Download citation
Download citation
link to html
In the title compound, C21H14BrFO2S, the dihedral angles between the mean plane [r.m.s. deviation = 0.005 (1) Å] of the benzo­furan ring system and the pendant 4-fluoro­phenyl and phenyl rings are 1.50 (8) and 81.47 (6)°, respectively. In the crystal, mol­ecules are linked by weak C—H...O hydrogen bonds into supra­molecular chains running along the a-axis direction. A short S...O contact [2.9623 (13) Å] involving the sulfinyl groups is observed between inversion-related chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536813016760/xu5714sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536813016760/xu5714Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536813016760/xu5714Isup3.cml
Supplementary material

CCDC reference: 962134

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.029
  • wR factor = 0.075
  • Data-to-parameter ratio = 18.3

checkCIF/PLATON results

No syntax errors found



Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF ? Do ! PLAT154_ALERT_1_G The su's on the Cell Angles are Equal .......... 0.00100 Deg. PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 23
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 0 ALERT level C = Check. Ensure it is not caused by an omission or oversight 3 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

As a part of our continuing study of 5-bromo-3-phenylsulfinyl-1-benzofuran derivatives containing phenyl (Choi et al., 2009) and 4-fluorophenyl (Seo et al., 2011) substituents in 2-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.005 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angles between the mean plane of the benzofuran ring system and the pendant 4-fluorophenyl and phenyl rings are 1.50 (8) and 81.47 (6)°, respectively. In the crystal structure (Fig. 2), molecules are connected by weak C—H···O hydrogen bonds (Table 1) into chains extending along the a-axis direction, these chains are further packed into stacks by a sulfinyl–sulfinyl interaction (Choi et al., 2008) interpreted as similar to a type-ll carbonyl–carbonyl interaction (Allen et al., 1998), with a S1···O2ii distance of 2.9623 (13) Å [symmetry code: (ii) 1- x, - y, 1- z].

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2009); Seo et al. (2011). For details of sulfinyl–sulfinyl interactions, see: Choi et al. (2008). For a review of carbonyl–carbonyl interactions, see: Allen et al. (1998).

Experimental top

3-Chloroperoxybenzoic acid (77%, 202 mg, 0.9 mmol) was added in small portions to a stirred solution of 5-bromo-2-(4-fluorophenyl)-7-methyl-3-phenylsulfanyl-1-benzofuran (330 mg, 0.8 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 5h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 56%, m.p. 485–486 K; Rf = 0.72 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Structure description top

As a part of our continuing study of 5-bromo-3-phenylsulfinyl-1-benzofuran derivatives containing phenyl (Choi et al., 2009) and 4-fluorophenyl (Seo et al., 2011) substituents in 2-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.005 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angles between the mean plane of the benzofuran ring system and the pendant 4-fluorophenyl and phenyl rings are 1.50 (8) and 81.47 (6)°, respectively. In the crystal structure (Fig. 2), molecules are connected by weak C—H···O hydrogen bonds (Table 1) into chains extending along the a-axis direction, these chains are further packed into stacks by a sulfinyl–sulfinyl interaction (Choi et al., 2008) interpreted as similar to a type-ll carbonyl–carbonyl interaction (Allen et al., 1998), with a S1···O2ii distance of 2.9623 (13) Å [symmetry code: (ii) 1- x, - y, 1- z].

For background information and the crystal structures of related compounds, see: Choi et al. (2009); Seo et al. (2011). For details of sulfinyl–sulfinyl interactions, see: Choi et al. (2008). For a review of carbonyl–carbonyl interactions, see: Allen et al. (1998).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O and S···O interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) -1+x, y, z; (ii) 1+x, y, z; (iii) - x + 1, - y, - z + 1].
5-Bromo-2-(4-fluorophenyl)-7-methyl-3-phenylsulfinyl-1-benzofuran top
Crystal data top
C21H14BrFO2SZ = 2
Mr = 429.29F(000) = 432
Triclinic, P1Dx = 1.640 Mg m3
Hall symbol: -P 1Melting point = 485–486 K
a = 7.9961 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6641 (2) ÅCell parameters from 9897 reflections
c = 11.1695 (2) Åθ = 2.4–28.2°
α = 71.980 (1)°µ = 2.51 mm1
β = 74.694 (1)°T = 173 K
γ = 79.964 (1)°Block, colourless
V = 869.13 (3) Å30.30 × 0.24 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4315 independent reflections
Radiation source: rotating anode3839 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.042
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 2.0°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1414
Tmin = 0.523, Tmax = 0.665l = 1414
20230 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: difference Fourier map
wR(F2) = 0.075H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0333P)2 + 0.4794P]
where P = (Fo2 + 2Fc2)/3
4315 reflections(Δ/σ)max = 0.003
236 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C21H14BrFO2Sγ = 79.964 (1)°
Mr = 429.29V = 869.13 (3) Å3
Triclinic, P1Z = 2
a = 7.9961 (2) ÅMo Kα radiation
b = 10.6641 (2) ŵ = 2.51 mm1
c = 11.1695 (2) ÅT = 173 K
α = 71.980 (1)°0.30 × 0.24 × 0.18 mm
β = 74.694 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4315 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3839 reflections with I > 2σ(I)
Tmin = 0.523, Tmax = 0.665Rint = 0.042
20230 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.05Δρmax = 0.41 e Å3
4315 reflectionsΔρmin = 0.54 e Å3
236 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.53307 (3)0.21563 (2)1.020561 (18)0.03609 (8)
S10.37815 (5)0.14799 (4)0.52980 (4)0.02275 (10)
F10.03254 (17)0.61879 (13)0.03936 (11)0.0404 (3)
O10.26465 (16)0.51907 (12)0.55316 (11)0.0224 (2)
O20.53338 (17)0.07965 (13)0.58227 (14)0.0314 (3)
C10.3368 (2)0.30250 (16)0.56610 (16)0.0210 (3)
C20.3727 (2)0.32575 (17)0.67753 (17)0.0218 (3)
C30.4376 (2)0.24909 (18)0.78483 (17)0.0245 (3)
H30.47300.15700.79750.029*
C40.4476 (2)0.31452 (19)0.87148 (17)0.0266 (4)
C50.3997 (2)0.44971 (19)0.85545 (17)0.0268 (4)
H50.41030.48880.91850.032*
C60.3367 (2)0.52804 (18)0.74877 (17)0.0236 (3)
C70.3256 (2)0.46035 (17)0.66358 (16)0.0217 (3)
C80.2727 (2)0.42141 (16)0.49445 (16)0.0207 (3)
C90.2845 (3)0.67413 (19)0.7268 (2)0.0319 (4)
H9A0.27810.71450.63630.048*
H9B0.37110.71460.74680.048*
H9C0.17030.68870.78300.048*
C100.2095 (2)0.46846 (17)0.37493 (16)0.0216 (3)
C110.2097 (2)0.38651 (18)0.29886 (17)0.0264 (4)
H110.25050.29530.32510.032*
C120.1508 (3)0.4366 (2)0.18517 (18)0.0287 (4)
H120.15200.38100.13280.034*
C130.0906 (2)0.56897 (19)0.15021 (17)0.0274 (4)
C140.0875 (2)0.65295 (19)0.22250 (18)0.0295 (4)
H140.04460.74370.19600.035*
C150.1482 (2)0.60225 (18)0.33472 (17)0.0258 (4)
H150.14820.65920.38540.031*
C160.1908 (2)0.07458 (17)0.64136 (18)0.0240 (3)
C170.2020 (3)0.00195 (19)0.7657 (2)0.0320 (4)
H170.30860.00960.79210.038*
C180.0577 (3)0.0536 (2)0.8510 (2)0.0418 (5)
H180.06430.10300.93680.050*
C190.0970 (3)0.0370 (2)0.8114 (3)0.0456 (6)
H190.19670.07470.87060.055*
C200.1076 (3)0.0339 (2)0.6864 (3)0.0451 (6)
H200.21380.04440.65980.054*
C210.0378 (3)0.0897 (2)0.6001 (2)0.0323 (4)
H210.03240.13760.51380.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03889 (12)0.04419 (13)0.02697 (11)0.00605 (9)0.01581 (8)0.00429 (8)
S10.0246 (2)0.0195 (2)0.0269 (2)0.00332 (16)0.00942 (17)0.01036 (16)
F10.0500 (7)0.0448 (7)0.0276 (6)0.0031 (6)0.0208 (5)0.0026 (5)
O10.0284 (6)0.0190 (6)0.0217 (6)0.0010 (5)0.0067 (5)0.0080 (5)
O20.0268 (6)0.0291 (7)0.0435 (8)0.0083 (5)0.0169 (6)0.0160 (6)
C10.0225 (8)0.0198 (8)0.0220 (8)0.0013 (6)0.0052 (6)0.0078 (6)
C20.0198 (7)0.0231 (8)0.0241 (8)0.0029 (6)0.0045 (6)0.0088 (7)
C30.0234 (8)0.0241 (8)0.0263 (8)0.0025 (7)0.0070 (7)0.0063 (7)
C40.0241 (8)0.0333 (10)0.0228 (8)0.0071 (7)0.0073 (7)0.0045 (7)
C50.0267 (9)0.0341 (10)0.0237 (8)0.0087 (7)0.0028 (7)0.0132 (7)
C60.0230 (8)0.0252 (9)0.0248 (8)0.0069 (7)0.0013 (7)0.0108 (7)
C70.0227 (8)0.0226 (8)0.0202 (8)0.0042 (6)0.0041 (6)0.0062 (6)
C80.0218 (8)0.0204 (8)0.0216 (8)0.0022 (6)0.0033 (6)0.0096 (6)
C90.0400 (11)0.0273 (9)0.0325 (10)0.0052 (8)0.0068 (8)0.0142 (8)
C100.0202 (8)0.0233 (8)0.0197 (8)0.0020 (6)0.0028 (6)0.0055 (6)
C110.0302 (9)0.0241 (9)0.0251 (8)0.0003 (7)0.0082 (7)0.0068 (7)
C120.0325 (9)0.0328 (10)0.0244 (9)0.0046 (8)0.0080 (7)0.0108 (7)
C130.0260 (8)0.0342 (10)0.0194 (8)0.0041 (7)0.0069 (7)0.0016 (7)
C140.0305 (9)0.0269 (9)0.0263 (9)0.0017 (7)0.0068 (7)0.0027 (7)
C150.0286 (9)0.0237 (9)0.0245 (8)0.0002 (7)0.0054 (7)0.0080 (7)
C160.0263 (8)0.0166 (8)0.0320 (9)0.0005 (6)0.0097 (7)0.0097 (7)
C170.0379 (10)0.0236 (9)0.0355 (10)0.0036 (8)0.0150 (8)0.0033 (8)
C180.0525 (13)0.0287 (10)0.0405 (12)0.0096 (10)0.0072 (10)0.0042 (9)
C190.0402 (12)0.0361 (12)0.0577 (15)0.0130 (10)0.0039 (11)0.0166 (11)
C200.0289 (10)0.0455 (13)0.0706 (16)0.0040 (9)0.0139 (11)0.0275 (12)
C210.0320 (10)0.0315 (10)0.0406 (11)0.0014 (8)0.0163 (8)0.0157 (8)
Geometric parameters (Å, º) top
Br1—C41.9013 (18)C9—H9C0.9800
S1—O21.4899 (13)C10—C111.394 (2)
S1—C11.7723 (17)C10—C151.398 (2)
S1—C161.7972 (19)C11—C121.388 (3)
S1—O2i2.9623 (13)C11—H110.9500
F1—C131.357 (2)C12—C131.378 (3)
O1—C71.373 (2)C12—H120.9500
O1—C81.377 (2)C13—C141.372 (3)
C1—C81.368 (2)C14—C151.382 (3)
C1—C21.448 (2)C14—H140.9500
C2—C71.389 (2)C15—H150.9500
C2—C31.396 (2)C16—C171.383 (3)
C3—C41.381 (3)C16—C211.384 (3)
C3—H30.9500C17—C181.378 (3)
C4—C51.393 (3)C17—H170.9500
C5—C61.388 (3)C18—C191.387 (4)
C5—H50.9500C18—H180.9500
C6—C71.388 (2)C19—C201.383 (4)
C6—C91.501 (3)C19—H190.9500
C8—C101.464 (2)C20—C211.389 (3)
C9—H9A0.9800C20—H200.9500
C9—H9B0.9800C21—H210.9500
O2—S1—C1105.07 (8)C11—C10—C15118.65 (16)
O2—S1—C16107.03 (8)C11—C10—C8123.09 (16)
C1—S1—C1697.33 (8)C15—C10—C8118.26 (15)
O2—S1—O2i79.03 (6)C12—C11—C10120.80 (17)
C1—S1—O2i169.13 (7)C12—C11—H11119.6
C16—S1—O2i90.93 (6)C10—C11—H11119.6
C7—O1—C8107.06 (13)C13—C12—C11118.30 (17)
C8—C1—C2107.30 (14)C13—C12—H12120.8
C8—C1—S1127.61 (13)C11—C12—H12120.8
C2—C1—S1125.05 (13)F1—C13—C14118.48 (17)
C7—C2—C3119.02 (16)F1—C13—C12118.73 (17)
C7—C2—C1104.82 (15)C14—C13—C12122.80 (17)
C3—C2—C1136.16 (16)C13—C14—C15118.36 (17)
C4—C3—C2116.31 (16)C13—C14—H14120.8
C4—C3—H3121.8C15—C14—H14120.8
C2—C3—H3121.8C14—C15—C10121.08 (17)
C3—C4—C5123.66 (17)C14—C15—H15119.5
C3—C4—Br1118.48 (14)C10—C15—H15119.5
C5—C4—Br1117.85 (13)C17—C16—C21121.00 (19)
C6—C5—C4120.97 (16)C17—C16—S1119.87 (14)
C6—C5—H5119.5C21—C16—S1119.11 (15)
C4—C5—H5119.5C18—C17—C16119.7 (2)
C7—C6—C5114.56 (16)C18—C17—H17120.2
C7—C6—C9122.50 (17)C16—C17—H17120.2
C5—C6—C9122.94 (16)C17—C18—C19119.8 (2)
O1—C7—C6123.77 (15)C17—C18—H18120.1
O1—C7—C2110.76 (14)C19—C18—H18120.1
C6—C7—C2125.47 (16)C20—C19—C18120.6 (2)
C1—C8—O1110.06 (15)C20—C19—H19119.7
C1—C8—C10136.22 (16)C18—C19—H19119.7
O1—C8—C10113.71 (14)C19—C20—C21119.7 (2)
C6—C9—H9A109.5C19—C20—H20120.1
C6—C9—H9B109.5C21—C20—H20120.1
H9A—C9—H9B109.5C16—C21—C20119.2 (2)
C6—C9—H9C109.5C16—C21—H21120.4
H9A—C9—H9C109.5C20—C21—H21120.4
H9B—C9—H9C109.5
O2—S1—C1—C8146.26 (16)S1—C1—C8—C103.3 (3)
C16—S1—C1—C8103.83 (17)C7—O1—C8—C10.28 (18)
O2i—S1—C1—C835.4 (4)C7—O1—C8—C10179.29 (14)
O2—S1—C1—C231.09 (17)C1—C8—C10—C112.7 (3)
C16—S1—C1—C278.82 (16)O1—C8—C10—C11178.64 (15)
O2i—S1—C1—C2142.0 (3)C1—C8—C10—C15178.07 (19)
C8—C1—C2—C70.15 (19)O1—C8—C10—C150.6 (2)
S1—C1—C2—C7177.95 (13)C15—C10—C11—C120.3 (3)
C8—C1—C2—C3180.0 (2)C8—C10—C11—C12178.96 (17)
S1—C1—C2—C32.2 (3)C10—C11—C12—C130.7 (3)
C7—C2—C3—C40.9 (2)C11—C12—C13—F1179.89 (17)
C1—C2—C3—C4178.93 (19)C11—C12—C13—C140.4 (3)
C2—C3—C4—C51.0 (3)F1—C13—C14—C15179.41 (16)
C2—C3—C4—Br1179.48 (13)C12—C13—C14—C150.3 (3)
C3—C4—C5—C60.3 (3)C13—C14—C15—C100.8 (3)
Br1—C4—C5—C6179.83 (14)C11—C10—C15—C140.5 (3)
C4—C5—C6—C70.4 (3)C8—C10—C15—C14179.73 (16)
C4—C5—C6—C9179.60 (17)O2—S1—C16—C1717.79 (17)
C8—O1—C7—C6179.86 (16)C1—S1—C16—C1790.49 (15)
C8—O1—C7—C20.18 (19)O2i—S1—C16—C1796.59 (15)
C5—C6—C7—O1179.15 (15)O2—S1—C16—C21160.92 (14)
C9—C6—C7—O10.8 (3)C1—S1—C16—C2190.81 (15)
C5—C6—C7—C20.5 (3)O2i—S1—C16—C2182.11 (14)
C9—C6—C7—C2179.53 (17)C21—C16—C17—C181.7 (3)
C3—C2—C7—O1179.89 (15)S1—C16—C17—C18179.67 (15)
C1—C2—C7—O10.02 (19)C16—C17—C18—C190.5 (3)
C3—C2—C7—C60.2 (3)C17—C18—C19—C200.5 (3)
C1—C2—C7—C6179.69 (17)C18—C19—C20—C210.4 (3)
C2—C1—C8—O10.27 (19)C17—C16—C21—C201.8 (3)
S1—C1—C8—O1178.00 (12)S1—C16—C21—C20179.50 (15)
C2—C1—C8—C10178.96 (19)C19—C20—C21—C160.8 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O2ii0.952.333.280 (3)176
Symmetry code: (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC21H14BrFO2S
Mr429.29
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.9961 (2), 10.6641 (2), 11.1695 (2)
α, β, γ (°)71.980 (1), 74.694 (1), 79.964 (1)
V3)869.13 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.51
Crystal size (mm)0.30 × 0.24 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.523, 0.665
No. of measured, independent and
observed [I > 2σ(I)] reflections
20230, 4315, 3839
Rint0.042
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.075, 1.05
No. of reflections4315
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.54

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O2i0.952.333.280 (3)176.4
Symmetry code: (i) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds