Download citation
Download citation
link to html
In the mol­ecule of the title compound, C11H15N5OS2, the thia­diazole and triazole rings are not coplanar, the dihedral angle formed by their mean planes being 59.9 (2)°. The exocyclic S atom, and the methyl­ene, carbonyl, tert-butyl and one methyl carbon form an approximately planar zigzag chain, which makes a dihedral angle of 74.6 (1)° with the thia­diazole ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807068286/ya2060sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807068286/ya2060Isup2.hkl
Contains datablock I

CCDC reference: 677561

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.051
  • wR factor = 0.144
  • Data-to-parameter ratio = 14.7

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT242_ALERT_2_A Check Low Ueq as Compared to Neighbors for C8
Author Response: That is because the methyl groups bonded to C8 have higher Ueq values. These methyl groups may be partly disordered, but it is difficult to model them.

Alert level B PLAT220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.98 Ratio PLAT222_ALERT_3_B Large Non-Solvent H Ueq(max)/Ueq(min) ... 4.59 Ratio
Alert level C PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 80 Ang. PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 100 Deg. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT213_ALERT_2_C Atom C9 has ADP max/min Ratio ............. 3.10 prola PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N3
Author Response: That is because the methyl groups bonded to C8 have higher Ueq values. These methyl groups may be partly disordered, but it is difficult to model them.
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ...          5

Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
1 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Recently, we have reported the structure of 1-(2,4-dichlorophenyl)-2-[5-(1H-1,2,4- triazol-1-ylmethyl)-1,3,4-thiadiazol-2-ylsulfanyl] ethanone (Wei et al., 2007). As part of our ongoing investigation of biological properties of 1,2,4-triazole and 1,3,4-thiadiazole derivatives, the title compound, (I), was synthesized; its crystal structure is reported here.

The bond lengths and angles are comparable with those of the above mentioned related compound, reported by Wei et al. (2007). The whole molecule is non-planar with a dihedral angle of 59.9 (2)° between the thiadiazole (C1/C2/N1/N2/S1) and triazole (N3—N5/C4/C5) rings. The S2—C6—C7—C8—C10 atoms form approximately planar zigzag chain, which makes a dihedral angle of 74.6 (1)° with the thiadiazole ring.

Related literature top

For the structure of the related compound, 1-(2,4-dichlorophenyl)-2-[5-(1H-1,2,4- triazol-1-ylmethyl)-1,3,4-thiadiazol-2-ylsulfanyl] ethanone, see: Wei et al. (2007). For the synthesis of the starting material 5-((1H-1,2,4-triazol-1-yl)methyl)-1,3,4-thiadiazole-2(3H)-thione, see: Hu et al. (2006), Xu et al. (2005, 2006).

Experimental top

8 mmol of 5-((1H-1,2,4-triazol-1-yl)methyl)-1,3,4-thiadiazole-2(3H)-thione (Hu et al., 2006; Xu et al., 2005; Xu et al., 2006) was refluxed for 4 h with 8 mmol of 1-bromo-3,3-dimethylbutan-2-one in 50 ml of acetone in the presence of 8 mmol of triethylamine. The solid that precipitated was recrystallized from ethanol (1.21 g, yield 50.86%). Single crystals suitable for X-ray measurements were obtained by slow evaporation of ethylacetate solution at room temperature.

Refinement top

After the H atoms were located in the difference map, they were fixed geometrically in the idealized positions and allowed to ride on the parent C atoms, with C—H distances of 0.96 Å (methyl), 0.97 Å (CH2) or 0.93 Å (CH), and with Uiso(H) values of 1.2Ueq(C) and 1.5 Ueq(C) (for methyl H atoms).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 1997), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of the title compound (I), showing 50% probability displacement ellipsoids and the atom numbering scheme.
3,3-Dimethyl-1-[5-(1H-1,2,4-triazol-1-ylmethyl)-1,3,4-thiadiazol-2-ψlsulfanyl]butan-2-one top
Crystal data top
C11H15N5OS2Z = 2
Mr = 297.40F(000) = 312
Triclinic, P1Dx = 1.351 Mg m3
a = 8.9723 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1103 (8) ÅCell parameters from 2210 reflections
c = 10.1734 (8) Åθ = 2.5–25.6°
α = 60.728 (1)°µ = 0.36 mm1
β = 80.340 (1)°T = 293 K
γ = 65.416 (1)°Block, colourless
V = 731.3 (1) Å30.41 × 0.22 × 0.18 mm
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
2529 independent reflections
Radiation source: fine-focus sealed tube2246 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 2.3°
ω scansh = 910
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 912
Tmin = 0.865, Tmax = 0.938l = 1212
3810 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0806P)2 + 0.357P]
where P = (Fo2 + 2Fc2)/3
2529 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C11H15N5OS2γ = 65.416 (1)°
Mr = 297.40V = 731.3 (1) Å3
Triclinic, P1Z = 2
a = 8.9723 (8) ÅMo Kα radiation
b = 10.1103 (8) ŵ = 0.36 mm1
c = 10.1734 (8) ÅT = 293 K
α = 60.728 (1)°0.41 × 0.22 × 0.18 mm
β = 80.340 (1)°
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
2529 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2246 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.938Rint = 0.010
3810 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.05Δρmax = 0.51 e Å3
2529 reflectionsΔρmin = 0.38 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5556 (3)0.4597 (3)0.7067 (3)0.0680 (7)
N20.6886 (3)0.4050 (3)0.7986 (3)0.0670 (6)
N30.2627 (3)0.8466 (3)0.4764 (2)0.0546 (5)
N40.2154 (4)0.9710 (3)0.5103 (3)0.0718 (7)
N50.2371 (4)1.0629 (3)0.2618 (3)0.0762 (7)
O11.0413 (3)0.4947 (2)0.7133 (2)0.0746 (6)
S10.49906 (8)0.68646 (9)0.77341 (9)0.0627 (3)
S20.81659 (9)0.48127 (9)0.96116 (8)0.0609 (2)
C10.6733 (3)0.5099 (3)0.8425 (3)0.0508 (6)
C20.4489 (3)0.6004 (3)0.6854 (3)0.0548 (6)
C30.2921 (4)0.6795 (4)0.5949 (4)0.0698 (8)
H3A0.29540.61330.54960.084*
H3B0.20130.68170.66180.084*
C40.2003 (4)1.0979 (3)0.3766 (3)0.0657 (7)
H40.16651.20430.36300.079*
C50.2751 (4)0.9038 (4)0.3298 (3)0.0695 (8)
H50.30660.83980.28070.083*
C60.9842 (3)0.3090 (3)0.9519 (3)0.0543 (6)
H6A1.06580.26111.03110.065*
H6B0.94390.22610.97110.065*
C71.0658 (3)0.3532 (3)0.8017 (3)0.0501 (6)
C81.1780 (4)0.2127 (3)0.7691 (3)0.0629 (7)
C91.2994 (7)0.0845 (7)0.8962 (5)0.199 (4)
H9A1.36600.13110.90960.298*
H9B1.36790.00420.87440.298*
H9C1.24300.04370.98680.298*
C101.2626 (5)0.2749 (5)0.6225 (4)0.0910 (11)
H10A1.33250.32080.63170.136*
H10B1.18160.35810.54220.136*
H10C1.32720.18530.60080.136*
C111.0686 (7)0.1417 (8)0.7445 (8)0.154 (3)
H11A1.13600.05220.72350.231*
H11B0.99210.22610.66090.231*
H11C1.00970.10280.83380.231*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0740 (15)0.0541 (13)0.0763 (16)0.0174 (12)0.0189 (12)0.0300 (12)
N20.0678 (14)0.0555 (13)0.0776 (16)0.0112 (11)0.0206 (12)0.0341 (12)
N30.0551 (12)0.0475 (11)0.0590 (13)0.0186 (9)0.0090 (10)0.0209 (10)
N40.0947 (18)0.0605 (14)0.0618 (14)0.0268 (13)0.0001 (13)0.0315 (12)
N50.0926 (19)0.0611 (15)0.0560 (14)0.0159 (13)0.0140 (13)0.0200 (12)
O10.0788 (13)0.0500 (11)0.0763 (13)0.0282 (10)0.0123 (11)0.0161 (10)
S10.0575 (4)0.0554 (4)0.0780 (5)0.0157 (3)0.0043 (3)0.0359 (4)
S20.0656 (4)0.0655 (5)0.0606 (4)0.0234 (3)0.0027 (3)0.0359 (4)
C10.0536 (13)0.0487 (13)0.0494 (13)0.0200 (11)0.0021 (11)0.0222 (11)
C20.0572 (14)0.0470 (14)0.0568 (14)0.0238 (12)0.0020 (11)0.0175 (11)
C30.0673 (17)0.0545 (15)0.0793 (19)0.0301 (14)0.0174 (15)0.0138 (14)
C40.0773 (18)0.0486 (15)0.0634 (17)0.0160 (13)0.0089 (14)0.0239 (13)
C50.0795 (19)0.0606 (17)0.0645 (18)0.0124 (14)0.0127 (14)0.0336 (15)
C60.0585 (14)0.0493 (13)0.0493 (14)0.0200 (11)0.0091 (11)0.0161 (11)
C70.0472 (12)0.0462 (13)0.0537 (14)0.0198 (10)0.0097 (10)0.0162 (11)
C80.0658 (16)0.0536 (15)0.0588 (16)0.0192 (13)0.0017 (13)0.0216 (13)
C90.181 (6)0.165 (5)0.085 (3)0.104 (5)0.051 (3)0.063 (3)
C100.095 (3)0.095 (3)0.082 (2)0.037 (2)0.021 (2)0.046 (2)
C110.170 (5)0.186 (5)0.237 (7)0.129 (5)0.117 (5)0.176 (6)
Geometric parameters (Å, º) top
N1—C21.274 (3)C5—H50.9300
N1—N21.387 (3)C6—C71.516 (4)
N2—C11.290 (3)C6—H6A0.9700
N3—C51.313 (4)C6—H6B0.9700
N3—N41.347 (3)C7—C81.517 (4)
N3—C31.456 (3)C8—C91.482 (5)
N4—C41.314 (4)C8—C101.515 (4)
N5—C51.310 (4)C8—C111.544 (5)
N5—C41.332 (4)C9—H9A0.9600
O1—C71.205 (3)C9—H9B0.9600
S1—C11.715 (3)C9—H9C0.9600
S1—C21.728 (3)C10—H10A0.9600
S2—C11.751 (3)C10—H10B0.9600
S2—C61.799 (3)C10—H10C0.9600
C2—C31.498 (4)C11—H11A0.9600
C3—H3A0.9700C11—H11B0.9600
C3—H3B0.9700C11—H11C0.9600
C4—H40.9300
C2—N1—N2113.0 (2)C7—C6—H6B108.8
C1—N2—N1111.5 (2)S2—C6—H6B108.8
C5—N3—N4109.3 (2)H6A—C6—H6B107.7
C5—N3—C3130.1 (3)O1—C7—C6120.5 (2)
N4—N3—C3120.6 (2)O1—C7—C8122.2 (2)
C4—N4—N3102.1 (2)C6—C7—C8117.3 (2)
C5—N5—C4102.3 (2)C9—C8—C10111.0 (4)
C1—S1—C286.46 (12)C9—C8—C7110.6 (3)
C1—S2—C698.80 (12)C10—C8—C7110.9 (2)
N2—C1—S1114.8 (2)C9—C8—C11110.8 (5)
N2—C1—S2124.2 (2)C10—C8—C11106.0 (3)
S1—C1—S2121.01 (15)C7—C8—C11107.3 (3)
N1—C2—C3121.9 (3)C8—C9—H9A109.5
N1—C2—S1114.2 (2)C8—C9—H9B109.5
C3—C2—S1123.9 (2)H9A—C9—H9B109.5
N3—C3—C2112.9 (2)C8—C9—H9C109.5
N3—C3—H3A109.0H9A—C9—H9C109.5
C2—C3—H3A109.0H9B—C9—H9C109.5
N3—C3—H3B109.0C8—C10—H10A109.5
C2—C3—H3B109.0C8—C10—H10B109.5
H3A—C3—H3B107.8H10A—C10—H10B109.5
N4—C4—N5115.0 (3)C8—C10—H10C109.5
N4—C4—H4122.5H10A—C10—H10C109.5
N5—C4—H4122.5H10B—C10—H10C109.5
N5—C5—N3111.1 (3)C8—C11—H11A109.5
N5—C5—H5124.4C8—C11—H11B109.5
N3—C5—H5124.4H11A—C11—H11B109.5
C7—C6—S2113.74 (17)C8—C11—H11C109.5
C7—C6—H6A108.8H11A—C11—H11C109.5
S2—C6—H6A108.8H11B—C11—H11C109.5
C2—N1—N2—C10.3 (4)S1—C2—C3—N353.9 (4)
C5—N3—N4—C40.9 (3)N3—N4—C4—N51.1 (4)
C3—N3—N4—C4179.3 (2)C5—N5—C4—N40.9 (4)
N1—N2—C1—S11.4 (3)C4—N5—C5—N30.3 (4)
N1—N2—C1—S2179.3 (2)N4—N3—C5—N50.4 (4)
C2—S1—C1—N21.6 (2)C3—N3—C5—N5179.8 (3)
C2—S1—C1—S2179.13 (18)C1—S2—C6—C771.9 (2)
C6—S2—C1—N213.2 (3)S2—C6—C7—O115.0 (3)
C6—S2—C1—S1166.03 (16)S2—C6—C7—C8165.12 (19)
N2—N1—C2—C3177.4 (3)O1—C7—C8—C9129.1 (4)
N2—N1—C2—S10.9 (3)C6—C7—C8—C950.8 (5)
C1—S1—C2—N11.4 (2)O1—C7—C8—C105.4 (4)
C1—S1—C2—C3176.9 (2)C6—C7—C8—C10174.5 (2)
C5—N3—C3—C2105.8 (3)O1—C7—C8—C11109.9 (4)
N4—N3—C3—C274.1 (4)C6—C7—C8—C1170.2 (4)
N1—C2—C3—N3127.9 (3)

Experimental details

Crystal data
Chemical formulaC11H15N5OS2
Mr297.40
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.9723 (8), 10.1103 (8), 10.1734 (8)
α, β, γ (°)60.728 (1), 80.340 (1), 65.416 (1)
V3)731.3 (1)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.41 × 0.22 × 0.18
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.865, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
3810, 2529, 2246
Rint0.010
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.143, 1.05
No. of reflections2529
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.38

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 1997), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds