In the title compound, C
6H
6ClN
3O
2, all non-H atoms are approximately coplanar [maximum deviation = 0.012 (4) Å]; an intramolecular N—H

O hydrogen bond occurs between the amino group and the carbonyl group. In the crystal, molecules are linked by N—H

N hydrogen bonds into supramolecular chains propagated along [101].
Supporting information
CCDC reference: 1013300
Key indicators
- Single-crystal X-ray study
- T = 293 K
- Mean
(C-C) = 0.007 Å
- R factor = 0.046
- wR factor = 0.109
- Data-to-parameter ratio = 7.5
checkCIF/PLATON results
No syntax errors found
Alert level B
PLAT915_ALERT_3_B Low Friedel Pair Coverage ...................... 15 %
Alert level C
PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax < 18) ........ 6.52 Note
PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.4 Note
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds ............... 0.0073 Ang.
Alert level G
PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do !
PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms .............. 2 Why ?
PLAT199_ALERT_1_G Reported _cell_measurement_temperature ..... (K) 293 Check
PLAT200_ALERT_1_G Reported _diffrn_ambient_temperature ..... (K) 293 Check
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 2 Note
0 ALERT level A = Most likely a serious problem - resolve or explain
1 ALERT level B = A potentially serious problem, consider carefully
3 ALERT level C = Check. Ensure it is not caused by an omission or oversight
5 ALERT level G = General information/check it is not something unexpected
2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
1 ALERT type 2 Indicator that the structure model may be wrong or deficient
3 ALERT type 3 Indicator that the structure quality may be low
1 ALERT type 4 Improvement, methodology, query or suggestion
2 ALERT type 5 Informative message, check
The title compound was synthesized according to the reported procedure (Ballard
& Johnson, 1942). Crystals suitable for X-ray analysis were obtained
by dissolving it (0.5 g) in dichloromethane (50 ml) and evaporating the solvent
slowly at room temperature for about 5 d.
H atoms were positioned geometrically with N—H = 0.86 and C—H = 0.93–0.96 Å, and refined in riding mode, Uiso(H) = 1.5Ueq(C) for methyl H atoms
and 1.2Ueq(C,N) for the others.
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Methyl 4-amino-2-chloropyrimidine-5-carboxylate
top
Crystal data top
C6H6ClN3O2 | F(000) = 192 |
Mr = 187.59 | Dx = 1.614 Mg m−3 |
Monoclinic, Pc | Melting point: 433 K |
Hall symbol: p -2yc | Mo Kα radiation, λ = 0.71073 Å |
a = 3.9110 (8) Å | Cell parameters from 25 reflections |
b = 10.136 (2) Å | θ = 9–13° |
c = 9.848 (2) Å | µ = 0.45 mm−1 |
β = 98.71 (3)° | T = 293 K |
V = 385.89 (13) Å3 | Block, colorless |
Z = 2 | 0.20 × 0.20 × 0.15 mm |
Data collection top
Enraf–Nonius CAD-4 diffractometer | Rint = 0.041 |
Radiation source: fine-focus sealed tube | θmax = 25.4°, θmin = 2.0° |
Graphite monochromator | h = 0→4 |
ω/2θ scans | k = −12→12 |
1474 measured reflections | l = −11→11 |
817 independent reflections | 3 standard reflections every 200 reflections |
673 reflections with I > 2σ(I) | intensity decay: 1% |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.065P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
817 reflections | Δρmax = 0.25 e Å−3 |
109 parameters | Δρmin = −0.36 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 106 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.07 (17) |
Crystal data top
C6H6ClN3O2 | V = 385.89 (13) Å3 |
Mr = 187.59 | Z = 2 |
Monoclinic, Pc | Mo Kα radiation |
a = 3.9110 (8) Å | µ = 0.45 mm−1 |
b = 10.136 (2) Å | T = 293 K |
c = 9.848 (2) Å | 0.20 × 0.20 × 0.15 mm |
β = 98.71 (3)° | |
Data collection top
Enraf–Nonius CAD-4 diffractometer | Rint = 0.041 |
1474 measured reflections | 3 standard reflections every 200 reflections |
817 independent reflections | intensity decay: 1% |
673 reflections with I > 2σ(I) | |
Refinement top
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.109 | Δρmax = 0.25 e Å−3 |
S = 1.01 | Δρmin = −0.36 e Å−3 |
817 reflections | Absolute structure: Flack (1983), 106 Friedel pairs |
109 parameters | Absolute structure parameter: 0.07 (17) |
2 restraints | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cl | 1.0210 (5) | −0.25325 (18) | 0.5060 (2) | 0.0602 (4) | |
O1 | 0.6389 (12) | 0.3421 (3) | 0.3059 (4) | 0.0559 (11) | |
C1 | 1.1205 (14) | 0.1186 (6) | 0.5586 (5) | 0.0363 (14) | |
N1 | 1.1550 (12) | −0.0104 (6) | 0.5759 (4) | 0.0411 (11) | |
O2 | 0.9976 (15) | 0.3988 (3) | 0.4968 (5) | 0.0597 (12) | |
C2 | 0.9749 (16) | −0.0851 (5) | 0.4819 (5) | 0.0399 (13) | |
N2 | 0.7645 (13) | −0.0485 (4) | 0.3675 (5) | 0.0423 (12) | |
N3 | 1.3017 (15) | 0.1949 (5) | 0.6544 (5) | 0.0480 (12) | |
H3A | 1.4322 | 0.1594 | 0.7229 | 0.058* | |
H3B | 1.2878 | 0.2793 | 0.6476 | 0.058* | |
C3 | 0.7362 (14) | 0.0804 (4) | 0.3525 (5) | 0.0381 (13) | |
H3C | 0.5923 | 0.1118 | 0.2754 | 0.046* | |
C4 | 0.9020 (14) | 0.1715 (5) | 0.4414 (5) | 0.0339 (12) | |
C5 | 0.8591 (15) | 0.3139 (6) | 0.4214 (6) | 0.0409 (13) | |
C6 | 0.576 (2) | 0.4789 (6) | 0.2751 (8) | 0.0626 (18) | |
H6A | 0.4174 | 0.4871 | 0.1911 | 0.094* | |
H6B | 0.7904 | 0.5215 | 0.2650 | 0.094* | |
H6C | 0.4795 | 0.5199 | 0.3485 | 0.094* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cl | 0.0703 (9) | 0.0469 (7) | 0.0553 (8) | −0.0003 (8) | −0.0160 (6) | 0.0032 (7) |
O1 | 0.067 (3) | 0.051 (2) | 0.040 (2) | 0.008 (2) | −0.023 (2) | 0.000 (2) |
C1 | 0.031 (3) | 0.046 (3) | 0.029 (3) | −0.002 (3) | −0.006 (2) | −0.003 (2) |
N1 | 0.041 (3) | 0.052 (3) | 0.026 (2) | 0.002 (2) | −0.008 (2) | 0.000 (2) |
O2 | 0.070 (3) | 0.046 (2) | 0.053 (2) | −0.008 (3) | −0.023 (2) | −0.007 (2) |
C2 | 0.039 (3) | 0.050 (3) | 0.030 (3) | 0.003 (3) | 0.002 (3) | −0.003 (2) |
N2 | 0.041 (3) | 0.051 (3) | 0.031 (2) | −0.003 (2) | −0.008 (2) | −0.003 (2) |
N3 | 0.057 (3) | 0.049 (2) | 0.031 (2) | −0.004 (3) | −0.016 (2) | −0.004 (2) |
C3 | 0.039 (3) | 0.046 (3) | 0.026 (3) | 0.001 (3) | −0.006 (2) | −0.003 (3) |
C4 | 0.032 (3) | 0.040 (3) | 0.028 (3) | 0.006 (2) | −0.003 (2) | 0.006 (2) |
C5 | 0.040 (3) | 0.048 (3) | 0.032 (3) | 0.004 (3) | −0.005 (2) | 0.004 (2) |
C6 | 0.060 (4) | 0.051 (3) | 0.067 (4) | 0.008 (3) | −0.023 (3) | 0.012 (3) |
Geometric parameters (Å, º) top
Cl—C2 | 1.726 (5) | N2—C3 | 1.318 (6) |
O1—C5 | 1.350 (7) | N3—H3A | 0.8600 |
O1—C6 | 1.433 (7) | N3—H3B | 0.8600 |
C1—N1 | 1.324 (8) | C3—C4 | 1.367 (7) |
C1—N3 | 1.337 (7) | C3—H3C | 0.9300 |
C1—C4 | 1.432 (7) | C4—C5 | 1.464 (7) |
N1—C2 | 1.315 (7) | C6—H6A | 0.9600 |
O2—C5 | 1.210 (7) | C6—H6B | 0.9600 |
C2—N2 | 1.343 (8) | C6—H6C | 0.9600 |
| | | |
C5—O1—C6 | 116.7 (5) | C4—C3—H3C | 117.5 |
N1—C1—N3 | 116.6 (5) | C3—C4—C1 | 115.5 (4) |
N1—C1—C4 | 120.7 (5) | C3—C4—C5 | 123.1 (4) |
N3—C1—C4 | 122.7 (5) | C1—C4—C5 | 121.3 (4) |
C2—N1—C1 | 116.4 (5) | O2—C5—O1 | 122.4 (5) |
N1—C2—N2 | 128.8 (5) | O2—C5—C4 | 126.0 (5) |
N1—C2—Cl | 116.0 (4) | O1—C5—C4 | 111.6 (4) |
N2—C2—Cl | 115.2 (4) | O1—C6—H6A | 109.5 |
C3—N2—C2 | 113.5 (5) | O1—C6—H6B | 109.5 |
C1—N3—H3A | 120.0 | H6A—C6—H6B | 109.5 |
C1—N3—H3B | 120.0 | O1—C6—H6C | 109.5 |
H3A—N3—H3B | 120.0 | H6A—C6—H6C | 109.5 |
N2—C3—C4 | 125.0 (5) | H6B—C6—H6C | 109.5 |
N2—C3—H3C | 117.5 | | |
| | | |
N3—C1—N1—C2 | 179.6 (6) | N3—C1—C4—C3 | 179.6 (6) |
C4—C1—N1—C2 | −1.1 (9) | N1—C1—C4—C5 | 179.5 (5) |
C1—N1—C2—N2 | 1.9 (10) | N3—C1—C4—C5 | −1.3 (8) |
C1—N1—C2—Cl | −179.8 (4) | C6—O1—C5—O2 | 0.4 (10) |
N1—C2—N2—C3 | −1.5 (10) | C6—O1—C5—C4 | −179.9 (6) |
Cl—C2—N2—C3 | −179.9 (5) | C3—C4—C5—O2 | 179.7 (7) |
C2—N2—C3—C4 | 0.5 (8) | C1—C4—C5—O2 | 0.6 (9) |
N2—C3—C4—C1 | 0.0 (8) | C3—C4—C5—O1 | 0.0 (8) |
N2—C3—C4—C5 | −179.2 (6) | C1—C4—C5—O1 | −179.1 (6) |
N1—C1—C4—C3 | 0.4 (8) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···N2i | 0.86 | 2.10 | 2.955 (7) | 171 |
N3—H3B···O2 | 0.86 | 2.11 | 2.745 (7) | 130 |
Symmetry code: (i) x+1, −y, z+1/2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···N2i | 0.86 | 2.10 | 2.955 (7) | 171 |
N3—H3B···O2 | 0.86 | 2.11 | 2.745 (7) | 130 |
Symmetry code: (i) x+1, −y, z+1/2. |
The title compound,(I), is an intermediate for preparation of tuberculosis. We herein report its crystal structure.
The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (He & Kang, 2006; He et al., 2007). The pyrimidine ring is almost planar.
In the crystal, molecules are linked each other to form chains framework via intermolecular N—H···N hydrogen bonds, which with intramolecular N—H···O hydrogen bonds may be effective in the stabilization of the crystal structure.