Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S205698901501244X/xu5855sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S205698901501244X/xu5855Isup2.hkl | |
Chemical Markup Language (CML) file https://doi.org/10.1107/S205698901501244X/xu5855Isup3.cml |
CCDC reference: 1409393
checkCIF/PLATON results
No syntax errors found Datablock: I
Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.39 Report PLAT338_ALERT_4_C Small Average Tau in cyclohexane C1 -C7 27.45 Degree PLAT915_ALERT_3_C Low Friedel Pair Coverage ...................... 89 %
Alert level G PLAT791_ALERT_4_G The Model has Chirality at C1 (Chiral SPGR) R Verify PLAT791_ALERT_4_G The Model has Chirality at C2 (Chiral SPGR) S Verify PLAT791_ALERT_4_G The Model has Chirality at C4 (Chiral SPGR) R Verify PLAT791_ALERT_4_G The Model has Chirality at C7 (Chiral SPGR) R Verify PLAT791_ALERT_4_G The Model has Chirality at C8 (Chiral SPGR) S Verify PLAT791_ALERT_4_G The Model has Chirality at C9 (Chiral SPGR) R Verify PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Th(Min) ... 4 Report
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 7 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 7 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
Epoxides are valuable intermediates frequently used as versatile building blocks in organic synthesis (Qu et al., 2009). Thus, epoxides are important precursors in the synthesis of Antifungal products (Taylor et al., 1991) and different pheromones (Mori, 1989, Paddon-Jones et al., 1997). Besides, many natural products possess this functional group as an essential structural moiety for their biological activities (Yang, 2004; Vollhardt & Schore, 1996; Trost et al., 1983). Because of their widespread occurrence, biological and synthetic utilities, the synthesis of new epoxides has grown significantly.
In the aim of preparing new epoxides from natural products, we recently synthetise γ-Epoxyhimachalene 1 (scheme 1) from naturally occurred sesquiterpene γ-himachalene without crystallographic evidence of its absolute configuration as the product was oily. We therefore decided to transform it into a solid derivative by [2+1] cycloaddition reaction of a dihalocarbene on the remaining cyclohexenic double bond.
The structure of the newly prepared 2 (scheme 2) has been established from its 1H and 13C NMR spectral data. An X-ray structure analysis has allowed us to determine unambiguously its stereochemistry and deduce the absolute configuration of its oily precursor γ-Epoxyhimachalene 1.
Compound 2 is built up from two fused 6 and 7 membered rings (Fig. 1). The seven membered ring is bearing an epoxy group whereas the 6 membered ring bears a dichlorocyclopropane. In the seven membered ring, the puckering parameters Q2= 0.9692 (15), Q2= 0.2716 (52) and φ2= 97.11, φ3= 74.34 agree with a boat sofa conformation (Boessenkool & Boeyens, 1980). The six membered ring displays an envelope conformation with the puckering parameters θ = 125.90° and φ2 = 118.89° (Cremer & Pople, 1975).
A search in the Cambridge Structural Database, version 5.36 reveals 9 hits with related structure having two fused 6 and 7 membered rings (Chiaroni et al., 1992, 1995; Chiaroni et al., 1996a,b,c; Sbai et al., 2002; Benharref et al., 2010; Oukhrib et al., 2013; Bimoussa et al., 2014 )
Thus, the dichlorocarbene, generated at 0°C from an excess of CHCl3 (0,93 mL, 11,59 mmol) and solid t-BuOK (1,3 g, 11,58 mmol), reacts in the presence of triethylbenzylammonium chloride (100 mg, 0.439 mmol) as catalyst, with γ-Epoxyhimachalene 1 (0,650 g, 2,95 mmol) to give 22% yield (200 mg) of the cycloadduct C16H24OCl2 2.
Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.99 Å (methylene), 0.98 Å (methyl), 0.95Å (methine) with Uiso(H) = 1.2Ueq(CH and CH2) or Uiso(H) = 1.5Ueq(CH3).
Epoxides are valuable intermediates frequently used as versatile building blocks in organic synthesis (Qu et al., 2009). Thus, epoxides are important precursors in the synthesis of Antifungal products (Taylor et al., 1991) and different pheromones (Mori, 1989, Paddon-Jones et al., 1997). Besides, many natural products possess this functional group as an essential structural moiety for their biological activities (Yang, 2004; Vollhardt & Schore, 1996; Trost et al., 1983). Because of their widespread occurrence, biological and synthetic utilities, the synthesis of new epoxides has grown significantly.
In the aim of preparing new epoxides from natural products, we recently synthetise γ-Epoxyhimachalene 1 (scheme 1) from naturally occurred sesquiterpene γ-himachalene without crystallographic evidence of its absolute configuration as the product was oily. We therefore decided to transform it into a solid derivative by [2+1] cycloaddition reaction of a dihalocarbene on the remaining cyclohexenic double bond.
The structure of the newly prepared 2 (scheme 2) has been established from its 1H and 13C NMR spectral data. An X-ray structure analysis has allowed us to determine unambiguously its stereochemistry and deduce the absolute configuration of its oily precursor γ-Epoxyhimachalene 1.
Compound 2 is built up from two fused 6 and 7 membered rings (Fig. 1). The seven membered ring is bearing an epoxy group whereas the 6 membered ring bears a dichlorocyclopropane. In the seven membered ring, the puckering parameters Q2= 0.9692 (15), Q2= 0.2716 (52) and φ2= 97.11, φ3= 74.34 agree with a boat sofa conformation (Boessenkool & Boeyens, 1980). The six membered ring displays an envelope conformation with the puckering parameters θ = 125.90° and φ2 = 118.89° (Cremer & Pople, 1975).
A search in the Cambridge Structural Database, version 5.36 reveals 9 hits with related structure having two fused 6 and 7 membered rings (Chiaroni et al., 1992, 1995; Chiaroni et al., 1996a,b,c; Sbai et al., 2002; Benharref et al., 2010; Oukhrib et al., 2013; Bimoussa et al., 2014 )
For applications of epoxides, see: Qu et al. (2009); Taylor et al. (1991); Mori (1989); Paddon-Jones et al. (1997); Yang (2004); Vollhardt & Schore (1996); Trost et al. (1983). For related structures, see: Chiaroni et al. (1992, 1995, 1996a,b,c); Sbai et al. (2002); Benharref et al. (2010); Oukhrib et al. (2013); Bimoussa et al. (2014). For puckering parameters and ring conformation, see: Boessenkool & Boeyens (1980).
Thus, the dichlorocarbene, generated at 0°C from an excess of CHCl3 (0,93 mL, 11,59 mmol) and solid t-BuOK (1,3 g, 11,58 mmol), reacts in the presence of triethylbenzylammonium chloride (100 mg, 0.439 mmol) as catalyst, with γ-Epoxyhimachalene 1 (0,650 g, 2,95 mmol) to give 22% yield (200 mg) of the cycloadduct C16H24OCl2 2.
Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.99 Å (methylene), 0.98 Å (methyl), 0.95Å (methine) with Uiso(H) = 1.2Ueq(CH and CH2) or Uiso(H) = 1.5Ueq(CH3).
Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015).
C16H24Cl2O | F(000) = 324 |
Mr = 303.25 | Dx = 1.319 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.7706 (5) Å | Cell parameters from 4267 reflections |
b = 10.5467 (4) Å | θ = 4.3–29.3° |
c = 9.1639 (5) Å | µ = 0.42 mm−1 |
β = 115.710 (7)° | T = 180 K |
V = 763.75 (8) Å3 | Box, colourless |
Z = 2 | 0.40 × 0.34 × 0.08 mm |
Agilent Xcalibur, Eos, Gemini ultra diffractometer | 2945 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2868 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
Detector resolution: 16.1978 pixels mm-1 | θmax = 26.4°, θmin = 3.2° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −13→12 |
Tmin = 0.901, Tmax = 1.000 | l = −11→11 |
7805 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.029 | w = 1/[σ2(Fo2) + (0.0453P)2 + 0.1659P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.076 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.44 e Å−3 |
2945 reflections | Δρmin = −0.18 e Å−3 |
176 parameters | Absolute structure: Flack x determined using 1242 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: −0.02 (2) |
C16H24Cl2O | V = 763.75 (8) Å3 |
Mr = 303.25 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 8.7706 (5) Å | µ = 0.42 mm−1 |
b = 10.5467 (4) Å | T = 180 K |
c = 9.1639 (5) Å | 0.40 × 0.34 × 0.08 mm |
β = 115.710 (7)° |
Agilent Xcalibur, Eos, Gemini ultra diffractometer | 2945 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | 2868 reflections with I > 2σ(I) |
Tmin = 0.901, Tmax = 1.000 | Rint = 0.021 |
7805 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.076 | Δρmax = 0.44 e Å−3 |
S = 1.05 | Δρmin = −0.18 e Å−3 |
2945 reflections | Absolute structure: Flack x determined using 1242 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
176 parameters | Absolute structure parameter: −0.02 (2) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6765 (3) | 1.0011 (2) | 0.7612 (3) | 0.0150 (5) | |
H1 | 0.5811 | 0.9485 | 0.6832 | 0.018* | |
C2 | 0.7132 (3) | 1.0959 (2) | 0.6554 (3) | 0.0161 (5) | |
H2 | 0.7162 | 1.1866 | 0.6885 | 0.019* | |
C3 | 0.6463 (3) | 1.0746 (2) | 0.4760 (3) | 0.0184 (5) | |
C4 | 0.8324 (3) | 1.0632 (2) | 0.5788 (3) | 0.0183 (5) | |
C5 | 0.9157 (3) | 0.9334 (3) | 0.6122 (3) | 0.0238 (5) | |
H5A | 1.0399 | 0.9457 | 0.6641 | 0.029* | |
H5B | 0.8860 | 0.8909 | 0.5070 | 0.029* | |
C6 | 0.8699 (3) | 0.8432 (3) | 0.7196 (3) | 0.0222 (5) | |
H6A | 0.7739 | 0.7896 | 0.6480 | 0.027* | |
H6B | 0.9675 | 0.7863 | 0.7775 | 0.027* | |
C7 | 0.8220 (3) | 0.9058 (2) | 0.8456 (3) | 0.0175 (5) | |
H7 | 0.7706 | 0.8360 | 0.8832 | 0.021* | |
C8 | 0.9699 (3) | 0.9526 (3) | 0.9984 (3) | 0.0200 (5) | |
C9 | 0.9417 (3) | 0.9677 (3) | 1.1444 (3) | 0.0234 (6) | |
H9 | 1.0197 | 1.0302 | 1.2236 | 0.028* | |
C10 | 0.7742 (3) | 0.9537 (3) | 1.1534 (3) | 0.0266 (6) | |
H10A | 0.7722 | 1.0173 | 1.2319 | 0.032* | |
H10B | 0.7739 | 0.8692 | 1.2003 | 0.032* | |
C11 | 0.6069 (3) | 0.9666 (3) | 0.9990 (3) | 0.0230 (6) | |
H11A | 0.5167 | 0.9896 | 1.0317 | 0.028* | |
H11B | 0.5778 | 0.8825 | 0.9461 | 0.028* | |
C12 | 0.6043 (3) | 1.0642 (2) | 0.8722 (3) | 0.0189 (5) | |
C13 | 0.9439 (4) | 1.1678 (3) | 0.5645 (3) | 0.0287 (6) | |
H13A | 0.9746 | 1.1479 | 0.4762 | 0.043* | |
H13B | 1.0468 | 1.1748 | 0.6664 | 0.043* | |
H13C | 0.8823 | 1.2485 | 0.5416 | 0.043* | |
C14 | 1.1115 (3) | 1.0267 (3) | 0.9879 (3) | 0.0278 (6) | |
H14A | 1.1956 | 1.0487 | 1.0972 | 0.042* | |
H14B | 1.0661 | 1.1045 | 0.9255 | 0.042* | |
H14C | 1.1651 | 0.9752 | 0.9342 | 0.042* | |
C15 | 0.6951 (3) | 1.1861 (2) | 0.9559 (3) | 0.0222 (5) | |
H15A | 0.6600 | 1.2559 | 0.8774 | 0.033* | |
H15B | 0.8178 | 1.1740 | 0.9988 | 0.033* | |
H15C | 0.6658 | 1.2065 | 1.0449 | 0.033* | |
C16 | 0.4186 (3) | 1.0978 (3) | 0.7640 (3) | 0.0294 (6) | |
H16A | 0.3545 | 1.0200 | 0.7184 | 0.044* | |
H16B | 0.4125 | 1.1533 | 0.6760 | 0.044* | |
H16C | 0.3704 | 1.1415 | 0.8287 | 0.044* | |
O1 | 1.0269 (3) | 0.85597 (19) | 1.1245 (2) | 0.0275 (4) | |
Cl1 | 0.52452 (8) | 0.93841 (6) | 0.38605 (7) | 0.02818 (17) | |
Cl2 | 0.56482 (9) | 1.20376 (6) | 0.34222 (7) | 0.03117 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0159 (11) | 0.0142 (11) | 0.0135 (10) | −0.0016 (9) | 0.0052 (9) | −0.0003 (9) |
C2 | 0.0194 (12) | 0.0136 (12) | 0.0158 (11) | 0.0011 (10) | 0.0082 (9) | 0.0008 (9) |
C3 | 0.0220 (12) | 0.0154 (11) | 0.0155 (11) | 0.0027 (10) | 0.0060 (9) | 0.0039 (9) |
C4 | 0.0182 (12) | 0.0205 (12) | 0.0169 (11) | 0.0013 (10) | 0.0083 (9) | 0.0011 (9) |
C5 | 0.0258 (12) | 0.0274 (14) | 0.0212 (11) | 0.0085 (12) | 0.0130 (9) | 0.0008 (12) |
C6 | 0.0277 (14) | 0.0172 (12) | 0.0200 (11) | 0.0075 (11) | 0.0090 (10) | 0.0018 (9) |
C7 | 0.0223 (12) | 0.0133 (12) | 0.0173 (11) | 0.0008 (9) | 0.0089 (10) | 0.0007 (9) |
C8 | 0.0215 (12) | 0.0190 (12) | 0.0158 (10) | 0.0055 (11) | 0.0047 (9) | 0.0038 (10) |
C9 | 0.0276 (13) | 0.0234 (14) | 0.0155 (11) | 0.0049 (11) | 0.0060 (10) | 0.0011 (10) |
C10 | 0.0348 (14) | 0.0279 (14) | 0.0203 (11) | 0.0043 (13) | 0.0150 (11) | 0.0035 (11) |
C11 | 0.0285 (13) | 0.0240 (14) | 0.0216 (11) | −0.0017 (11) | 0.0158 (10) | 0.0012 (10) |
C12 | 0.0198 (12) | 0.0208 (13) | 0.0183 (11) | −0.0004 (10) | 0.0102 (9) | −0.0002 (10) |
C13 | 0.0301 (14) | 0.0327 (16) | 0.0284 (13) | −0.0062 (13) | 0.0175 (11) | −0.0007 (12) |
C14 | 0.0215 (13) | 0.0320 (15) | 0.0251 (13) | −0.0017 (12) | 0.0057 (11) | 0.0026 (12) |
C15 | 0.0309 (13) | 0.0175 (13) | 0.0213 (11) | 0.0026 (11) | 0.0142 (10) | −0.0009 (11) |
C16 | 0.0222 (14) | 0.0384 (16) | 0.0296 (13) | 0.0054 (13) | 0.0132 (11) | 0.0021 (13) |
O1 | 0.0334 (11) | 0.0271 (11) | 0.0197 (9) | 0.0117 (9) | 0.0094 (8) | 0.0075 (8) |
Cl1 | 0.0305 (3) | 0.0301 (3) | 0.0191 (3) | −0.0081 (3) | 0.0062 (2) | −0.0044 (3) |
Cl2 | 0.0418 (4) | 0.0283 (3) | 0.0250 (3) | 0.0152 (3) | 0.0159 (3) | 0.0122 (3) |
C1—C2 | 1.521 (3) | C9—O1 | 1.449 (3) |
C1—C7 | 1.542 (3) | C9—C10 | 1.513 (4) |
C1—C12 | 1.561 (3) | C9—H9 | 1.0000 |
C1—H1 | 1.0000 | C10—C11 | 1.540 (4) |
C2—C3 | 1.503 (3) | C10—H10A | 0.9900 |
C2—C4 | 1.530 (3) | C10—H10B | 0.9900 |
C2—H2 | 1.0000 | C11—C12 | 1.545 (3) |
C3—C4 | 1.494 (4) | C11—H11A | 0.9900 |
C3—Cl2 | 1.764 (2) | C11—H11B | 0.9900 |
C3—Cl1 | 1.766 (3) | C12—C15 | 1.532 (4) |
C4—C13 | 1.517 (4) | C12—C16 | 1.536 (4) |
C4—C5 | 1.519 (4) | C13—H13A | 0.9800 |
C5—C6 | 1.542 (4) | C13—H13B | 0.9800 |
C5—H5A | 0.9900 | C13—H13C | 0.9800 |
C5—H5B | 0.9900 | C14—H14A | 0.9800 |
C6—C7 | 1.538 (3) | C14—H14B | 0.9800 |
C6—H6A | 0.9900 | C14—H14C | 0.9800 |
C6—H6B | 0.9900 | C15—H15A | 0.9800 |
C7—C8 | 1.520 (3) | C15—H15B | 0.9800 |
C7—H7 | 1.0000 | C15—H15C | 0.9800 |
C8—O1 | 1.457 (3) | C16—H16A | 0.9800 |
C8—C9 | 1.471 (3) | C16—H16B | 0.9800 |
C8—C14 | 1.505 (4) | C16—H16C | 0.9800 |
C2—C1—C7 | 112.96 (19) | O1—C9—C10 | 119.6 (2) |
C2—C1—C12 | 113.1 (2) | C8—C9—C10 | 126.1 (2) |
C7—C1—C12 | 115.62 (19) | O1—C9—H9 | 113.6 |
C2—C1—H1 | 104.6 | C8—C9—H9 | 113.6 |
C7—C1—H1 | 104.6 | C10—C9—H9 | 113.6 |
C12—C1—H1 | 104.6 | C9—C10—C11 | 120.1 (2) |
C3—C2—C1 | 120.6 (2) | C9—C10—H10A | 107.3 |
C3—C2—C4 | 59.00 (16) | C11—C10—H10A | 107.3 |
C1—C2—C4 | 121.3 (2) | C9—C10—H10B | 107.3 |
C3—C2—H2 | 114.9 | C11—C10—H10B | 107.3 |
C1—C2—H2 | 114.9 | H10A—C10—H10B | 106.9 |
C4—C2—H2 | 114.9 | C10—C11—C12 | 116.6 (2) |
C4—C3—C2 | 61.39 (16) | C10—C11—H11A | 108.2 |
C4—C3—Cl2 | 120.18 (19) | C12—C11—H11A | 108.2 |
C2—C3—Cl2 | 119.53 (18) | C10—C11—H11B | 108.2 |
C4—C3—Cl1 | 120.21 (18) | C12—C11—H11B | 108.2 |
C2—C3—Cl1 | 120.14 (18) | H11A—C11—H11B | 107.3 |
Cl2—C3—Cl1 | 108.85 (13) | C15—C12—C16 | 107.7 (2) |
C3—C4—C13 | 117.1 (2) | C15—C12—C11 | 110.4 (2) |
C3—C4—C5 | 119.9 (2) | C16—C12—C11 | 107.7 (2) |
C13—C4—C5 | 113.6 (2) | C15—C12—C1 | 114.5 (2) |
C3—C4—C2 | 59.62 (16) | C16—C12—C1 | 107.1 (2) |
C13—C4—C2 | 118.0 (2) | C11—C12—C1 | 109.2 (2) |
C5—C4—C2 | 118.4 (2) | C4—C13—H13A | 109.5 |
C4—C5—C6 | 116.7 (2) | C4—C13—H13B | 109.5 |
C4—C5—H5A | 108.1 | H13A—C13—H13B | 109.5 |
C6—C5—H5A | 108.1 | C4—C13—H13C | 109.5 |
C4—C5—H5B | 108.1 | H13A—C13—H13C | 109.5 |
C6—C5—H5B | 108.1 | H13B—C13—H13C | 109.5 |
H5A—C5—H5B | 107.3 | C8—C14—H14A | 109.5 |
C7—C6—C5 | 116.5 (2) | C8—C14—H14B | 109.5 |
C7—C6—H6A | 108.2 | H14A—C14—H14B | 109.5 |
C5—C6—H6A | 108.2 | C8—C14—H14C | 109.5 |
C7—C6—H6B | 108.2 | H14A—C14—H14C | 109.5 |
C5—C6—H6B | 108.2 | H14B—C14—H14C | 109.5 |
H6A—C6—H6B | 107.3 | C12—C15—H15A | 109.5 |
C8—C7—C6 | 115.4 (2) | C12—C15—H15B | 109.5 |
C8—C7—C1 | 116.08 (19) | H15A—C15—H15B | 109.5 |
C6—C7—C1 | 109.83 (19) | C12—C15—H15C | 109.5 |
C8—C7—H7 | 104.7 | H15A—C15—H15C | 109.5 |
C6—C7—H7 | 104.7 | H15B—C15—H15C | 109.5 |
C1—C7—H7 | 104.7 | C12—C16—H16A | 109.5 |
O1—C8—C9 | 59.31 (15) | C12—C16—H16B | 109.5 |
O1—C8—C14 | 113.9 (2) | H16A—C16—H16B | 109.5 |
C9—C8—C14 | 118.1 (2) | C12—C16—H16C | 109.5 |
O1—C8—C7 | 111.4 (2) | H16A—C16—H16C | 109.5 |
C9—C8—C7 | 117.4 (2) | H16B—C16—H16C | 109.5 |
C14—C8—C7 | 120.5 (2) | C9—O1—C8 | 60.82 (15) |
O1—C9—C8 | 59.88 (15) |
Experimental details
Crystal data | |
Chemical formula | C16H24Cl2O |
Mr | 303.25 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 180 |
a, b, c (Å) | 8.7706 (5), 10.5467 (4), 9.1639 (5) |
β (°) | 115.710 (7) |
V (Å3) | 763.75 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.42 |
Crystal size (mm) | 0.40 × 0.34 × 0.08 |
Data collection | |
Diffractometer | Agilent Xcalibur, Eos, Gemini ultra |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2014) |
Tmin, Tmax | 0.901, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7805, 2945, 2868 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.076, 1.05 |
No. of reflections | 2945 |
No. of parameters | 176 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.18 |
Absolute structure | Flack x determined using 1242 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Absolute structure parameter | −0.02 (2) |
Computer programs: CrysAlis PRO (Agilent, 2014), SIR97 (Altomare et al., 1999), SHELXL2013 (Sheldrick, 2015), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012).