Download citation
Download citation
link to html
In the title compound, C16H12N2O3, the chromene ring system is nearly planar [maximum deviation from the mean plane = 0.057 (1) Å], and is almost perpendicular to the benzene ring, with a dihedral angle of 85.29 (5)°. In the crystal, mol­ecules are linked by classical N—H...O, O—H...O and O—H...N hydrogen bonds, and weak C—H...O hydrogen bonds, forming a three-dimensional supra­molecular network. Furthermore, a weak π–π stacking inter­action is observed; the centroid-to-centroid distance is 3.7260 (7) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989015012815/xu5857sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2056989015012815/xu5857Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2056989015012815/xu5857Isup3.cml
Supplementary material

CCDC reference: 1410244

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.034
  • wR factor = 0.091
  • Data-to-parameter ratio = 14.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 3 Report
Alert level G PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 7 Note PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records 2 Report PLAT230_ALERT_2_G Hirshfeld Test Diff for C2 -- C10 .. 7.0 su PLAT793_ALERT_4_G The Model has Chirality at C3 (Centro SPGR) R Verify PLAT860_ALERT_3_G Number of Least-Squares Restraints ............. 4 Note PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Th(Min) ... 3 Report
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 1 ALERT level C = Check. Ensure it is not caused by an omission or oversight 6 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Heterocycles containing the chromene moiety show interesting biological activities such as antitumor (Mohr et al., 1975), sex pheromone (Bianchi & Tava, 1987), antimicrobial (Khafagy et al., 2002), and mutagenicity (Hiramoto et al., 1997). Interestingly, 2-amino-4H-chromene derivatives arises from their potential application in the treatment of human inflammatory TNFa-mediated diseases, such as psoriatic arthritis and rheumatoid and in cancer therapy (Skommer et al., 2006; Gourdeau et al., 2004; Anderson et al., 2005; Wang et al., 2000). Such facts inspired us to synthesize and determine the crystal structure of the title compound in this study.

As shown in Fig. 1, the 4H-chromene ring system (O1/C1–C9) of the title compound is almost planar with the puckering parameters of Q(2) = 0.0759 (12) Å and φ(2) = 155.5 (9) °. It makes a dihedral angle of 85.29 (5)° with the C11–C16 phenyl ring.

In the crystal structure, N—H···O, O—H···O, O—H···N and C—H···O hydrogen bonds link the adjacent molecules, forming the three dimensional network (Table 1, Fig. 2). In addition, a weak π-π stacking interaction [Cg1···Cg1 = 3.7260 (7) Å]; where Cg1 is the centroid of the O1/C1–C4/C9 ring of the 4H-chromene ring system (O1/C1–C9)] are observed.

Related literature top

For the synthesis and biological activity of molecules having the 2-amino-7-hydroxy-4-(4-hydroxyphenyl)-4H-chromene unit, see: Mohr et al. (1975); Bianchi & Tava (1987); Khafagy et al. (2002); Hiramoto et al. (1997); Skommer et al. (2006); Gourdeau et al. (2004); Anderson et al. (2005); Wang et al. (2000).

Experimental top

A mixture of 1 mmol (180 mg) of 4-hydroxybenzylidene-malononitrile and 1 mmol (110 mg) of resorcinol was refluxed in 10 ml e thanol for 3 h in the presence of few catalytic drops of pipredine. The mixture was cooled at ambient temperature and the resulting solid was filtered off, dried under vacuum and recrytallized from ethanol to furnish white crystals in a good quality suitable for X-ray diffraction. Mp 523 K.

Refinement top

The H atoms of the OH and NH2 groups were located in a difference Fourier map and were refined freely [O2—H2O = 0.893 (17) Å, O3—H3O = 0.866 (14) Å, N1—H1N = 0.881 (13) Å and N1—H2N = 0.895 (17) Å]. The H atoms attached to the C atoms were positioned geometrically, with C—H = 0.95 Å and C—H = 1.00 Å for aromatic and methine H, respectively and H atoms were constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Heterocycles containing the chromene moiety show interesting biological activities such as antitumor (Mohr et al., 1975), sex pheromone (Bianchi & Tava, 1987), antimicrobial (Khafagy et al., 2002), and mutagenicity (Hiramoto et al., 1997). Interestingly, 2-amino-4H-chromene derivatives arises from their potential application in the treatment of human inflammatory TNFa-mediated diseases, such as psoriatic arthritis and rheumatoid and in cancer therapy (Skommer et al., 2006; Gourdeau et al., 2004; Anderson et al., 2005; Wang et al., 2000). Such facts inspired us to synthesize and determine the crystal structure of the title compound in this study.

As shown in Fig. 1, the 4H-chromene ring system (O1/C1–C9) of the title compound is almost planar with the puckering parameters of Q(2) = 0.0759 (12) Å and φ(2) = 155.5 (9) °. It makes a dihedral angle of 85.29 (5)° with the C11–C16 phenyl ring.

In the crystal structure, N—H···O, O—H···O, O—H···N and C—H···O hydrogen bonds link the adjacent molecules, forming the three dimensional network (Table 1, Fig. 2). In addition, a weak π-π stacking interaction [Cg1···Cg1 = 3.7260 (7) Å]; where Cg1 is the centroid of the O1/C1–C4/C9 ring of the 4H-chromene ring system (O1/C1–C9)] are observed.

For the synthesis and biological activity of molecules having the 2-amino-7-hydroxy-4-(4-hydroxyphenyl)-4H-chromene unit, see: Mohr et al. (1975); Bianchi & Tava (1987); Khafagy et al. (2002); Hiramoto et al. (1997); Skommer et al. (2006); Gourdeau et al. (2004); Anderson et al. (2005); Wang et al. (2000).

Computing details top

Data collection: CrystalClear-SM (Rigaku, 2012); cell refinement: CrystalClear-SM (Rigaku, 2012); data reduction: CrystalClear-SM (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound viewed down the b axis.
2-Amino-7-hydroxy-4-(4-hydroxyphenyl)-4H-chromene-3-carbonitrile top
Crystal data top
C16H12N2O3F(000) = 1168
Mr = 280.28Dx = 1.423 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 14157 reflections
a = 18.3084 (13) Åθ = 2.3–27.5°
b = 6.0743 (4) ŵ = 0.10 mm1
c = 24.5339 (17) ÅT = 100 K
β = 106.471 (2)°Blade, brown
V = 2616.5 (3) Å30.25 × 0.10 × 0.03 mm
Z = 8
Data collection top
Rigaku AFC12 (Right)
diffractometer
2986 independent reflections
Radiation source: Rotating Anode2540 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.032
profile data from ω–scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(CrystalClear-SM; Rigaku, 2012)
h = 2318
Tmin = 0.830, Tmax = 1.000k = 77
13649 measured reflectionsl = 3131
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0397P)2 + 1.7337P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2986 reflectionsΔρmax = 0.28 e Å3
206 parametersΔρmin = 0.20 e Å3
Crystal data top
C16H12N2O3V = 2616.5 (3) Å3
Mr = 280.28Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.3084 (13) ŵ = 0.10 mm1
b = 6.0743 (4) ÅT = 100 K
c = 24.5339 (17) Å0.25 × 0.10 × 0.03 mm
β = 106.471 (2)°
Data collection top
Rigaku AFC12 (Right)
diffractometer
2986 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM; Rigaku, 2012)
2540 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 1.000Rint = 0.032
13649 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0344 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.28 e Å3
2986 reflectionsΔρmin = 0.20 e Å3
206 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05989 (4)0.30160 (13)0.03455 (3)0.0187 (2)
O20.15605 (5)0.03145 (14)0.06613 (4)0.0226 (3)
O30.20866 (5)0.79736 (15)0.35127 (3)0.0213 (3)
N10.16338 (6)0.41872 (18)0.01319 (4)0.0207 (3)
N20.21498 (6)0.93998 (18)0.09021 (5)0.0268 (3)
C10.11540 (6)0.45728 (19)0.04464 (5)0.0173 (3)
C20.11794 (6)0.62821 (19)0.08107 (5)0.0178 (3)
C30.06229 (6)0.66058 (19)0.11588 (5)0.0174 (3)
C40.00672 (6)0.46994 (19)0.10543 (5)0.0170 (3)
C50.04921 (6)0.4552 (2)0.13396 (5)0.0192 (3)
C60.10354 (6)0.2906 (2)0.12215 (5)0.0196 (3)
C70.10248 (6)0.13336 (19)0.08098 (5)0.0180 (3)
C80.04727 (6)0.14161 (19)0.05235 (5)0.0172 (3)
C90.00636 (6)0.30919 (19)0.06543 (5)0.0164 (3)
C100.17293 (7)0.7951 (2)0.08532 (5)0.0200 (3)
C110.10251 (6)0.69419 (19)0.17886 (5)0.0178 (3)
C120.08736 (7)0.8801 (2)0.20677 (5)0.0235 (3)
C130.12262 (7)0.9120 (2)0.26446 (5)0.0250 (3)
C140.17396 (6)0.7573 (2)0.29446 (5)0.0182 (3)
C150.19056 (7)0.5711 (2)0.26720 (5)0.0206 (3)
C160.15444 (7)0.5408 (2)0.20975 (5)0.0210 (3)
H1N0.1546 (9)0.304 (2)0.0097 (6)0.034 (4)*
H2N0.2042 (8)0.505 (3)0.0173 (7)0.034 (4)*
H2O0.1713 (10)0.071 (3)0.0962 (7)0.049 (5)*
H30.032400.797100.101700.0210*
H3O0.2327 (9)0.681 (2)0.3673 (7)0.040 (5)*
H50.049900.561300.162300.0230*
H60.141300.284700.141900.0240*
H80.046200.034700.024300.0210*
H120.052400.987100.186200.0280*
H130.111501.039300.283100.0300*
H150.226200.465700.287700.0250*
H160.165400.412900.191200.0250*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0184 (4)0.0189 (4)0.0203 (4)0.0043 (3)0.0080 (3)0.0035 (3)
O20.0241 (4)0.0258 (5)0.0199 (4)0.0092 (3)0.0096 (3)0.0028 (3)
O30.0241 (4)0.0233 (5)0.0150 (4)0.0059 (3)0.0030 (3)0.0014 (3)
N10.0188 (5)0.0219 (5)0.0228 (5)0.0046 (4)0.0081 (4)0.0032 (4)
N20.0253 (5)0.0250 (6)0.0279 (6)0.0066 (4)0.0039 (4)0.0015 (4)
C10.0157 (5)0.0183 (6)0.0164 (5)0.0015 (4)0.0019 (4)0.0028 (4)
C20.0177 (5)0.0186 (6)0.0157 (5)0.0021 (4)0.0026 (4)0.0009 (4)
C30.0188 (5)0.0162 (5)0.0161 (5)0.0007 (4)0.0031 (4)0.0001 (4)
C40.0168 (5)0.0172 (6)0.0153 (5)0.0011 (4)0.0016 (4)0.0015 (4)
C50.0206 (5)0.0203 (6)0.0164 (5)0.0021 (4)0.0047 (4)0.0009 (4)
C60.0186 (5)0.0234 (6)0.0176 (5)0.0013 (4)0.0064 (4)0.0021 (4)
C70.0174 (5)0.0182 (6)0.0173 (5)0.0020 (4)0.0032 (4)0.0024 (4)
C80.0192 (5)0.0168 (5)0.0151 (5)0.0001 (4)0.0040 (4)0.0002 (4)
C90.0153 (5)0.0188 (6)0.0149 (5)0.0010 (4)0.0040 (4)0.0021 (4)
C100.0208 (6)0.0212 (6)0.0165 (5)0.0004 (5)0.0030 (4)0.0000 (4)
C110.0176 (5)0.0187 (6)0.0166 (5)0.0017 (4)0.0042 (4)0.0009 (4)
C120.0258 (6)0.0205 (6)0.0213 (6)0.0055 (5)0.0022 (5)0.0009 (5)
C130.0299 (6)0.0215 (6)0.0217 (6)0.0065 (5)0.0044 (5)0.0048 (5)
C140.0177 (5)0.0213 (6)0.0158 (5)0.0009 (4)0.0052 (4)0.0013 (4)
C150.0203 (5)0.0209 (6)0.0194 (6)0.0049 (4)0.0039 (4)0.0012 (5)
C160.0235 (6)0.0191 (6)0.0198 (6)0.0034 (4)0.0053 (5)0.0028 (4)
Geometric parameters (Å, º) top
O1—C11.3586 (14)C6—C71.3943 (17)
O1—C91.3992 (14)C7—C81.3857 (16)
O2—C71.3763 (15)C8—C91.3873 (16)
O3—C141.3796 (14)C11—C121.3888 (17)
N1—C11.3440 (16)C11—C161.3921 (17)
N2—C101.1529 (17)C12—C131.3926 (17)
O2—H2O0.893 (17)C13—C141.3842 (17)
O3—H3O0.866 (14)C14—C151.3907 (17)
N1—H1N0.881 (13)C15—C161.3890 (17)
C1—C21.3622 (16)C3—H31.0000
N1—H2N0.895 (17)C5—H50.9500
C2—C31.5164 (16)C6—H60.9500
C2—C101.4116 (17)C8—H80.9500
C3—C111.5252 (17)C12—H120.9500
C3—C41.5146 (16)C13—H130.9500
C4—C91.3831 (16)C15—H150.9500
C4—C51.3975 (16)C16—H160.9500
C5—C61.3819 (17)
C1—O1—C9118.75 (9)C3—C11—C16121.40 (10)
C7—O2—H2O110.1 (12)C12—C11—C16118.48 (11)
C14—O3—H3O110.1 (10)C3—C11—C12120.12 (10)
O1—C1—N1110.55 (10)C11—C12—C13120.96 (11)
C1—N1—H1N118.2 (11)C12—C13—C14119.68 (11)
C1—N1—H2N119.6 (11)O3—C14—C13117.79 (11)
H1N—N1—H2N122.1 (15)C13—C14—C15120.29 (11)
O1—C1—C2122.33 (10)O3—C14—C15121.90 (11)
N1—C1—C2127.11 (11)C14—C15—C16119.32 (11)
C3—C2—C10116.38 (10)C11—C16—C15121.26 (11)
C1—C2—C3124.40 (10)C2—C3—H3107.00
C1—C2—C10119.13 (11)C4—C3—H3107.00
C4—C3—C11112.46 (10)C11—C3—H3108.00
C2—C3—C11112.30 (10)C4—C5—H5119.00
C2—C3—C4109.38 (9)C6—C5—H5119.00
C3—C4—C5121.11 (10)C5—C6—H6120.00
C5—C4—C9116.96 (11)C7—C6—H6120.00
C3—C4—C9121.85 (10)C7—C8—H8121.00
C4—C5—C6121.83 (11)C9—C8—H8121.00
C5—C6—C7119.37 (11)C11—C12—H12120.00
O2—C7—C8117.36 (10)C13—C12—H12120.00
C6—C7—C8120.29 (11)C12—C13—H13120.00
O2—C7—C6122.33 (10)C14—C13—H13120.00
C7—C8—C9118.65 (11)C14—C15—H15120.00
O1—C9—C4122.98 (10)C16—C15—H15120.00
O1—C9—C8114.15 (10)C11—C16—H16119.00
C4—C9—C8122.88 (11)C15—C16—H16119.00
N2—C10—C2175.64 (14)
C9—O1—C1—N1177.24 (9)C5—C4—C9—O1178.77 (10)
C9—O1—C1—C24.25 (16)C5—C4—C9—C81.38 (18)
C1—O1—C9—C8179.32 (10)C3—C4—C9—C8175.44 (11)
C1—O1—C9—C40.81 (16)C3—C4—C5—C6175.56 (11)
N1—C1—C2—C3179.28 (11)C4—C5—C6—C70.50 (18)
N1—C1—C2—C104.29 (19)C5—C6—C7—C80.26 (18)
O1—C1—C2—C10173.96 (10)C5—C6—C7—O2178.29 (11)
O1—C1—C2—C32.47 (18)O2—C7—C8—C9178.43 (10)
C10—C2—C3—C4178.86 (10)C6—C7—C8—C90.19 (18)
C1—C2—C3—C42.34 (16)C7—C8—C9—C40.67 (18)
C1—C2—C3—C11127.93 (12)C7—C8—C9—O1179.46 (10)
C10—C2—C3—C1155.55 (14)C3—C11—C12—C13178.99 (11)
C2—C3—C4—C95.55 (15)C16—C11—C12—C130.61 (19)
C11—C3—C4—C552.26 (15)C3—C11—C16—C15179.53 (11)
C2—C3—C11—C12124.45 (12)C12—C11—C16—C150.07 (19)
C2—C3—C11—C1655.96 (15)C11—C12—C13—C140.48 (19)
C11—C3—C4—C9131.05 (12)C12—C13—C14—O3178.81 (11)
C2—C3—C4—C5177.75 (11)C12—C13—C14—C150.21 (19)
C4—C3—C11—C1667.94 (14)O3—C14—C15—C16179.28 (11)
C4—C3—C11—C12111.66 (12)C13—C14—C15—C160.74 (19)
C9—C4—C5—C61.29 (17)C14—C15—C16—C110.60 (19)
C3—C4—C9—O14.41 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.88 (1)2.16 (1)3.0316 (14)169 (2)
N1—H2N···O2ii0.90 (2)2.51 (2)3.2052 (15)135 (1)
O2—H2O···O3iii0.89 (2)1.81 (2)2.6875 (13)168 (2)
O3—H3O···N2iv0.87 (1)1.89 (1)2.7550 (14)174 (2)
C8—H8···O1i0.952.473.4011 (14)165
Symmetry codes: (i) x, y, z; (ii) x+1/2, y+1/2, z; (iii) x, y1, z+1/2; (iv) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.881 (13)2.163 (13)3.0316 (14)168.7 (15)
N1—H2N···O2ii0.895 (17)2.509 (16)3.2052 (15)135.1 (14)
O2—H2O···O3iii0.893 (17)1.808 (18)2.6875 (13)168.1 (17)
O3—H3O···N2iv0.866 (14)1.893 (14)2.7550 (14)173.9 (16)
C8—H8···O1i0.952.473.4011 (14)165
Symmetry codes: (i) x, y, z; (ii) x+1/2, y+1/2, z; (iii) x, y1, z+1/2; (iv) x+1/2, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds