0169 (2)
H60.59500.34760.14700.020*
C70.36357 (15)0.30452 (12)0.11081 (13)0.0148 (2)
H70.40610.22590.07140.018*
C80.53770 (17)0.56908 (15)0.26220 (16)0.0258 (3)
H80.662 (2)0.5300 (18)0.2443 (19)0.028 (4)*
C90.14477 (14)0.06781 (11)0.25219 (12)0.0125 (2)
H90.24010.01270.18550.015*
C100.15619 (15)0.12233 (11)0.39102 (12)0.0127 (2)
C110.01445 (16)0.20605 (13)0.48952 (12)0.0171 (2)
H110.01770.24450.58340.020*
C120.13220 (16)0.23147 (13)0.44594 (13)0.0182 (2)
H120.22820.28770.50990.022*
C130.13333 (15)0.17183 (12)0.30580 (12)0.0149 (2)
H130.23210.18850.27710.018*
C140.31879 (15)0.08302 (12)0.42590 (12)0.0136 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00887 (9)0.01238 (10)0.01030 (10)0.00088 (7)0.00393 (7)0.00292 (7)
O10.0129 (4)0.0155 (4)0.0142 (4)0.0020 (3)0.0041 (3)0.0043 (3)
O20.0111 (4)0.0180 (4)0.0189 (4)0.0010 (3)0.0039 (3)0.0057 (3)
O30.0243 (5)0.0447 (7)0.0648 (8)0.0018 (5)0.0123 (5)0.0383 (6)
O40.0159 (4)0.0236 (4)0.0141 (4)0.0064 (3)0.0060 (3)0.0012 (3)
O50.0107 (4)0.0167 (4)0.0154 (4)0.0011 (3)0.0032 (3)0.0045 (3)
N10.0119 (4)0.0141 (4)0.0127 (4)0.0009 (3)0.0049 (3)0.0032 (3)
N20.0178 (5)0.0232 (5)0.0136 (5)0.0063 (4)0.0076 (4)0.0010 (4)
C10.0130 (5)0.0121 (5)0.0119 (5)0.0017 (4)0.0056 (4)0.0004 (4)
C20.0120 (5)0.0128 (5)0.0124 (5)0.0022 (4)0.0041 (4)0.0014 (4)
C30.0116 (5)0.0160 (5)0.0239 (6)0.0006 (4)0.0052 (4)0.0061 (4)
C40.0151 (5)0.0165 (5)0.0281 (6)0.0000 (4)0.0049 (5)0.0108 (5)
C50.0140 (5)0.0174 (5)0.0210 (5)0.0028 (4)0.0053 (4)0.0064 (4)
C60.0120 (5)0.0169 (5)0.0232 (6)0.0007 (4)0.0069 (4)0.0050 (4)
C70.0133 (5)0.0131 (5)0.0188 (5)0.0005 (4)0.0052 (4)0.0048 (4)
C80.0164 (6)0.0290 (7)0.0370 (7)0.0027 (5)0.0087 (5)0.0161 (6)
C90.0114 (5)0.0139 (5)0.0127 (5)0.0016 (4)0.0039 (4)0.0027 (4)
C100.0127 (5)0.0139 (5)0.0130 (5)0.0006 (4)0.0051 (4)0.0041 (4)
C110.0176 (5)0.0212 (6)0.0119 (5)0.0040 (4)0.0051 (4)0.0002 (4)
C120.0147 (5)0.0214 (6)0.0164 (5)0.0064 (4)0.0031 (4)0.0001 (4)
C130.0119 (5)0.0168 (5)0.0167 (5)0.0022 (4)0.0046 (4)0.0037 (4)
C140.0137 (5)0.0157 (5)0.0134 (5)0.0001 (4)0.0056 (4)0.0047 (4)
Geometric parameters (Å, º) top
Ni1—O12.0650 (8)C3—C41.3827 (16)
Ni1—O1i2.0650 (8)C3—H30.9300
Ni1—O52.0879 (8)C4—H40.9300
Ni1—O5i2.0879 (8)C5—C41.3952 (16)
Ni1—N12.0773 (9)C5—C81.4793 (16)
Ni1—N1i2.0773 (9)C6—C51.3865 (16)
O1—C11.2603 (13)C6—C71.3912 (15)
O2—C11.2594 (13)C6—H60.9300
O3—C81.2021 (17)C7—H70.9300
O4—C141.2408 (14)C8—H80.993 (18)
O5—H510.82 (2)C9—C101.3885 (15)
O5—H520.85 (2)C9—H90.9300
N1—C91.3409 (13)C10—C111.3894 (15)
N1—C131.3433 (14)C10—C141.4987 (15)
N2—C141.3278 (15)C11—C121.3887 (16)
N2—H210.866 (18)C11—H110.9300
N2—H220.865 (19)C12—H120.9300
C2—C11.5081 (14)C13—C121.3845 (16)
C2—C31.3995 (15)C13—H130.9300
C2—C71.3907 (15)
O1i—Ni1—O1180.00 (4)C3—C4—C5119.58 (11)
O1—Ni1—O587.28 (3)C3—C4—H4120.2
O1i—Ni1—O592.72 (3)C5—C4—H4120.2
O1—Ni1—O5i92.72 (3)C4—C5—C8121.24 (11)
O1i—Ni1—O5i87.28 (3)C6—C5—C4120.33 (10)
O1—Ni1—N189.80 (3)C6—C5—C8118.43 (11)
O1i—Ni1—N190.20 (3)C5—C6—C7120.16 (10)
O1—Ni1—N1i90.20 (3)C5—C6—H6119.9
O1i—Ni1—N1i89.80 (3)C7—C6—H6119.9
O5—Ni1—O5i180.00 (5)C2—C7—C6119.70 (10)
N1—Ni1—O592.75 (3)C2—C7—H7120.2
N1i—Ni1—O587.25 (3)C6—C7—H7120.2
N1—Ni1—O5i87.25 (3)O3—C8—C5124.85 (12)
N1i—Ni1—O5i92.75 (3)O3—C8—H8120.3 (10)
N1—Ni1—N1i180.0C5—C8—H8114.8 (10)
C1—O1—Ni1126.76 (7)N1—C9—C10123.16 (10)
Ni1—O5—H51123.5 (13)N1—C9—H9118.4
Ni1—O5—H5299.2 (13)C10—C9—H9118.4
H51—O5—H52105.1 (18)C9—C10—C11118.14 (10)
C9—N1—Ni1119.42 (7)C9—C10—C14117.48 (10)
C9—N1—C13118.17 (10)C11—C10—C14124.36 (10)
C13—N1—Ni1122.41 (7)C10—C11—H11120.5
C14—N2—H21123.2 (12)C12—C11—C10119.09 (10)
C14—N2—H22117.9 (12)C12—C11—H11120.5
H21—N2—H22118.1 (16)C11—C12—H12120.5
O1—C1—C2117.45 (9)C13—C12—C11118.97 (10)
O2—C1—O1125.71 (10)C13—C12—H12120.5
O2—C1—C2116.78 (10)N1—C13—C12122.46 (10)
C3—C2—C1120.03 (10)N1—C13—H13118.8
C7—C2—C1119.88 (10)C12—C13—H13118.8
C7—C2—C3119.91 (10)O4—C14—N2122.55 (10)
C2—C3—H3119.9O4—C14—C10119.75 (10)
C4—C3—C2120.27 (10)N2—C14—C10117.66 (10)
C4—C3—H3119.9
O1—Ni1—N1—C9143.54 (8)C1—C2—C3—C4173.58 (11)
O1i—Ni1—N1—C936.46 (8)C7—C2—C3—C41.50 (18)
O1—Ni1—N1—C1336.78 (9)C1—C2—C7—C6172.92 (10)
O1i—Ni1—N1—C13143.22 (9)C3—C2—C7—C62.17 (17)
O5—Ni1—O1—C1154.22 (9)C2—C3—C4—C50.60 (19)
O5i—Ni1—O1—C125.78 (9)C6—C5—C4—C32.05 (19)
O5—Ni1—N1—C9129.19 (8)C8—C5—C4—C3177.91 (12)
O5i—Ni1—N1—C950.81 (8)C4—C5—C8—O34.6 (2)
O5—Ni1—N1—C1350.49 (9)C6—C5—C8—O3175.38 (15)
O5i—Ni1—N1—C13129.51 (9)C7—C6—C5—C41.38 (19)
N1—Ni1—O1—C1113.02 (9)C7—C6—C5—C8178.58 (12)
N1i—Ni1—O1—C166.98 (9)C5—C6—C7—C20.73 (18)
Ni1—O1—C1—O219.24 (16)N1—C9—C10—C110.85 (17)
Ni1—O1—C1—C2157.72 (7)N1—C9—C10—C14177.32 (10)
Ni1—N1—C9—C10178.84 (8)C9—C10—C11—C120.18 (17)
C13—N1—C9—C100.85 (16)C14—C10—C11—C12177.85 (11)
Ni1—N1—C13—C12179.48 (9)C9—C10—C14—O40.81 (16)
C9—N1—C13—C120.20 (17)C9—C10—C14—N2178.60 (10)
C3—C2—C1—O1161.91 (10)C11—C10—C14—O4177.24 (11)
C3—C2—C1—O220.86 (15)C11—C10—C14—N20.56 (17)
C7—C2—C1—O123.01 (15)C10—C11—C12—C130.42 (18)
C7—C2—C1—O2154.22 (11)N1—C13—C12—C110.43 (18)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the pyridine ring.
D—H···AD—HH···AD···AD—H···A
N2—H21···O2ii0.866 (18)2.078 (18)2.8774 (13)153.3 (16)
N2—H22···O4iii0.86 (2)2.05 (2)2.8936 (15)166 (2)
O5—H51···O4iv0.81 (2)2.08 (2)2.8628 (12)161.1 (19)
O5—H52···O2i0.85 (2)1.84 (2)2.6634 (13)163 (2)
C6—H6···O2iv0.932.383.3053 (15)172
C13—H13···O3v0.932.483.3081 (18)148
C4—H4···Cgvi0.932.743.6489 (14)167
Symmetry codes: (i) x, y, z; (ii) x, y, z1; (iii) x1, y, z1; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C8H5O3)2(C6H6N2O)2(H2O)2]
Mr637.22
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.7633 (2), 9.8173 (3), 9.8222 (3)
α, β, γ (°)78.260 (3), 71.489 (2), 86.584 (3)
V3)695.01 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.52 × 0.32 × 0.30
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.693, 0.805
No. of measured, independent and
observed [I > 2σ(I)] reflections
12101, 3492, 3429
Rint0.017
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.063, 1.07
No. of reflections3492
No. of parameters216
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.42

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the pyridine ring.
D—H···AD—HH···AD···AD—H···A
N2—H21···O2i0.866 (18)2.078 (18)2.8774 (13)153.3 (16)
N2—H22···O4ii0.86 (2)2.05 (2)2.8936 (15)166 (2)
O5—H51···O4iii0.81 (2)2.08 (2)2.8628 (12)161.1 (19)
O5—H52···O2iv0.85 (2)1.84 (2)2.6634 (13)163 (2)
C6—H6···O2iii0.932.38003.3053 (15)172
C13—H13···O3v0.932.48003.3081 (18)148
C4—H4···Cgvi0.932.73703.6489 (14)167
Symmetry codes: (i) x, y, z1; (ii) x1, y, z1; (iii) x+1, y, z; (iv) x, y, z; (v) x+1, y+1, z; (vi) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds