Download citation
Download citation
link to html
The hemisynthesis of the title compound, C22H32O2, was carried out through direct acetyl­ation reaction of the naturally occurring diterpene totarol [systematic name: (4bS,8aS)-4b,8,8-trimethyl-1-propan-2-yl-5,6,7,8a,9,10-hexa­hydro­phen­an­thren-2-ol]. The mol­ecule is built up from three fused six membered rings, one saturated and two unsaturated. The central unsaturated ring has a half-chair conformation, whereas the other unsaturated ring displays a chair conformation. The absolute configuration is deduced from the chemical pathway. The value of the Hooft parameter [−0.10 (6)] allowed this absolute configuration to be confirmed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536814002748/xu5767sup1.cif
Contains datablocks I, New_Global_Publ_Block

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536814002748/xu5767Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536814002748/xu5767Isup3.cml
Supplementary material

CCDC reference: 985421

Key indicators

  • Single-crystal X-ray study
  • T = 180 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.029
  • wR factor = 0.075
  • Data-to-parameter ratio = 11.2

checkCIF/PLATON results

No syntax errors found



Alert level B Crystal system given = monoclinic THETM01_ALERT_3_B The value of sine(theta_max)/wavelength is less than 0.575 Calculated sin(theta_max)/wavelength = 0.5657 PLAT019_ALERT_1_B Check _diffrn_measured_fraction_theta_full/_max 0.841 PLAT023_ALERT_3_B Resolution (too) Low [sin(theta)/Lambda < 0.6].. 60.72 Deg.
Alert level C PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax < 18) ........ 6.53 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.566 53 PLAT915_ALERT_3_C Low Friedel Pair Coverage ...................... 78 % PLAT918_ALERT_3_C Reflection(s) # with I(obs) much smaller I(calc) 1 Check PLAT934_ALERT_3_C Number of (Iobs-Icalc)/SigmaW > 10 Outliers .... 1 Check
Alert level G PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do ! PLAT032_ALERT_4_G Std. Uncertainty on Flack Parameter Value High . 0.300 PLAT791_ALERT_4_G The Model has Chirality at C4B (Verify) S PLAT791_ALERT_4_G The Model has Chirality at C8A (Verify) S PLAT850_ALERT_4_G Check Flack Parameter Exact Value 0.00 and su .. 0.30 PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 99 %
0 ALERT level A = Most likely a serious problem - resolve or explain 3 ALERT level B = A potentially serious problem, consider carefully 5 ALERT level C = Check. Ensure it is not caused by an omission or oversight 6 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 8 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The hemisynthesis of the title compound C22H32O2 2 was carried out through direct acetylation reaction of naturally occurred Totarol (1). Totarol (1) is a naturally produced diterpene isolated from a several plants such as Podocarpus totara (Short & Stromberg, 1937) Tetraclinis articulata (Barrero et al., 2003). It has been attracting great interest because of its biological properties ranging from Antimicrobial (Haraguchi et al., 1996), anti-oxidant (Bernabeu et al., 2002), Anti-inflammatory, analgesic, anti-tumoral (Marcos et al., 2003) to Anti-plasmodial (Tacon et al., 2012).

In the aim of preparing totarol derivatives, we report here, the hemisynthesis of (4bS,8aS)-1-isopropyl-4 b,8,8-trimethyl-4b,5,6,7,8,8a,9,10-octahydrophenanthren-2-yl acetate 2 from naturally occurred Totarol (1). Thus, treatment of (1) with acetic anhydride in pyridine provides (2) as colorless crystals in 97% yield. Its structure was fully characterized by its mass and NMR spectroscopic data. Furthermore, an X-ray single-crystal structure analysis allowed us to confirm unambiguously its full structure.

Compound (2) is built up from three fused six membered rings, a saturated one and two unsaturated (Fig. 1). The central unsaturated ring has an half chair conformation with puckering parameters: Q = 0.531 (2) Å, θ= 50.4 (2)° and φ= 120.1 (4)° (Cremer & Pople, 1975), whereas the second insaturated six-membered ring displays a chair conformation with puckering parameters: Q = 0.535 (3) Å, θ= 173.2 (3) (2)° and φ= 289 (2)°. Similar conformation for the three fused rings has been reported previously with hydroxyl substituent in place of the acetate in the title compound (Zeroual et al., 2008) and with either an hydroxyl or a methoxy substituent on the central ring (Pettit et al., 2004).

The absolute configuration (4S,8S) deduced from the chemical pathway is supported by the refinement of the Flack parameter, 0.0 (3), (Flack, 1983; Flack & Bernardinelli, 2000) and confirmed by the refinement of the Hooft parameter, -0.10 (6) (Spek, 2009).

Related literature top

For the synthesis, see: Short & Stromberg (1937). For biological properties of totarol, see: Barrero et al. (2003); Bernabeu et al. (2002); Haraguchi et al. (1996); Marcos et al. (2003); Tacon et al. (2012). For related structures, see: Zeroual et al. (2008); Pettit et al. (2004). For structural discussion, see: Cremer & Pople (1975); Flack (1983); Flack & Bernardinelli (2000); Spek (2009).

Experimental top

A solution of totarol (1) (90 mg, 0.314 mmol) in acetic anhydride (20 ml) and pyridine (20 ml) was heated under reflux for 24 h. After cooling, the mixture was acidified with 1N HCl solution then extracted with ether (3 × 20 ml). The organic layer was washed with water, dried on anhydrous Na2SO4 and then evaporated under reduced pressure. The obtained residue was chromatographied on silica gel column using hexane and ethyl acetate (97/3) as eluent, to give (4bS,8aS)-1-isopropyl-4 b,8,8-trimethyl-4 b,5,6,7,8,8a,9,10-octahydrophenanthren-2-yl acetate (2) (100 mg) in 97% yield.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.99 Å (methylene), 0.98 Å (methyl), 1.0 Å (methine) with Uiso(H) = 1.2Ueq(CH and CH2) or Uiso(H) = 1.5Ueq(CH3).

Although the standard deviation on the Flack's parameter, 0.0 (3), is rather high, the value of the Hooft's parameter, -0.10 (6), is more reliable and allows to confirm the absolute configuration. It is interesting to point out that inverting the configuration gives values of Hooft and Flack parameter close to 1.0 with similar standard deviation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Molecular view of compound (2) with the atom labeling scheme. Ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
(4bS,8aS)-1-Isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a,9,10-octahydrophenanthren-2-yl acetate top
Crystal data top
C22H32O2F(000) = 360
Mr = 328.47Dx = 1.151 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 7.4250 (2) ÅCell parameters from 3311 reflections
b = 10.5716 (3) Åθ = 3.7–60.6°
c = 12.0747 (3) ŵ = 0.55 mm1
β = 90.124 (2)°T = 180 K
V = 947.79 (4) Å3Box, colourless
Z = 20.38 × 0.38 × 0.14 mm
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
2511 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2490 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.012
Detector resolution: 16.1978 pixels mm-1θmax = 60.7°, θmin = 3.7°
ω scansh = 78
Absorption correction: multi-scan
Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (CrysAlis PRO, Agilent, 2012)
k = 1111
Tmin = 0.860, Tmax = 1.000l = 1313
4370 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0433P)2 + 0.168P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.029(Δ/σ)max < 0.001
wR(F2) = 0.075Δρmax = 0.13 e Å3
S = 1.04Δρmin = 0.14 e Å3
2511 reflectionsExtinction correction: SHELXL2013 (Sheldrick, 2013), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
225 parametersExtinction coefficient: 0.050 (2)
1 restraintAbsolute structure: Refined as an inversion twin.
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.0 (3)
Crystal data top
C22H32O2V = 947.79 (4) Å3
Mr = 328.47Z = 2
Monoclinic, P21Cu Kα radiation
a = 7.4250 (2) ŵ = 0.55 mm1
b = 10.5716 (3) ÅT = 180 K
c = 12.0747 (3) Å0.38 × 0.38 × 0.14 mm
β = 90.124 (2)°
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
2511 independent reflections
Absorption correction: multi-scan
Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (CrysAlis PRO, Agilent, 2012)
2490 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 1.000Rint = 0.012
4370 measured reflectionsθmax = 60.7°
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.075Δρmax = 0.13 e Å3
S = 1.04Δρmin = 0.14 e Å3
2511 reflectionsAbsolute structure: Refined as an inversion twin.
225 parametersAbsolute structure parameter: 0.0 (3)
1 restraint
Special details top

Experimental. Absorption correction: Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (CrysAlis PRO; Agilent Technologies, 2012)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6487 (3)0.6992 (2)0.17276 (16)0.0270 (5)
C20.4780 (3)0.7203 (2)0.13012 (17)0.0283 (5)
C30.3461 (3)0.7823 (2)0.18816 (19)0.0334 (5)
H30.23040.79480.15620.040*
C40.3833 (3)0.8262 (2)0.29347 (18)0.0319 (5)
H40.29160.86820.33410.038*
C4A0.5533 (3)0.81000 (19)0.34131 (17)0.0244 (5)
C4B0.5942 (3)0.8675 (2)0.45589 (18)0.0258 (5)
C50.4239 (3)0.8711 (3)0.52884 (19)0.0346 (6)
H5A0.33760.93270.49720.041*
H5B0.36590.78680.52760.041*
C60.4646 (3)0.9074 (3)0.6486 (2)0.0406 (6)
H6A0.51440.99420.65090.049*
H6B0.35150.90670.69190.049*
C70.5980 (3)0.8167 (3)0.70024 (18)0.0371 (6)
H7A0.54270.73150.70330.045*
H7B0.62220.84380.77730.045*
C80.7773 (3)0.8075 (2)0.63830 (18)0.0338 (5)
C8A0.7386 (3)0.7834 (2)0.51303 (17)0.0275 (5)
H8A0.68960.69540.50930.033*
C90.9073 (3)0.7813 (3)0.44192 (19)0.0372 (6)
H9A0.95210.86870.43220.045*
H9B1.00220.73190.48010.045*
C100.8707 (3)0.7233 (3)0.32926 (18)0.0366 (6)
H10A0.96170.75610.27680.044*
H10B0.88900.63070.33510.044*
C10A0.6862 (3)0.74630 (19)0.28005 (17)0.0261 (5)
C110.7945 (3)0.6336 (2)0.10479 (18)0.0343 (6)
H110.89780.61810.15620.041*
C120.7413 (4)0.5048 (3)0.0572 (2)0.0540 (8)
H12A0.85010.45620.04000.081*
H12B0.67040.51700.01050.081*
H12C0.66910.45850.11170.081*
C130.8634 (4)0.7225 (3)0.0150 (2)0.0518 (7)
H13A0.91030.79980.04920.078*
H13B0.76440.74400.03550.078*
H13C0.95970.68070.02660.078*
C140.6541 (4)1.0050 (2)0.4337 (2)0.0433 (6)
H14A0.55901.04970.39330.065*
H14B0.76471.00470.38950.065*
H14C0.67681.04780.50440.065*
C150.8902 (4)0.9257 (3)0.6616 (2)0.0489 (7)
H15A0.92510.92700.73990.073*
H15B0.81931.00130.64440.073*
H15C0.99860.92430.61540.073*
C160.8803 (4)0.6933 (3)0.6843 (2)0.0561 (8)
H16A0.81520.61540.66570.084*
H16B0.89050.70080.76490.084*
H16C1.00090.69050.65160.084*
C170.3222 (3)0.5899 (2)0.00169 (19)0.0345 (6)
C180.3010 (4)0.5659 (3)0.1197 (2)0.0460 (7)
H18A0.18780.52060.13310.069*
H18B0.40210.51460.14610.069*
H18C0.29910.64670.15940.069*
O10.4419 (2)0.68523 (16)0.01943 (11)0.0338 (4)
O20.2470 (2)0.53449 (19)0.07423 (14)0.0491 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0302 (12)0.0261 (11)0.0248 (11)0.0012 (10)0.0028 (9)0.0023 (9)
C20.0305 (12)0.0316 (12)0.0230 (10)0.0026 (10)0.0004 (9)0.0014 (9)
C30.0244 (12)0.0444 (13)0.0315 (12)0.0021 (11)0.0022 (9)0.0002 (10)
C40.0269 (12)0.0355 (12)0.0333 (12)0.0060 (10)0.0031 (9)0.0010 (10)
C4A0.0256 (11)0.0205 (10)0.0271 (11)0.0010 (9)0.0026 (8)0.0024 (9)
C4B0.0262 (11)0.0221 (10)0.0290 (11)0.0006 (9)0.0022 (9)0.0022 (9)
C50.0302 (12)0.0422 (13)0.0314 (12)0.0063 (11)0.0022 (10)0.0072 (10)
C60.0327 (13)0.0533 (17)0.0357 (13)0.0027 (12)0.0065 (10)0.0129 (12)
C70.0413 (14)0.0448 (14)0.0253 (11)0.0082 (12)0.0023 (10)0.0068 (11)
C80.0342 (12)0.0386 (13)0.0286 (11)0.0002 (11)0.0037 (9)0.0071 (10)
C8A0.0269 (11)0.0271 (11)0.0286 (11)0.0019 (10)0.0001 (9)0.0041 (9)
C90.0276 (12)0.0497 (14)0.0343 (13)0.0040 (11)0.0011 (9)0.0077 (11)
C100.0280 (12)0.0513 (15)0.0305 (12)0.0089 (11)0.0005 (10)0.0047 (11)
C10A0.0261 (11)0.0259 (11)0.0263 (11)0.0000 (9)0.0031 (9)0.0028 (9)
C110.0322 (12)0.0457 (14)0.0251 (11)0.0109 (11)0.0018 (9)0.0012 (10)
C120.0587 (19)0.0487 (17)0.0546 (17)0.0163 (14)0.0060 (14)0.0166 (13)
C130.0399 (15)0.0696 (19)0.0460 (15)0.0121 (14)0.0175 (12)0.0119 (14)
C140.0599 (17)0.0281 (13)0.0421 (14)0.0045 (12)0.0035 (12)0.0017 (11)
C150.0363 (14)0.0662 (18)0.0441 (15)0.0116 (13)0.0023 (11)0.0189 (14)
C160.068 (2)0.0664 (18)0.0338 (13)0.0231 (17)0.0133 (13)0.0045 (14)
C170.0352 (13)0.0364 (13)0.0319 (12)0.0016 (11)0.0017 (10)0.0013 (10)
C180.0489 (16)0.0560 (17)0.0332 (13)0.0039 (13)0.0023 (11)0.0089 (12)
O10.0341 (9)0.0432 (9)0.0239 (8)0.0036 (8)0.0002 (6)0.0011 (7)
O20.0587 (12)0.0514 (11)0.0372 (9)0.0160 (10)0.0039 (9)0.0001 (9)
Geometric parameters (Å, º) top
C1—C21.385 (3)C9—H9A0.9900
C1—C10A1.415 (3)C9—H9B0.9900
C1—C111.526 (3)C10—C10A1.512 (3)
C2—C31.372 (3)C10—H10A0.9900
C2—O11.412 (3)C10—H10B0.9900
C3—C41.381 (3)C11—C131.524 (4)
C3—H30.9500C11—C121.530 (4)
C4—C4A1.398 (3)C11—H111.0000
C4—H40.9500C12—H12A0.9800
C4A—C10A1.406 (3)C12—H12B0.9800
C4A—C4B1.541 (3)C12—H12C0.9800
C4B—C51.543 (3)C13—H13A0.9800
C4B—C141.544 (3)C13—H13B0.9800
C4B—C8A1.553 (3)C13—H13C0.9800
C5—C61.526 (3)C14—H14A0.9800
C5—H5A0.9900C14—H14B0.9800
C5—H5B0.9900C14—H14C0.9800
C6—C71.512 (4)C15—H15A0.9800
C6—H6A0.9900C15—H15B0.9800
C6—H6B0.9900C15—H15C0.9800
C7—C81.532 (3)C16—H16A0.9800
C7—H7A0.9900C16—H16B0.9800
C7—H7B0.9900C16—H16C0.9800
C8—C151.530 (4)C17—O21.193 (3)
C8—C161.533 (4)C17—O11.361 (3)
C8—C8A1.560 (3)C17—C181.496 (3)
C8A—C91.520 (3)C18—H18A0.9800
C8A—H8A1.0000C18—H18B0.9800
C9—C101.516 (3)C18—H18C0.9800
C2—C1—C10A117.49 (18)H9A—C9—H9B108.0
C2—C1—C11121.51 (18)C10A—C10—C9116.61 (19)
C10A—C1—C11120.92 (19)C10A—C10—H10A108.1
C3—C2—C1122.74 (18)C9—C10—H10A108.1
C3—C2—O1118.32 (18)C10A—C10—H10B108.1
C1—C2—O1118.77 (18)C9—C10—H10B108.1
C2—C3—C4119.29 (19)H10A—C10—H10B107.3
C2—C3—H3120.4C4A—C10A—C1120.89 (19)
C4—C3—H3120.4C4A—C10A—C10120.43 (18)
C3—C4—C4A121.18 (19)C1—C10A—C10118.65 (18)
C3—C4—H4119.4C13—C11—C1110.0 (2)
C4A—C4—H4119.4C13—C11—C12111.6 (2)
C4—C4A—C10A118.38 (18)C1—C11—C12115.1 (2)
C4—C4A—C4B119.92 (18)C13—C11—H11106.5
C10A—C4A—C4B121.63 (18)C1—C11—H11106.5
C4A—C4B—C5111.23 (17)C12—C11—H11106.5
C4A—C4B—C14105.79 (18)C11—C12—H12A109.5
C5—C4B—C14108.22 (19)C11—C12—H12B109.5
C4A—C4B—C8A107.92 (17)H12A—C12—H12B109.5
C5—C4B—C8A109.04 (17)C11—C12—H12C109.5
C14—C4B—C8A114.6 (2)H12A—C12—H12C109.5
C6—C5—C4B112.74 (18)H12B—C12—H12C109.5
C6—C5—H5A109.0C11—C13—H13A109.5
C4B—C5—H5A109.0C11—C13—H13B109.5
C6—C5—H5B109.0H13A—C13—H13B109.5
C4B—C5—H5B109.0C11—C13—H13C109.5
H5A—C5—H5B107.8H13A—C13—H13C109.5
C7—C6—C5111.0 (2)H13B—C13—H13C109.5
C7—C6—H6A109.4C4B—C14—H14A109.5
C5—C6—H6A109.4C4B—C14—H14B109.5
C7—C6—H6B109.4H14A—C14—H14B109.5
C5—C6—H6B109.4C4B—C14—H14C109.5
H6A—C6—H6B108.0H14A—C14—H14C109.5
C6—C7—C8114.08 (19)H14B—C14—H14C109.5
C6—C7—H7A108.7C8—C15—H15A109.5
C8—C7—H7A108.7C8—C15—H15B109.5
C6—C7—H7B108.7H15A—C15—H15B109.5
C8—C7—H7B108.7C8—C15—H15C109.5
H7A—C7—H7B107.6H15A—C15—H15C109.5
C15—C8—C7109.6 (2)H15B—C15—H15C109.5
C15—C8—C16107.7 (2)C8—C16—H16A109.5
C7—C8—C16107.9 (2)C8—C16—H16B109.5
C15—C8—C8A114.3 (2)H16A—C16—H16B109.5
C7—C8—C8A109.00 (17)C8—C16—H16C109.5
C16—C8—C8A108.25 (19)H16A—C16—H16C109.5
C9—C8A—C4B109.05 (18)H16B—C16—H16C109.5
C9—C8A—C8113.59 (17)O2—C17—O1123.7 (2)
C4B—C8A—C8117.57 (17)O2—C17—C18126.0 (2)
C9—C8A—H8A105.2O1—C17—C18110.3 (2)
C4B—C8A—H8A105.2C17—C18—H18A109.5
C8—C8A—H8A105.2C17—C18—H18B109.5
C10—C9—C8A111.51 (18)H18A—C18—H18B109.5
C10—C9—H9A109.3C17—C18—H18C109.5
C8A—C9—H9A109.3H18A—C18—H18C109.5
C10—C9—H9B109.3H18B—C18—H18C109.5
C8A—C9—H9B109.3C17—O1—C2117.79 (16)

Experimental details

Crystal data
Chemical formulaC22H32O2
Mr328.47
Crystal system, space groupMonoclinic, P21
Temperature (K)180
a, b, c (Å)7.4250 (2), 10.5716 (3), 12.0747 (3)
β (°) 90.124 (2)
V3)947.79 (4)
Z2
Radiation typeCu Kα
µ (mm1)0.55
Crystal size (mm)0.38 × 0.38 × 0.14
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini ultra)
diffractometer
Absorption correctionMulti-scan
Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (CrysAlis PRO, Agilent, 2012)
Tmin, Tmax0.860, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4370, 2511, 2490
Rint0.012
θmax (°)60.7
(sin θ/λ)max1)0.566
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.075, 1.04
No. of reflections2511
No. of parameters225
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.14
Absolute structureRefined as an inversion twin.
Absolute structure parameter0.0 (3)

Computer programs: CrysAlis PRO (Agilent, 2012), SIR97 (Altomare et al., 1999), SHELXL2013 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) ORTEP-3 for Windows (Farrugia, 2012).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds