Download citation
Download citation
link to html
The asymmetric unit of the polymeric title compound, {[Cu2(C10H2O8)(C3H4N2)4(H2O)2]·C3H7NO}n, contains two independent CuII ions, each coordinated by one water mol­ecule, two imidazole N atoms and two carboxyl­ate O atoms from benzene-1,2,4,5-tetra­carboxyl­ate anions in a distorted square-pyramidal geometry. The benzene-1,2,4,5-tetra­carboxyl­ate anion bridges four CuII ions, forming a polymeric sheet parallel to (010). In the crystal, extensive N—H...O and O—H...O hydrogen bonds link the polymeric sheets and di­methyl­formamide solvent mol­ecules into a three-dimensional supra­molecular structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536813010246/xu5689sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536813010246/xu5689Isup2.hkl
Contains datablock I

CCDC reference: 954201

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.040
  • wR factor = 0.153
  • Data-to-parameter ratio = 12.8

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT919_ALERT_3_B Reflection # Likely Affected by the Beamstop ... 2 PLAT934_ALERT_3_B Number of (Iobs-Icalc)/SigmaW .gt. 10 Outliers . 6 PLAT939_ALERT_3_B Large Value of Not (SHELXL) Weight Optimized S . 176.55
Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.7 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for O3 -- C4 .. 5.5 su PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of N9 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C22 H22 Cu2 N8 O10 PLAT905_ALERT_3_C Negative K value in the Analysis of Variance ... -0.169 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.597 43 PLAT918_ALERT_3_C Reflection(s) # with I(obs) much smaller I(calc) 5 PLAT975_ALERT_2_C Positive Residual Density at 0.77A from O4 . 0.44 eA-3 PLAT976_ALERT_2_C Negative Residual Density at 0.96A from O10 . -0.41 eA-3
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C25 H29 Cu2 N9 O11 Atom count from _chemical_formula_moiety: PLAT004_ALERT_5_G Info: Polymeric Structure Found with Dimension . 2 PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF ? PLAT007_ALERT_5_G Note: Number of Unrefined D-H Atoms ............ 8 PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ ? PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 5 O5 -CU1 -O1 -C1 -13.00 2.00 4.676 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 17 N5 -CU2 -N7 -C20 -105.70 1.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 21 N5 -CU2 -N7 -C22 79.80 1.10 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 33 N7 -CU2 -N5 -C17 -156.00 0.90 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 37 N7 -CU2 -N5 -C19 27.00 1.20 1.555 1.555 1.555 1.555 PLAT794_ALERT_5_G Note: Tentative Bond Valency for Cu1 (II) 2.11 PLAT794_ALERT_5_G Note: Tentative Bond Valency for Cu2 (II) 2.08 PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 55 Perc.
0 ALERT level A = Most likely a serious problem - resolve or explain 3 ALERT level B = A potentially serious problem, consider carefully 9 ALERT level C = Check. Ensure it is not caused by an omission or oversight 13 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 7 ALERT type 3 Indicator that the structure quality may be low 7 ALERT type 4 Improvement, methodology, query or suggestion 5 ALERT type 5 Informative message, check

Comment top

In recent years, many successful implementation of crystal engineering concepts has produced a great deal of coordination and supramolecular networks (Andruh et al., 2011), many of which exhibit unusual and fascinating architectures (Clarke et al., 2012). The benzene-1,2,4,5-teracarboxylate ligand as a multi-connecting ligand is also an excellent candidate for the structuring of coordination networks (Jiang et al., 2008), and comparatively few examples have been reported in relation to applying it to the building of coordination polymers (Aghabozorg et al., 2007; Chu et al., 2001; Liu & Ding, 2007; Wu et al., 2006). Here, the title complex, {[Cu2(idz)4(btc)(H2O)2].DMF}n (idz=imidazole, DMF=N,N-dimethylformamide, btc=benzene-1,2,4,5-tetracarboxylato), (I), represents as a novel example.

As shown in Figure 1, the asymmetric unit of (I) consists of two crystallographically independent CuII atoms. Both are five-coordinate in a slight distorted tetragonal pyramid geometry, and chemical environment of them are similar. Each CuII cation is surrounded by two O atoms from two btc tetraanions, two N atoms from two monodentate idz ligands, and one water molecule (O9 or O10) which occupies the axial position. All the bond lengths fall within the typical range of Cu—N bond and Cu—O bond lengths (Luo et al., 2007; Yang et al., 2004).

Cu1 and Cu2 are bridged by a btc tetraanion, which acts as µ4-bridge, forming a two-dimensional sheet along the a,c axis, as shown in Figure 2. The structure can be regarded as a grid sheets with (4,4) net topology which is constructed through CuII centers bridged by btc tetraanions. Adjacent two-dimensional sheets are parallel and are linked via hydrogen-bonding interactions (see Table 1) through uncoordinated DMF solvent molecules to form a sandwich structure(Zhan & Li, 2010).

Related literature top

For background to the benzene-1,2,4,5-teracarboxylate ligand in coordination polymers, see: Andruh et al. (2011); Clarke et al. (2012); Jiang et al. (2008); Aghabozorg et al. (2007); Chu et al. (2001); Liu & Ding (2007); Wu et al. (2006). For related structures, see: Zhan & Li (2010); Luo et al. (2007); Yang et al. (2004). For the synthesis, see: Zhao et al. (2010).

Experimental top

A dimethylformamide (DMF) solution (20 ml) of benzene-1,2,4,5-tetracarboxylic acid (0.1 mmol,0.0254 g) was added dropwise to an aqueous solution (10 ml) containing copper sulfate pentahydrate (0.2 mmol,0.0498 g), N,N-carbonyldiimidazole (0.3 mmol,0.0486 g) and NaOH (0.01 mmol, 0.0004 g) at room temperature (Zhao et al., 2010). The reaction mixture was filtered and the filtrate was left to stand for about three weeks until blue single crystals were obtained (yield 31%, based on Cu).

Refinement top

The nitrogen H atoms were refined subject to the restraint N—H = 0.86 Å. The water H atoms were refined subject to the restraint O—H = 0.85 Å. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of C—H = 0.93-0.96 Å. Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O).

Structure description top

In recent years, many successful implementation of crystal engineering concepts has produced a great deal of coordination and supramolecular networks (Andruh et al., 2011), many of which exhibit unusual and fascinating architectures (Clarke et al., 2012). The benzene-1,2,4,5-teracarboxylate ligand as a multi-connecting ligand is also an excellent candidate for the structuring of coordination networks (Jiang et al., 2008), and comparatively few examples have been reported in relation to applying it to the building of coordination polymers (Aghabozorg et al., 2007; Chu et al., 2001; Liu & Ding, 2007; Wu et al., 2006). Here, the title complex, {[Cu2(idz)4(btc)(H2O)2].DMF}n (idz=imidazole, DMF=N,N-dimethylformamide, btc=benzene-1,2,4,5-tetracarboxylato), (I), represents as a novel example.

As shown in Figure 1, the asymmetric unit of (I) consists of two crystallographically independent CuII atoms. Both are five-coordinate in a slight distorted tetragonal pyramid geometry, and chemical environment of them are similar. Each CuII cation is surrounded by two O atoms from two btc tetraanions, two N atoms from two monodentate idz ligands, and one water molecule (O9 or O10) which occupies the axial position. All the bond lengths fall within the typical range of Cu—N bond and Cu—O bond lengths (Luo et al., 2007; Yang et al., 2004).

Cu1 and Cu2 are bridged by a btc tetraanion, which acts as µ4-bridge, forming a two-dimensional sheet along the a,c axis, as shown in Figure 2. The structure can be regarded as a grid sheets with (4,4) net topology which is constructed through CuII centers bridged by btc tetraanions. Adjacent two-dimensional sheets are parallel and are linked via hydrogen-bonding interactions (see Table 1) through uncoordinated DMF solvent molecules to form a sandwich structure(Zhan & Li, 2010).

For background to the benzene-1,2,4,5-teracarboxylate ligand in coordination polymers, see: Andruh et al. (2011); Clarke et al. (2012); Jiang et al. (2008); Aghabozorg et al. (2007); Chu et al. (2001); Liu & Ding (2007); Wu et al. (2006). For related structures, see: Zhan & Li (2010); Luo et al. (2007); Yang et al. (2004). For the synthesis, see: Zhao et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the (I) with the atom numbering, showing displacement ellipsoids at the 30% probability level. H atoms and DMF molecule have been omitted for clarity.
[Figure 2] Fig. 2. Perspective view of the 2-D sheet of (I).
Poly[[diaqua(µ4-benzene-1,2,4,5-tetracarboxylato)tetrakis(1H-imidazole-κN3)dicopper(II)] N,N-dimethylformamide monosolvate] top
Crystal data top
[Cu2(C10H2O8)(C3H4N2)4(H2O)2]·C3H7NOF(000) = 1552
Mr = 758.65Dx = 1.638 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4538 reflections
a = 8.999 (4) Åθ = 2.3–25.1°
b = 19.296 (8) ŵ = 1.46 mm1
c = 18.926 (7) ÅT = 298 K
β = 110.590 (18)°Block, blue
V = 3076 (2) Å30.23 × 0.21 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
5445 independent reflections
Radiation source: fine-focus sealed tube4149 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 25.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 107
Tmin = 0.731, Tmax = 0.811k = 1123
17289 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.094P)2 + 0.3347P]
where P = (Fo2 + 2Fc2)/3
5445 reflections(Δ/σ)max = 0.001
426 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Cu2(C10H2O8)(C3H4N2)4(H2O)2]·C3H7NOV = 3076 (2) Å3
Mr = 758.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.999 (4) ŵ = 1.46 mm1
b = 19.296 (8) ÅT = 298 K
c = 18.926 (7) Å0.23 × 0.21 × 0.15 mm
β = 110.590 (18)°
Data collection top
Bruker APEXII area-detector
diffractometer
5445 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4149 reflections with I > 2σ(I)
Tmin = 0.731, Tmax = 0.811Rint = 0.038
17289 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.11Δρmax = 0.51 e Å3
5445 reflectionsΔρmin = 0.60 e Å3
426 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.49949 (5)0.66350 (3)0.40320 (2)0.02190 (17)
Cu20.01800 (5)0.90670 (3)0.40567 (2)0.02186 (17)
O30.0200 (3)0.83286 (14)0.32205 (15)0.0254 (6)
O40.1425 (4)0.90382 (15)0.26628 (17)0.0308 (7)
O20.3393 (3)0.77371 (15)0.32593 (16)0.0302 (7)
O10.3008 (3)0.65963 (14)0.31383 (15)0.0265 (7)
O50.3003 (3)0.82712 (14)0.00888 (15)0.0259 (7)
O60.3577 (3)0.71481 (15)0.01062 (16)0.0289 (7)
O80.0973 (4)0.58140 (16)0.04247 (18)0.0432 (9)
O70.0517 (3)0.66614 (14)0.02611 (14)0.0245 (6)
O100.0235 (3)0.98875 (15)0.34694 (16)0.0313 (7)
H10A0.01561.02620.36900.047*
H10B0.11660.98550.34540.047*
O90.5490 (4)0.54417 (17)0.41879 (19)0.0445 (8)
H9B0.59930.53560.46510.067*
H9C0.46120.52250.40440.067*
N10.6196 (4)0.67888 (18)0.33332 (19)0.0276 (8)
N70.2465 (4)0.91606 (18)0.34494 (19)0.0273 (8)
N30.3720 (4)0.67091 (19)0.4723 (2)0.0316 (9)
N50.2083 (4)0.91014 (18)0.47251 (19)0.0265 (8)
C70.2741 (4)0.7665 (2)0.0167 (2)0.0227 (9)
C20.1268 (4)0.7328 (2)0.2199 (2)0.0193 (8)
C40.0744 (4)0.8489 (2)0.2715 (2)0.0224 (9)
C10.2665 (4)0.7223 (2)0.2915 (2)0.0247 (9)
C100.0832 (4)0.6832 (2)0.1639 (2)0.0220 (9)
H100.13800.64140.17180.026*
N80.5031 (4)0.8996 (2)0.2980 (2)0.0443 (11)
H8N0.59590.88400.29280.053*
C30.0416 (4)0.7953 (2)0.20941 (19)0.0173 (8)
C60.1278 (4)0.7559 (2)0.0861 (2)0.0191 (8)
C80.0412 (4)0.6942 (2)0.09592 (19)0.0176 (8)
C50.0858 (4)0.8058 (2)0.1428 (2)0.0220 (9)
H50.14380.84670.13600.026*
C130.5758 (6)0.6644 (3)0.2580 (3)0.0410 (12)
H130.49160.63600.23080.049*
C170.3268 (5)0.8762 (2)0.4620 (3)0.0358 (11)
H170.31610.84770.42090.043*
C110.7426 (5)0.7202 (2)0.3478 (3)0.0310 (10)
H110.79810.73850.39530.037*
N60.4627 (4)0.8883 (2)0.5180 (2)0.0450 (11)
H6N0.55400.87150.52220.054*
C200.3691 (5)0.8842 (2)0.3536 (2)0.0336 (11)
H200.36220.85470.39350.040*
C90.0702 (4)0.6424 (2)0.0330 (2)0.0239 (9)
N20.7785 (5)0.7327 (2)0.2862 (2)0.0396 (10)
H2N0.85430.75840.28340.047*
C140.4166 (6)0.6577 (3)0.5468 (3)0.0455 (13)
H140.50650.63260.57450.055*
C190.2747 (5)0.9448 (3)0.5398 (3)0.0404 (12)
H190.22000.97270.56260.048*
C220.3115 (6)0.9542 (3)0.2796 (3)0.0466 (14)
H220.25480.98280.25860.056*
C210.4691 (6)0.9439 (3)0.2511 (3)0.0531 (15)
H210.54050.96350.20740.064*
C180.4314 (6)0.9319 (3)0.5673 (3)0.0496 (14)
H180.50460.94950.61160.060*
N40.2023 (5)0.7178 (3)0.5191 (3)0.0549 (12)
H4N0.12220.74050.52180.066*
C160.2400 (5)0.7077 (3)0.4577 (3)0.0441 (12)
H160.18060.72460.41010.053*
C150.3138 (7)0.6855 (4)0.5755 (4)0.0633 (17)
H150.31920.68280.62540.076*
C120.6730 (6)0.6973 (3)0.2298 (3)0.0525 (14)
H120.66830.69600.17990.063*
O111.2716 (4)0.4804 (2)0.4224 (2)0.0636 (12)
N91.0139 (5)0.5105 (2)0.3827 (3)0.0555 (12)
C240.9597 (8)0.4537 (4)0.4157 (4)0.073 (2)
H24A0.94360.41390.38340.110*
H24B0.86140.46600.42170.110*
H24C1.03760.44310.46410.110*
C231.1617 (7)0.5176 (3)0.3867 (3)0.0634 (17)
H231.18430.55420.36000.076*
C250.8863 (10)0.5547 (4)0.3310 (6)0.132 (4)
H25A0.93200.58770.30660.198*
H25B0.83270.57880.35950.198*
H25C0.81170.52610.29360.198*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0181 (3)0.0249 (3)0.0169 (3)0.00076 (19)0.00107 (19)0.0007 (2)
Cu20.0243 (3)0.0221 (3)0.0170 (3)0.00021 (19)0.0045 (2)0.00088 (19)
O30.0329 (15)0.0251 (17)0.0207 (14)0.0055 (12)0.0123 (12)0.0071 (12)
O40.0410 (17)0.0231 (18)0.0303 (16)0.0099 (13)0.0149 (13)0.0024 (13)
O20.0269 (15)0.0292 (18)0.0246 (15)0.0017 (13)0.0034 (12)0.0083 (13)
O10.0223 (13)0.0270 (18)0.0223 (15)0.0006 (12)0.0017 (11)0.0024 (13)
O50.0264 (14)0.0209 (17)0.0222 (15)0.0019 (12)0.0017 (11)0.0024 (12)
O60.0229 (14)0.0276 (18)0.0291 (16)0.0052 (12)0.0003 (12)0.0042 (13)
O80.074 (2)0.0191 (19)0.0305 (18)0.0097 (16)0.0105 (16)0.0003 (14)
O70.0304 (14)0.0242 (17)0.0184 (14)0.0015 (12)0.0081 (11)0.0029 (12)
O100.0335 (15)0.0196 (17)0.0401 (17)0.0000 (13)0.0120 (13)0.0002 (13)
O90.0472 (19)0.030 (2)0.053 (2)0.0015 (15)0.0126 (16)0.0056 (16)
N10.0276 (18)0.026 (2)0.0263 (19)0.0016 (15)0.0055 (14)0.0036 (15)
N70.0266 (18)0.029 (2)0.0240 (18)0.0003 (15)0.0060 (14)0.0036 (15)
N30.0258 (18)0.035 (2)0.032 (2)0.0033 (15)0.0071 (15)0.0034 (17)
N50.0288 (18)0.023 (2)0.0249 (18)0.0021 (15)0.0064 (14)0.0010 (15)
C70.0177 (18)0.029 (3)0.020 (2)0.0013 (17)0.0060 (15)0.0044 (18)
C20.0225 (18)0.022 (2)0.0096 (17)0.0001 (16)0.0008 (14)0.0012 (15)
C40.0200 (18)0.020 (2)0.022 (2)0.0035 (16)0.0009 (15)0.0021 (17)
C10.0188 (18)0.029 (3)0.024 (2)0.0015 (17)0.0045 (16)0.0004 (19)
C100.0226 (19)0.019 (2)0.023 (2)0.0034 (16)0.0061 (15)0.0001 (17)
N80.0246 (19)0.055 (3)0.046 (2)0.0078 (18)0.0035 (17)0.006 (2)
C30.0184 (17)0.019 (2)0.0125 (18)0.0038 (15)0.0034 (14)0.0031 (15)
C60.0233 (18)0.020 (2)0.0109 (17)0.0009 (16)0.0029 (14)0.0005 (15)
C80.0197 (17)0.021 (2)0.0102 (17)0.0042 (16)0.0028 (13)0.0008 (15)
C50.0210 (18)0.021 (2)0.022 (2)0.0009 (16)0.0042 (15)0.0005 (17)
C130.041 (3)0.057 (4)0.023 (2)0.012 (2)0.0088 (19)0.012 (2)
C170.038 (2)0.036 (3)0.031 (2)0.004 (2)0.0090 (19)0.006 (2)
C110.033 (2)0.023 (3)0.039 (3)0.0059 (19)0.0151 (19)0.0070 (19)
N60.029 (2)0.054 (3)0.042 (2)0.0132 (19)0.0003 (17)0.006 (2)
C200.035 (2)0.035 (3)0.027 (2)0.002 (2)0.0065 (18)0.004 (2)
C90.0205 (19)0.024 (2)0.021 (2)0.0015 (17)0.0008 (15)0.0011 (17)
N20.046 (2)0.044 (3)0.037 (2)0.0142 (19)0.0242 (18)0.0041 (19)
C140.047 (3)0.058 (4)0.033 (3)0.007 (2)0.014 (2)0.014 (2)
C190.039 (3)0.041 (3)0.030 (3)0.009 (2)0.0005 (19)0.016 (2)
C220.043 (3)0.065 (4)0.026 (2)0.006 (3)0.005 (2)0.023 (2)
C210.034 (3)0.081 (4)0.036 (3)0.001 (3)0.002 (2)0.031 (3)
C180.036 (3)0.057 (4)0.042 (3)0.005 (2)0.004 (2)0.023 (3)
N40.055 (3)0.064 (3)0.058 (3)0.011 (2)0.034 (2)0.005 (2)
C160.037 (3)0.051 (3)0.049 (3)0.008 (2)0.022 (2)0.006 (3)
C150.064 (4)0.084 (5)0.054 (4)0.000 (3)0.036 (3)0.000 (3)
C120.059 (3)0.069 (4)0.036 (3)0.011 (3)0.026 (2)0.008 (3)
O110.042 (2)0.055 (3)0.082 (3)0.0004 (18)0.0066 (19)0.027 (2)
N90.042 (2)0.043 (3)0.076 (3)0.006 (2)0.014 (2)0.014 (2)
C240.083 (4)0.071 (5)0.078 (5)0.021 (4)0.044 (4)0.027 (4)
C230.068 (4)0.048 (4)0.062 (4)0.014 (3)0.008 (3)0.002 (3)
C250.091 (6)0.083 (6)0.173 (10)0.048 (5)0.014 (6)0.025 (6)
Geometric parameters (Å, º) top
Cu1—N12.003 (4)C3—C51.389 (5)
Cu1—N32.025 (4)C6—C51.393 (5)
Cu1—O11.984 (3)C6—C81.398 (5)
Cu1—O5i1.985 (3)C8—C91.506 (5)
Cu1—O92.344 (3)C5—H50.9300
Cu2—N51.985 (3)C13—C121.335 (7)
Cu2—N71.980 (3)C13—H130.9300
Cu2—O32.243 (3)C17—N61.327 (6)
Cu2—O7ii2.003 (3)C17—H170.9300
Cu2—O102.043 (3)C11—N21.337 (6)
O3—C41.257 (5)C11—H110.9300
O4—C41.245 (5)N6—C181.358 (6)
O2—C11.240 (5)N6—H6N0.8600
O1—C11.282 (5)C20—H200.9300
O5—C71.256 (5)N2—C121.340 (6)
O5—Cu1iii1.985 (3)N2—H2N0.8600
O6—C71.247 (5)C14—C151.339 (8)
O8—C91.228 (5)C14—H140.9300
O7—C91.273 (5)C19—C181.344 (6)
O7—Cu2iv2.003 (3)C19—H190.9300
O10—H10A0.8500C22—C211.344 (7)
O10—H10B0.8500C22—H220.9300
O9—H9B0.8499C21—H210.9300
O9—H9C0.8500C18—H180.9300
N1—C111.312 (5)N4—C161.335 (7)
N1—C131.367 (6)N4—C151.335 (7)
N7—C201.323 (6)N4—H4N0.8600
N7—C221.380 (5)C16—H160.9300
N3—C161.327 (6)C15—H150.9300
N3—C141.348 (6)C12—H120.9300
N5—C171.325 (6)O11—C231.217 (7)
N5—C191.376 (5)N9—C231.313 (8)
C7—C61.512 (5)N9—C241.429 (8)
C2—C101.378 (5)N9—C251.487 (8)
C2—C31.406 (5)C24—H24A0.9600
C2—C11.503 (5)C24—H24B0.9600
C4—C31.514 (5)C24—H24C0.9600
C10—C81.393 (5)C23—H230.9300
C10—H100.9300C25—H25A0.9600
N8—C201.327 (6)C25—H25B0.9600
N8—C211.342 (6)C25—H25C0.9600
N8—H8N0.8600
O1—Cu1—O5i176.77 (12)C3—C5—C6120.8 (4)
O1—Cu1—N188.65 (13)C3—C5—H5119.6
O5i—Cu1—N189.92 (13)C6—C5—H5119.6
O1—Cu1—N390.46 (13)C12—C13—N1109.2 (4)
O5i—Cu1—N390.31 (13)C12—C13—H13125.4
N1—Cu1—N3167.36 (15)N1—C13—H13125.4
O1—Cu1—O998.32 (12)N5—C17—N6111.0 (4)
O5i—Cu1—O984.71 (12)N5—C17—H17124.5
N1—Cu1—O996.07 (13)N6—C17—H17124.5
N3—Cu1—O996.53 (14)N1—C11—N2111.8 (4)
N7—Cu2—N5172.01 (15)N1—C11—H11124.1
N7—Cu2—O7ii94.38 (13)N2—C11—H11124.1
N5—Cu2—O7ii88.09 (13)C17—N6—C18107.6 (4)
N7—Cu2—O1087.98 (13)C17—N6—H6N126.2
N5—Cu2—O1088.73 (13)C18—N6—H6N126.2
O7ii—Cu2—O10173.16 (12)N7—C20—N8111.2 (4)
N7—Cu2—O391.92 (13)N7—C20—H20124.4
N5—Cu2—O395.39 (13)N8—C20—H20124.4
O7ii—Cu2—O395.99 (11)O8—C9—O7124.6 (4)
O10—Cu2—O390.34 (12)O8—C9—C8120.6 (4)
C4—O3—Cu2125.3 (3)O7—C9—C8114.6 (4)
C1—O1—Cu1106.6 (2)C11—N2—C12106.3 (4)
C7—O5—Cu1iii113.6 (2)C11—N2—H2N126.8
C9—O7—Cu2iv114.2 (3)C12—N2—H2N126.8
Cu2—O10—H10A109.2C15—C14—N3110.8 (5)
Cu2—O10—H10B109.3C15—C14—H14124.6
H10A—O10—H10B109.5N3—C14—H14124.6
Cu1—O9—H9B109.2C18—C19—N5108.8 (4)
Cu1—O9—H9C109.3C18—C19—H19125.6
H9B—O9—H9C109.5N5—C19—H19125.6
C11—N1—C13104.8 (4)C21—C22—N7109.6 (4)
C11—N1—Cu1124.3 (3)C21—C22—H22125.2
C13—N1—Cu1129.3 (3)N7—C22—H22125.2
C20—N7—C22104.5 (4)N8—C21—C22106.4 (4)
C20—N7—Cu2128.8 (3)N8—C21—H21126.8
C22—N7—Cu2126.5 (3)C22—C21—H21126.8
C16—N3—C14103.6 (4)C19—C18—N6107.0 (4)
C16—N3—Cu1124.9 (3)C19—C18—H18126.5
C14—N3—Cu1129.4 (3)N6—C18—H18126.5
C17—N5—C19105.7 (4)C16—N4—C15106.2 (5)
C17—N5—Cu2126.0 (3)C16—N4—H4N126.9
C19—N5—Cu2128.3 (3)C15—N4—H4N126.9
O6—C7—O5125.6 (3)N3—C16—N4112.3 (5)
O6—C7—C6117.8 (4)N3—C16—H16123.9
O5—C7—C6116.7 (3)N4—C16—H16123.9
C10—C2—C3119.5 (3)N4—C15—C14107.1 (5)
C10—C2—C1121.4 (4)N4—C15—H15126.4
C3—C2—C1119.0 (3)C14—C15—H15126.4
O4—C4—O3127.1 (4)C13—C12—N2107.8 (5)
O4—C4—C3119.1 (4)C13—C12—H12126.1
O3—C4—C3113.6 (3)N2—C12—H12126.1
O2—C1—O1124.0 (3)C23—N9—C24123.4 (5)
O2—C1—C2119.0 (4)C23—N9—C25120.7 (7)
O1—C1—C2116.9 (3)C24—N9—C25115.0 (6)
C2—C10—C8121.6 (4)N9—C24—H24A109.5
C2—C10—H10119.2N9—C24—H24B109.5
C8—C10—H10119.2H24A—C24—H24B109.5
C20—N8—C21108.2 (4)N9—C24—H24C109.5
C20—N8—H8N125.9H24A—C24—H24C109.5
C21—N8—H8N125.9H24B—C24—H24C109.5
C5—C3—C2119.3 (3)O11—C23—N9125.4 (6)
C5—C3—C4118.6 (3)O11—C23—H23117.3
C2—C3—C4121.9 (3)N9—C23—H23117.3
C5—C6—C8119.9 (3)N9—C25—H25A109.5
C5—C6—C7119.6 (3)N9—C25—H25B109.5
C8—C6—C7120.4 (3)H25A—C25—H25B109.5
C10—C8—C6118.8 (3)N9—C25—H25C109.5
C10—C8—C9119.3 (3)H25A—C25—H25C109.5
C6—C8—C9121.7 (3)H25B—C25—H25C109.5
N7—Cu2—O3—C498.4 (3)C1—C2—C3—C47.1 (5)
N5—Cu2—O3—C478.3 (3)O4—C4—C3—C578.2 (5)
O7ii—Cu2—O3—C4167.0 (3)O3—C4—C3—C598.4 (4)
O10—Cu2—O3—C410.4 (3)O4—C4—C3—C2107.7 (4)
O5i—Cu1—O1—C113 (2)O3—C4—C3—C275.7 (5)
N1—Cu1—O1—C176.3 (3)O6—C7—C6—C5141.6 (4)
N3—Cu1—O1—C191.1 (3)O5—C7—C6—C538.7 (5)
O9—Cu1—O1—C1172.2 (3)O6—C7—C6—C833.9 (5)
O1—Cu1—N1—C11142.5 (4)O5—C7—C6—C8145.8 (4)
O5i—Cu1—N1—C1134.6 (3)C2—C10—C8—C63.0 (6)
N3—Cu1—N1—C1156.4 (7)C2—C10—C8—C9172.2 (4)
O9—Cu1—N1—C11119.3 (3)C5—C6—C8—C102.0 (6)
O1—Cu1—N1—C1320.6 (4)C7—C6—C8—C10173.5 (3)
O5i—Cu1—N1—C13162.3 (4)C5—C6—C8—C9173.0 (4)
N3—Cu1—N1—C13106.6 (7)C7—C6—C8—C911.5 (6)
O9—Cu1—N1—C1377.7 (4)C2—C3—C5—C61.3 (6)
N5—Cu2—N7—C20105.7 (10)C4—C3—C5—C6175.5 (4)
O7ii—Cu2—N7—C202.1 (4)C8—C6—C5—C30.1 (6)
O10—Cu2—N7—C20171.5 (4)C7—C6—C5—C3175.6 (3)
O3—Cu2—N7—C2098.3 (4)C11—N1—C13—C120.1 (6)
N5—Cu2—N7—C2279.8 (11)Cu1—N1—C13—C12165.4 (4)
O7ii—Cu2—N7—C22172.4 (4)C19—N5—C17—N60.8 (5)
O10—Cu2—N7—C2214.0 (4)Cu2—N5—C17—N6178.3 (3)
O3—Cu2—N7—C2276.2 (4)C13—N1—C11—N20.2 (5)
O1—Cu1—N3—C1639.4 (4)Cu1—N1—C11—N2166.3 (3)
O5i—Cu1—N3—C16137.5 (4)N5—C17—N6—C180.2 (6)
N1—Cu1—N3—C1646.5 (8)C22—N7—C20—N80.7 (5)
O9—Cu1—N3—C16137.8 (4)Cu2—N7—C20—N8174.8 (3)
O1—Cu1—N3—C14160.2 (4)C21—N8—C20—N70.7 (6)
O5i—Cu1—N3—C1423.0 (4)Cu2iv—O7—C9—O814.0 (5)
N1—Cu1—N3—C14114.0 (6)Cu2iv—O7—C9—C8160.5 (2)
O9—Cu1—N3—C1461.7 (4)C10—C8—C9—O858.3 (5)
N7—Cu2—N5—C17156.0 (9)C6—C8—C9—O8126.6 (4)
O7ii—Cu2—N5—C1795.8 (4)C10—C8—C9—O7116.4 (4)
O10—Cu2—N5—C1790.3 (4)C6—C8—C9—O758.6 (5)
O3—Cu2—N5—C170.1 (4)N1—C11—N2—C120.2 (6)
N7—Cu2—N5—C1927.0 (12)C16—N3—C14—C150.3 (6)
O7ii—Cu2—N5—C1981.2 (4)Cu1—N3—C14—C15163.9 (4)
O10—Cu2—N5—C1992.8 (4)C17—N5—C19—C181.1 (6)
O3—Cu2—N5—C19177.0 (4)Cu2—N5—C19—C18178.6 (4)
Cu1iii—O5—C7—O63.3 (5)C20—N7—C22—C210.4 (6)
Cu1iii—O5—C7—C6177.1 (2)Cu2—N7—C22—C21175.2 (4)
Cu2—O3—C4—O413.8 (5)C20—N8—C21—C220.4 (7)
Cu2—O3—C4—C3162.4 (2)N7—C22—C21—N80.0 (7)
Cu1—O1—C1—O26.3 (5)N5—C19—C18—N61.1 (7)
Cu1—O1—C1—C2175.1 (3)C17—N6—C18—C190.5 (6)
C10—C2—C1—O2152.4 (4)C14—N3—C16—N40.2 (6)
C3—C2—C1—O226.0 (6)Cu1—N3—C16—N4164.4 (3)
C10—C2—C1—O128.9 (6)C15—N4—C16—N30.6 (7)
C3—C2—C1—O1152.7 (4)C16—N4—C15—C140.8 (7)
C3—C2—C10—C81.8 (6)N3—C14—C15—N40.7 (7)
C1—C2—C10—C8176.7 (4)N1—C13—C12—N20.0 (7)
C10—C2—C3—C50.3 (6)C11—N2—C12—C130.1 (6)
C1—C2—C3—C5178.8 (3)C24—N9—C23—O115.1 (10)
C10—C2—C3—C4174.4 (4)C25—N9—C23—O11173.7 (6)
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x1, y+3/2, z1/2; (iv) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O3v0.862.012.807 (5)153
N4—H4N···O7ii0.862.353.099 (5)146
N6—H6N···O6i0.862.032.733 (5)138
N8—H8N···O2vi0.862.352.952 (5)127
N8—H8N···O4vi0.862.263.033 (6)149
O9—H9B···O11vii0.852.062.909 (5)177
O9—H9C···O11vi0.852.022.805 (6)153
O10—H10A···O8viii0.851.902.655 (4)147
O10—H10B···O40.852.242.703 (5)114
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2; (v) x+1, y, z; (vi) x1, y, z; (vii) x+2, y+1, z+1; (viii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C10H2O8)(C3H4N2)4(H2O)2]·C3H7NO
Mr758.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.999 (4), 19.296 (8), 18.926 (7)
β (°) 110.590 (18)
V3)3076 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.23 × 0.21 × 0.15
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.731, 0.811
No. of measured, independent and
observed [I > 2σ(I)] reflections
17289, 5445, 4149
Rint0.038
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.153, 1.11
No. of reflections5445
No. of parameters426
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.60

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N12.003 (4)Cu2—N51.985 (3)
Cu1—N32.025 (4)Cu2—N71.980 (3)
Cu1—O11.984 (3)Cu2—O32.243 (3)
Cu1—O5i1.985 (3)Cu2—O7ii2.003 (3)
Cu1—O92.344 (3)Cu2—O102.043 (3)
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O3iii0.862.012.807 (5)153
N4—H4N···O7ii0.862.353.099 (5)146
N6—H6N···O6i0.862.032.733 (5)138
N8—H8N···O2iv0.862.352.952 (5)127
N8—H8N···O4iv0.862.263.033 (6)149
O9—H9B···O11v0.852.062.909 (5)177
O9—H9C···O11iv0.852.022.805 (6)153
O10—H10A···O8vi0.851.902.655 (4)147
O10—H10B···O40.852.242.703 (5)114
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x+1, y, z; (iv) x1, y, z; (v) x+2, y+1, z+1; (vi) x, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds