Download citation
Download citation
link to html
The new ambient-temperature hexagonal (space group P63/mmc) polymorph of tripotassium ytterbium(III) disilicate (β-K3YbSi2O7) has been synthesized by the high-temperature flux method and subsequently structurally characterized. In the course of the temperature-dependent single-crystal diffraction experiments, a phase transformation of β-K3YbSi2O7 to a novel low-temperature orthorhombic phase (β′-K3YbSi2O7, space group Cmcm) has been observed at about 210 K. β-K3YbSi2O7 is isostructural with K3ErSi2O7, whereas β′-K3YbSi2O7 adopts a new type of structure. Both compounds can be built up from a regular alternation of layers of two types, which are parallel to the (001) plane. In the octahedral layer, YbO6 octahedra are isolated and linked by K1O6+3 polyhedra. The second, slightly thicker sorosilicate layer is formed by a combination of Si2O7 dimers and K2O6+3 polyhedra. The boundary between the layers is a pseudo-kagome oxide sheet based on 3.6.3.6 meshes. The phase transition is due to a tilt of the two SiO4 tetrahedra forming a single dimer which induces a decrease of the Si—O—Si angle between bridging Si—O bonds from 180° (dictated by symmetry in space group P63/mmc) to ≃164°. Magnetic characterization indicates that K3YbSi2O7 remains paramagnetic down to 2 K, showing no apparent influence of the phase transformation on its magnetic properties. Analysis of the magnetization data revealed the positions of the three lowest crystal field levels of the Yb3+ cations, as well as the corresponding projections of their angular momentum on the direction of the magnetic field.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520621006077/yb5030sup1.cif
Contains datablocks global, beta-K3YbSi2O7, beta_prime-K3YbSi2O7, 93_K, 103_K, 113_K, 123_K, 133_K, 143_K, 153_K, 163_K, 173_K, 183_K, 193_K, 203_K, 213_K, 223_K, 233_K, 243_K, 253_K, 263_K, 273_K, 283_K, RT_after

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621006077/yb5030beta-K3YbSi2O7sup2.hkl
Contains datablock beta-K3YbSi2O7

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621006077/yb5030beta_prime-K3YbSi2O7sup3.hkl
Contains datablock beta_prime-K3YbSi2O7

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520621006077/yb5030sup4.pdf
Supplementary material

CCDC references: 1774871; 2089284

Computing details top

Data collection: CrysAlis PRO 1.171.38.43 (Rigaku Oxford Diffraction, 2014) for beta-K3YbSi2O7, beta_prime-K3YbSi2O7. Cell refinement: CrysAlis PRO 1.171.38.43 (Rigaku Oxford Diffraction, 2014) for beta-K3YbSi2O7, beta_prime-K3YbSi2O7. Data reduction: CrysAlis PRO 1.171.38.43 (Rigaku Oxford Diffraction, 2014) for beta-K3YbSi2O7, beta_prime-K3YbSi2O7. Program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007) for beta_prime-K3YbSi2O7. Program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015) for beta-K3YbSi2O7; Jana2006 (Petricek et al., 2014) for beta_prime-K3YbSi2O7; SHELXL2018/3 (Sheldrick, 2018) for 93_K, 103_K, 113_K, 123_K, 133_K, 143_K, 153_K, 163_K, 173_K, 183_K, 193_K, 203_K, 213_K, 223_K, 233_K, 243_K, 253_K, 263_K, 273_K, 283_K, RT_after. Molecular graphics: VESTA (Momma & Izumi, 2011) for beta-K3YbSi2O7, beta_prime-K3YbSi2O7. Software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015) for beta-K3YbSi2O7; Jana2006 (Petricek et al., 2014) for beta_prime-K3YbSi2O7.

(beta-K3YbSi2O7) top
Crystal data top
K3O7Si2YbDx = 3.847 Mg m3
Mr = 458.52Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mmcCell parameters from 1141 reflections
a = 5.7274 (5) Åθ = 4.3–29.7°
c = 13.9339 (15) ŵ = 13.69 mm1
V = 395.84 (8) Å3T = 298 K
Z = 2Prismatic, colourless
F(000) = 4220.28 × 0.09 × 0.08 mm
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
187 reflections with I > 2σ(I)
ω scansRint = 0.040
Absorption correction: analytical
CrysAlisPro 1.171.38.43f (Rigaku Oxford Diffraction, 2015) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 27.5°, θmin = 4.1°
Tmin = 0.110, Tmax = 0.450h = 75
2409 measured reflectionsk = 57
208 independent reflectionsl = 1417
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0168P)2 + 0.3684P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.013(Δ/σ)max < 0.001
wR(F2) = 0.035Δρmax = 1.02 e Å3
S = 1.17Δρmin = 0.44 e Å3
208 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
20 parametersExtinction coefficient: 0.0129 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.3333330.6666670.09178 (11)0.0113 (3)
K20.0000000.0000000.2500000.0161 (5)
Yb10.0000000.0000000.0000000.00325 (19)
Si10.6666670.3333330.13222 (12)0.0033 (3)
O10.3575 (5)0.1788 (2)0.09590 (18)0.0115 (6)
O20.6666670.3333330.2500000.0203 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0093 (4)0.0093 (4)0.0153 (7)0.0047 (2)0.0000.000
K20.0208 (8)0.0208 (8)0.0065 (10)0.0104 (4)0.0000.000
Yb10.0024 (2)0.0024 (2)0.0049 (3)0.00121 (10)0.0000.000
Si10.0033 (5)0.0033 (5)0.0033 (8)0.0016 (2)0.0000.000
O10.0073 (12)0.0111 (10)0.0148 (13)0.0036 (6)0.0030 (12)0.0015 (6)
O20.030 (2)0.030 (2)0.002 (3)0.0148 (12)0.0000.000
Geometric parameters (Å, º) top
K1—O1i2.8668 (3)K2—O1xii2.785 (3)
K1—O1ii2.8668 (3)K2—O2xiii3.3067 (3)
K1—O12.8668 (3)K2—O23.3067 (3)
K1—O1iii2.8668 (3)K2—O2xiv3.3067 (3)
K1—O1iv2.8668 (3)K2—Yb13.4835 (4)
K1—O1v2.8668 (3)K2—Yb1xv3.4835 (4)
K1—O1vi3.032 (3)K2—Si1xiii3.6915 (8)
K1—O1vii3.032 (3)Yb1—O1xvi2.220 (2)
K1—O1viii3.032 (3)Yb1—O1xvii2.220 (2)
K1—Si1viii3.121 (2)Yb1—O1iv2.220 (2)
K1—Si13.3544 (5)Yb1—O1vii2.220 (2)
K1—Si1iii3.3544 (5)Yb1—O1x2.220 (2)
K2—O12.785 (3)Yb1—O12.221 (2)
K2—O1ix2.785 (3)Si1—O1xviii1.615 (2)
K2—O1x2.785 (3)Si1—O11.615 (2)
K2—O1xi2.785 (3)Si1—O1v1.615 (2)
K2—O1iv2.785 (3)Si1—O21.6411 (17)
O1i—K1—O1ii119.960 (4)O1xvii—Yb1—O1x92.48 (9)
O1i—K1—O1119.960 (5)O1iv—Yb1—O1x87.52 (9)
O1ii—K1—O1119.960 (5)O1vii—Yb1—O1x180.00 (15)
O1i—K1—O1iii64.79 (10)O1xvi—Yb1—O1180.0
O1ii—K1—O1iii55.19 (10)O1xvii—Yb1—O192.48 (9)
O1—K1—O1iii174.68 (10)O1iv—Yb1—O187.52 (9)
O1i—K1—O1iv55.19 (10)O1vii—Yb1—O192.48 (9)
O1ii—K1—O1iv174.68 (10)O1x—Yb1—O187.52 (9)
O1—K1—O1iv64.79 (10)O1xvi—Yb1—K2127.00 (7)
O1iii—K1—O1iv119.960 (5)O1xvii—Yb1—K2127.00 (7)
O1i—K1—O1v174.68 (10)O1iv—Yb1—K253.00 (7)
O1ii—K1—O1v64.79 (10)O1vii—Yb1—K2127.00 (7)
O1—K1—O1v55.19 (10)O1x—Yb1—K253.00 (7)
O1iii—K1—O1v119.960 (5)O1—Yb1—K253.00 (7)
O1iv—K1—O1v119.960 (4)O1xvi—Yb1—K2xvi53.00 (7)
O1i—K1—O1vi65.81 (8)O1xvii—Yb1—K2xvi53.00 (7)
O1ii—K1—O1vi89.78 (6)O1iv—Yb1—K2xvi127.00 (7)
O1—K1—O1vi117.74 (6)O1vii—Yb1—K2xvi53.00 (7)
O1iii—K1—O1vi65.81 (8)O1x—Yb1—K2xvi127.00 (7)
O1iv—K1—O1vi89.78 (6)O1—Yb1—K2xvi127.00 (7)
O1v—K1—O1vi117.74 (6)K2—Yb1—K2xvi180.0
O1i—K1—O1vii89.78 (6)O1xvi—Yb1—K1xvi53.876 (12)
O1ii—K1—O1vii117.74 (6)O1xvii—Yb1—K1xvi53.878 (12)
O1—K1—O1vii65.82 (8)O1iv—Yb1—K1xvi126.122 (12)
O1iii—K1—O1vii117.74 (6)O1vii—Yb1—K1xvi121.86 (7)
O1iv—K1—O1vii65.81 (8)O1x—Yb1—K1xvi58.14 (7)
O1v—K1—O1vii89.78 (6)O1—Yb1—K1xvi126.123 (12)
O1vi—K1—O1vii51.96 (8)K2—Yb1—K1xvi111.14 (2)
O1i—K1—O1viii117.74 (6)K2xvi—Yb1—K1xvi68.86 (2)
O1ii—K1—O1viii65.81 (9)O1xvi—Yb1—K1xiii58.14 (7)
O1—K1—O1viii89.78 (6)O1xvii—Yb1—K1xiii126.123 (12)
O1iii—K1—O1viii89.78 (6)O1iv—Yb1—K1xiii53.877 (12)
O1iv—K1—O1viii117.74 (6)O1vii—Yb1—K1xiii126.123 (12)
O1v—K1—O1viii65.81 (8)O1x—Yb1—K1xiii53.877 (12)
O1vi—K1—O1viii51.96 (8)O1—Yb1—K1xiii121.86 (7)
O1vii—K1—O1viii51.96 (8)K2—Yb1—K1xiii68.86 (2)
O1i—K1—Si1viii91.15 (6)K2xvi—Yb1—K1xiii111.14 (2)
O1ii—K1—Si1viii91.15 (6)K1xvi—Yb1—K1xiii72.25 (3)
O1—K1—Si1viii91.15 (6)O1xvi—Yb1—K1viii121.86 (7)
O1iii—K1—Si1viii91.15 (6)O1xvii—Yb1—K1viii53.877 (12)
O1iv—K1—Si1viii91.15 (6)O1iv—Yb1—K1viii126.123 (12)
O1v—K1—Si1viii91.15 (6)O1vii—Yb1—K1viii53.877 (12)
O1vi—K1—Si1viii30.38 (5)O1x—Yb1—K1viii126.123 (12)
O1vii—K1—Si1viii30.38 (5)O1—Yb1—K1viii58.14 (7)
O1viii—K1—Si1viii30.38 (5)K2—Yb1—K1viii111.14 (2)
O1i—K1—Si1145.98 (5)K2xvi—Yb1—K1viii68.86 (2)
O1ii—K1—Si192.17 (5)K1xvi—Yb1—K1viii107.75 (3)
O1—K1—Si128.74 (5)K1xiii—Yb1—K1viii180.0
O1iii—K1—Si1145.98 (5)O1xvi—Yb1—K1126.123 (12)
O1iv—K1—Si192.17 (5)O1xvii—Yb1—K1126.122 (12)
O1v—K1—Si128.74 (5)O1iv—Yb1—K153.878 (12)
O1vi—K1—Si1130.05 (7)O1vii—Yb1—K158.14 (7)
O1vii—K1—Si184.01 (4)O1x—Yb1—K1121.86 (7)
O1viii—K1—Si184.01 (4)O1—Yb1—K153.877 (12)
Si1viii—K1—Si199.67 (4)K2—Yb1—K168.86 (2)
O1i—K1—Si1iii92.17 (5)K2xvi—Yb1—K1111.14 (2)
O1ii—K1—Si1iii28.74 (5)K1xvi—Yb1—K1180.0
O1—K1—Si1iii145.98 (5)K1xiii—Yb1—K1107.75 (3)
O1iii—K1—Si1iii28.74 (5)K1viii—Yb1—K172.25 (3)
O1iv—K1—Si1iii145.97 (5)O1xviii—Si1—O1110.65 (11)
O1v—K1—Si1iii92.17 (5)O1xviii—Si1—O1v110.65 (11)
O1vi—K1—Si1iii84.01 (4)O1—Si1—O1v110.65 (11)
O1vii—K1—Si1iii130.06 (7)O1xviii—Si1—O2108.27 (11)
O1viii—K1—Si1iii84.01 (4)O1—Si1—O2108.27 (11)
Si1viii—K1—Si1iii99.67 (4)O1v—Si1—O2108.27 (11)
Si1—K1—Si1iii117.24 (2)O1xviii—Si1—K1viii71.73 (11)
O1—K2—O1ix100.89 (10)O1—Si1—K1viii71.73 (11)
O1—K2—O1x66.94 (8)O1v—Si1—K1viii71.73 (11)
O1ix—K2—O1x142.87 (4)O2—Si1—K1viii180.0
O1—K2—O1xi142.87 (4)O1xviii—Si1—K1152.06 (13)
O1ix—K2—O1xi66.94 (8)O1—Si1—K158.620 (11)
O1x—K2—O1xi142.87 (4)O1v—Si1—K158.621 (11)
O1—K2—O1iv66.94 (8)O2—Si1—K199.67 (4)
O1ix—K2—O1iv142.87 (4)K1viii—Si1—K180.33 (4)
O1x—K2—O1iv66.94 (8)O1xviii—Si1—K1xix58.619 (11)
O1xi—K2—O1iv100.89 (10)O1—Si1—K1xix58.620 (11)
O1—K2—O1xii142.87 (4)O1v—Si1—K1xix152.06 (13)
O1ix—K2—O1xii66.94 (8)O2—Si1—K1xix99.67 (4)
O1x—K2—O1xii100.89 (10)K1viii—Si1—K1xix80.33 (4)
O1xi—K2—O1xii66.94 (8)K1—Si1—K1xix117.24 (2)
O1iv—K2—O1xii142.87 (4)O1xviii—Si1—K1xx58.620 (11)
O1—K2—O2xiii108.57 (2)O1—Si1—K1xx152.06 (13)
O1ix—K2—O2xiii108.57 (2)O1v—Si1—K1xx58.620 (11)
O1x—K2—O2xiii50.45 (5)O2—Si1—K1xx99.67 (4)
O1xi—K2—O2xiii108.57 (2)K1viii—Si1—K1xx80.33 (4)
O1iv—K2—O2xiii108.57 (2)K1—Si1—K1xx117.24 (2)
O1xii—K2—O2xiii50.45 (5)K1xix—Si1—K1xx117.24 (2)
O1—K2—O250.45 (5)O1xviii—Si1—K2xx44.66 (10)
O1ix—K2—O250.45 (5)O1—Si1—K2xx124.38 (4)
O1x—K2—O2108.57 (2)O1v—Si1—K2xx124.38 (4)
O1xi—K2—O2108.57 (2)O2—Si1—K2xx63.61 (2)
O1iv—K2—O2108.57 (2)K1viii—Si1—K2xx116.40 (2)
O1xii—K2—O2108.57 (2)K1—Si1—K2xx163.28 (6)
O2xiii—K2—O2120.0K1xix—Si1—K2xx68.479 (16)
O1—K2—O2xiv108.57 (2)K1xx—Si1—K2xx68.479 (16)
O1ix—K2—O2xiv108.57 (2)O1xviii—Si1—K2xxi124.38 (4)
O1x—K2—O2xiv108.57 (2)O1—Si1—K2xxi124.38 (4)
O1xi—K2—O2xiv50.45 (5)O1v—Si1—K2xxi44.66 (10)
O1iv—K2—O2xiv50.45 (5)O2—Si1—K2xxi63.61 (2)
O1xii—K2—O2xiv108.57 (2)K1viii—Si1—K2xxi116.39 (2)
O2xiii—K2—O2xiv120.0K1—Si1—K2xxi68.480 (16)
O2—K2—O2xiv120.0K1xix—Si1—K2xxi163.28 (6)
O1—K2—Yb139.55 (5)K1xx—Si1—K2xxi68.480 (16)
O1ix—K2—Yb1140.45 (5)K2xx—Si1—K2xxi101.75 (3)
O1x—K2—Yb139.55 (5)O1xviii—Si1—K2124.38 (4)
O1xi—K2—Yb1140.45 (5)O1—Si1—K244.66 (10)
O1iv—K2—Yb139.55 (5)O1v—Si1—K2124.38 (4)
O1xii—K2—Yb1140.45 (5)O2—Si1—K263.61 (2)
O2xiii—K2—Yb190.0K1viii—Si1—K2116.39 (2)
O2—K2—Yb190.0K1—Si1—K268.480 (16)
O2xiv—K2—Yb190.0K1xix—Si1—K268.480 (16)
O1—K2—Yb1xv140.45 (5)K1xx—Si1—K2163.28 (6)
O1ix—K2—Yb1xv39.55 (5)K2xx—Si1—K2101.75 (3)
O1x—K2—Yb1xv140.45 (5)K2xxi—Si1—K2101.75 (3)
O1xi—K2—Yb1xv39.55 (5)Si1—O1—Yb1161.27 (17)
O1iv—K2—Yb1xv140.45 (5)Si1—O1—K2111.29 (14)
O1xii—K2—Yb1xv39.55 (5)Yb1—O1—K287.44 (8)
O2xiii—K2—Yb1xv90.0Si1—O1—K192.64 (5)
O2—K2—Yb1xv90.0Yb1—O1—K187.39 (5)
O2xiv—K2—Yb1xv90.0K2—O1—K189.36 (6)
Yb1—K2—Yb1xv180.0Si1—O1—K1xix92.64 (5)
O1—K2—Si1xiii86.70 (4)Yb1—O1—K1xix87.39 (5)
O1ix—K2—Si1xiii128.901 (17)K2—O1—K1xix89.36 (6)
O1x—K2—Si1xiii24.05 (6)K1—O1—K1xix174.68 (10)
O1xi—K2—Si1xiii128.900 (17)Si1—O1—K1viii77.88 (12)
O1iv—K2—Si1xiii86.70 (4)Yb1—O1—K1viii83.38 (8)
O1xii—K2—Si1xiii76.84 (6)K2—O1—K1viii170.83 (10)
O2xiii—K2—Si1xiii26.39 (2)K1—O1—K1viii90.22 (6)
O2—K2—Si1xiii116.608 (6)K1xix—O1—K1viii90.22 (6)
O2xiv—K2—Si1xiii116.607 (6)Si1ix—O2—Si1180.0
Yb1—K2—Si1xiii63.61 (2)Si1ix—O2—K2xx90.0
Yb1xv—K2—Si1xiii116.39 (2)Si1—O2—K2xx90.0
O1xvi—Yb1—O1xvii87.52 (10)Si1ix—O2—K290.0
O1xvi—Yb1—O1iv92.48 (10)Si1—O2—K290.0
O1xvii—Yb1—O1iv180.00 (10)K2xx—O2—K2120.0
O1xvi—Yb1—O1vii87.52 (10)Si1ix—O2—K2xxi90.0
O1xvii—Yb1—O1vii87.52 (9)Si1—O2—K2xxi90.0
O1iv—Yb1—O1vii92.48 (9)K2xx—O2—K2xxi120.0
O1xvi—Yb1—O1x92.48 (9)K2—O2—K2xxi120.0
Symmetry codes: (i) x+y, x+1, z; (ii) y+1, xy+1, z; (iii) x, y+1, z; (iv) y, xy, z; (v) x+y+1, x+1, z; (vi) y, x+y+1, z; (vii) xy, x, z; (viii) x+1, y+1, z; (ix) x, y, z+1/2; (x) x+y, x, z; (xi) y, xy, z+1/2; (xii) x+y, x, z+1/2; (xiii) x1, y1, z; (xiv) x1, y, z; (xv) x, y, z+1/2; (xvi) x, y, z; (xvii) y, x+y, z; (xviii) y+1, xy, z; (xix) x, y1, z; (xx) x+1, y, z; (xxi) x+1, y+1, z.
(beta_prime-K3YbSi2O7) top
Crystal data top
O7Si2K3YbF(000) = 844
Mr = 458.5Dx = 3.884 Mg m3
Orthorhombic, CmcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C -2x;-2yc;-2zcCell parameters from 1193 reflections
a = 5.7099 (5) Åθ = 4.1–29.0°
b = 9.8898 (9) ŵ = 13.82 mm1
c = 13.8867 (14) ÅT = 100 K
V = 784.18 (13) Å3Prismatic, colourless
Z = 40.28 × 0.09 × 0.08 mm
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
840 reflections with I > 2σ(I)
Radiation source: X-ray tubeRint = 0.045
ω scansθmax = 30.0°, θmin = 4.1°
Absorption correction: analytical
CrysAlisPro 1.171.38.43 (Rigaku Oxford Diffraction, 2015) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 77
Tmin = 0.107, Tmax = 0.444k = 139
2644 measured reflectionsl = 1418
922 independent reflections
Refinement top
Refinement on F28 constraints
R[F2 > 2σ(F2)] = 0.027Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
wR(F2) = 0.064(Δ/σ)max = 0.045
S = 1.14Δρmax = 1.40 e Å3
922 reflectionsΔρmin = 0.77 e Å3
26 parametersExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 620 (50)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb1000.50.00140 (12)
K10.50.1739 (2)0.40753 (11)0.0047 (3)
K200.0185 (3)0.250.0064 (5)
Si100.3385 (3)0.63224 (13)0.0017 (4)
O10.2658 (8)0.0794 (4)0.3989 (3)0.0080 (10)*
O200.1889 (6)0.5866 (5)0.0032 (15)*
O300.3156 (9)0.750.0081 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.00079 (9)0.0008 (3)0.0026 (2)000
K10.0045 (2)0.0045 (6)0.0052 (7)000
K20.0073 (3)0.0073 (9)0.0048 (10)000
Si10.0016 (3)0.0016 (8)0.0019 (8)000
Geometric parameters (Å, º) top
Yb1—K1i3.5716 (13)K1—O12.842 (5)
Yb1—K13.5716 (13)K1—O1xii2.876 (5)
Yb1—K1ii3.472 (2)K1—O1iv3.144 (4)
Yb1—K1iii3.5716 (13)K1—O1xv3.144 (4)
Yb1—K1iv3.5716 (13)K1—O1xvi2.842 (5)
Yb1—K1v3.472 (2)K1—O1xvii2.876 (5)
Yb1—K23.4765 (7)K1—O2xii2.833 (7)
Yb1—K2vi3.4765 (7)K1—O2iv2.8600 (6)
Yb1—O12.212 (4)K1—O2xiii2.8600 (6)
Yb1—O1iv2.212 (4)K2—Si1xviii3.562 (3)
Yb1—O1vii2.212 (4)K2—Si1iv3.562 (3)
Yb1—O1viii2.212 (4)K2—O12.742 (4)
Yb1—O22.222 (6)K2—O1xix2.742 (4)
Yb1—O2iv2.222 (6)K2—O1xx2.742 (4)
K1—K1ix4.375 (2)K2—O1viii2.742 (4)
K1—K1iv4.292 (3)K2—O2xviii2.827 (7)
K1—K1v4.1249 (18)K2—O2iv2.827 (7)
K1—K1x4.1249 (18)K2—O3xviii2.938 (10)
K1—K23.9110 (16)K2—O3xxi3.489 (6)
K1—K2xi3.9110 (16)K2—O3xxii3.489 (6)
K1—K2xii4.050 (3)Si1—O1xxiii1.623 (5)
K1—Si1xii3.123 (2)Si1—O1xxiv1.623 (5)
K1—Si1iv3.3326 (18)Si1—O21.609 (7)
K1—Si1xiii3.3326 (18)Si1—O31.651 (2)
K1—Si1xiv3.363 (3)
K1i—Yb1—K1106.14 (4)K2xii—K1—O1xvii42.56 (9)
K1i—Yb1—K1ii108.32 (3)K2xii—K1—O2xii94.07 (14)
K1i—Yb1—K1iii73.86 (4)K2xii—K1—O2iv88.37 (13)
K1i—Yb1—K1iv180K2xii—K1—O2xiii88.37 (13)
K1i—Yb1—K1v71.68 (3)Si1xii—K1—Si1iv100.64 (5)
K1i—Yb1—K267.39 (3)Si1xii—K1—Si1xiii100.64 (5)
K1i—Yb1—K2vi112.61 (3)Si1xii—K1—Si1xiv97.22 (8)
K1i—Yb1—O1119.42 (11)Si1xii—K1—O190.45 (10)
K1i—Yb1—O1iv127.29 (12)Si1xii—K1—O1xii94.29 (10)
K1i—Yb1—O1vii60.58 (11)Si1xii—K1—O1xvi90.45 (10)
K1i—Yb1—O1viii52.71 (12)Si1xii—K1—O1xvii94.29 (10)
K1i—Yb1—O2126.83 (3)Si1xii—K1—O2xii30.86 (14)
K1i—Yb1—O2iv53.17 (3)Si1xii—K1—O2iv88.48 (14)
K1—Yb1—K1ii108.32 (3)Si1xii—K1—O2xiii88.48 (14)
K1—Yb1—K1iii180Si1iv—K1—Si1xiii117.89 (8)
K1—Yb1—K1iv73.86 (4)Si1iv—K1—Si1xiv117.04 (5)
K1—Yb1—K1v71.68 (3)Si1iv—K1—O191.17 (10)
K1—Yb1—K267.39 (3)Si1iv—K1—O1xii91.76 (11)
K1—Yb1—K2vi112.61 (3)Si1iv—K1—O1xvi145.75 (11)
K1—Yb1—O152.71 (12)Si1iv—K1—O1xvii29.14 (10)
K1—Yb1—O1iv60.58 (11)Si1iv—K1—O2xii84.92 (8)
K1—Yb1—O1vii127.29 (12)Si1iv—K1—O2iv28.85 (13)
K1—Yb1—O1viii119.42 (11)Si1iv—K1—O2xiii146.56 (15)
K1—Yb1—O2126.83 (3)Si1xiii—K1—Si1xiv117.04 (5)
K1—Yb1—O2iv53.17 (3)Si1xiii—K1—O1145.75 (11)
K1ii—Yb1—K1iii71.68 (3)Si1xiii—K1—O1xii29.14 (10)
K1ii—Yb1—K1iv71.68 (3)Si1xiii—K1—O1xvi91.17 (10)
K1ii—Yb1—K1v180Si1xiii—K1—O1xvii91.76 (11)
K1ii—Yb1—K271.31 (5)Si1xiii—K1—O2xii84.92 (8)
K1ii—Yb1—K2vi108.69 (5)Si1xiii—K1—O2iv146.56 (15)
K1ii—Yb1—O155.61 (12)Si1xiii—K1—O2xiii28.85 (13)
K1ii—Yb1—O1iv124.39 (12)Si1xiv—K1—O128.79 (10)
K1ii—Yb1—O1vii124.39 (12)Si1xiv—K1—O1xii146.10 (10)
K1ii—Yb1—O1viii55.61 (12)Si1xiv—K1—O1xvi28.79 (10)
K1ii—Yb1—O254.47 (18)Si1xiv—K1—O1xvii146.10 (10)
K1ii—Yb1—O2iv125.53 (18)Si1xiv—K1—O2xii128.08 (14)
K1iii—Yb1—K1iv106.14 (4)Si1xiv—K1—O2iv93.22 (13)
K1iii—Yb1—K1v108.32 (3)Si1xiv—K1—O2xiii93.22 (13)
K1iii—Yb1—K2112.61 (3)O1—K1—O1xii173.87 (13)
K1iii—Yb1—K2vi67.39 (3)O1—K1—O1xvi56.13 (14)
K1iii—Yb1—O1127.29 (12)O1—K1—O1xvii119.85 (13)
K1iii—Yb1—O1iv119.42 (11)O1—K1—O2xii117.34 (14)
K1iii—Yb1—O1vii52.71 (12)O1—K1—O2iv65.01 (15)
K1iii—Yb1—O1viii60.58 (11)O1—K1—O2xiii121.12 (17)
K1iii—Yb1—O253.17 (3)O1xii—K1—O1xvi119.85 (13)
K1iii—Yb1—O2iv126.83 (3)O1xii—K1—O1xvii63.70 (14)
K1iv—Yb1—K1v108.32 (3)O1xii—K1—O2xii68.30 (14)
K1iv—Yb1—K2112.61 (3)O1xii—K1—O2iv118.93 (17)
K1iv—Yb1—K2vi67.39 (3)O1xii—K1—O2xiii55.26 (15)
K1iv—Yb1—O160.58 (11)O1xvi—K1—O1xvii173.87 (13)
K1iv—Yb1—O1iv52.71 (12)O1xvi—K1—O2xii117.34 (14)
K1iv—Yb1—O1vii119.42 (11)O1xvi—K1—O2iv121.12 (17)
K1iv—Yb1—O1viii127.29 (12)O1xvi—K1—O2xiii65.01 (15)
K1iv—Yb1—O253.17 (3)O1xvii—K1—O2xii68.30 (14)
K1iv—Yb1—O2iv126.83 (3)O1xvii—K1—O2iv55.26 (15)
K1v—Yb1—K2108.69 (5)O1xvii—K1—O2xiii118.93 (17)
K1v—Yb1—K2vi71.31 (5)O2xii—K1—O2iv87.13 (14)
K1v—Yb1—O1124.39 (12)O2xii—K1—O2xiii87.13 (14)
K1v—Yb1—O1iv55.61 (12)O2iv—K1—O2xiii173.2 (2)
K1v—Yb1—O1vii55.61 (12)Yb1—K2—Yb1xviii173.96 (8)
K1v—Yb1—O1viii124.39 (12)Yb1—K2—K1i57.46 (2)
K1v—Yb1—O2125.53 (18)Yb1—K2—K157.46 (2)
K1v—Yb1—O2iv54.47 (18)Yb1—K2—K1ii54.29 (3)
K2—Yb1—K2vi180Yb1—K2—K1xix125.40 (3)
K2—Yb1—O152.03 (11)Yb1—K2—K1ix125.40 (3)
K2—Yb1—O1iv127.97 (11)Yb1—K2—K1xxv119.67 (7)
K2—Yb1—O1vii127.97 (11)Yb1—K2—Si1xviii120.35 (7)
K2—Yb1—O1viii52.03 (11)Yb1—K2—Si1iv65.69 (4)
K2—Yb1—O2125.78 (18)Yb1—K2—O139.50 (9)
K2—Yb1—O2iv54.22 (18)Yb1—K2—O1xix137.26 (10)
K2vi—Yb1—O1127.97 (11)Yb1—K2—O1xx137.26 (10)
K2vi—Yb1—O1iv52.03 (11)Yb1—K2—O1viii39.50 (9)
K2vi—Yb1—O1vii52.03 (11)Yb1—K2—O2xviii146.42 (15)
K2vi—Yb1—O1viii127.97 (11)Yb1—K2—O2iv39.62 (13)
K2vi—Yb1—O254.22 (18)Yb1xviii—K2—K1i125.40 (3)
K2vi—Yb1—O2iv125.78 (18)Yb1xviii—K2—K1125.40 (3)
O1—Yb1—O1iv93.34 (16)Yb1xviii—K2—K1ii119.67 (7)
O1—Yb1—O1vii180Yb1xviii—K2—K1xix57.46 (2)
O1—Yb1—O1viii86.66 (16)Yb1xviii—K2—K1ix57.46 (2)
O1—Yb1—O292.58 (17)Yb1xviii—K2—K1xxv54.29 (3)
O1—Yb1—O2iv87.42 (17)Yb1xviii—K2—Si1xviii65.69 (4)
O1iv—Yb1—O1vii86.66 (16)Yb1xviii—K2—Si1iv120.35 (7)
O1iv—Yb1—O1viii180Yb1xviii—K2—O1137.26 (10)
O1iv—Yb1—O287.42 (17)Yb1xviii—K2—O1xix39.50 (9)
O1iv—Yb1—O2iv92.58 (17)Yb1xviii—K2—O1xx39.50 (9)
O1vii—Yb1—O1viii93.34 (16)Yb1xviii—K2—O1viii137.26 (10)
O1vii—Yb1—O287.42 (17)Yb1xviii—K2—O2xviii39.62 (13)
O1vii—Yb1—O2iv92.58 (17)Yb1xviii—K2—O2iv146.42 (15)
O1viii—Yb1—O292.58 (17)K1i—K2—K193.77 (4)
O1viii—Yb1—O2iv87.42 (17)K1i—K2—K1ii91.63 (4)
O2—Yb1—O2iv180K1i—K2—K1xix68.02 (4)
Yb1—K1—Yb1xi106.14 (5)K1i—K2—K1ix133.74 (8)
Yb1—K1—Yb1xii108.32 (3)K1i—K2—K1xxv129.25 (4)
Yb1—K1—K1ix111.07 (3)K1i—K2—Si1xviii84.71 (6)
Yb1—K1—K1iv53.07 (3)K1i—K2—Si1iv52.72 (4)
Yb1—K1—K1v53.03 (3)K1i—K2—O196.96 (9)
Yb1—K1—K1x120.34 (4)K1i—K2—O1xix99.00 (10)
Yb1—K1—K255.14 (2)K1i—K2—O1xx164.73 (10)
Yb1—K1—K2xi126.55 (7)K1i—K2—O1viii46.60 (10)
Yb1—K1—K2xii126.82 (3)K1i—K2—O2xviii102.41 (11)
Yb1—K1—Si1xii67.79 (4)K1i—K2—O2iv46.90 (3)
Yb1—K1—Si1iv67.04 (4)K1—K2—K1ii91.63 (4)
Yb1—K1—Si1xiii168.39 (6)K1—K2—K1xix133.74 (8)
Yb1—K1—Si1xiv65.43 (4)K1—K2—K1ix68.02 (4)
Yb1—K1—O138.26 (9)K1—K2—K1xxv129.25 (4)
Yb1—K1—O1xii147.70 (10)K1—K2—Si1xviii84.71 (6)
Yb1—K1—O1xvi88.11 (11)K1—K2—Si1iv52.72 (4)
Yb1—K1—O1xvii90.09 (9)K1—K2—O146.60 (10)
Yb1—K1—O2xii85.13 (8)K1—K2—O1xix164.73 (10)
Yb1—K1—O2iv38.45 (13)K1—K2—O1xx99.00 (10)
Yb1—K1—O2xiii144.37 (14)K1—K2—O1viii96.96 (9)
Yb1xi—K1—Yb1xii108.32 (3)K1—K2—O2xviii102.41 (11)
Yb1xi—K1—K1ix111.07 (3)K1—K2—O2iv46.90 (3)
Yb1xi—K1—K1iv53.07 (3)K1ii—K2—K1xix129.25 (4)
Yb1xi—K1—K1v120.34 (4)K1ii—K2—K1ix129.25 (4)
Yb1xi—K1—K1x53.03 (3)K1ii—K2—K1xxv65.38 (5)
Yb1xi—K1—K2126.55 (7)K1ii—K2—Si1xviii174.64 (6)
Yb1xi—K1—K2xi55.14 (2)K1ii—K2—Si1iv119.98 (4)
Yb1xi—K1—K2xii126.82 (3)K1ii—K2—O145.20 (10)
Yb1xi—K1—Si1xii67.79 (4)K1ii—K2—O1xix96.31 (11)
Yb1xi—K1—Si1iv168.39 (6)K1ii—K2—O1xx96.31 (11)
Yb1xi—K1—Si1xiii67.04 (4)K1ii—K2—O1viii45.20 (10)
Yb1xi—K1—Si1xiv65.43 (4)K1ii—K2—O2xviii159.29 (15)
Yb1xi—K1—O188.11 (11)K1ii—K2—O2iv93.91 (13)
Yb1xi—K1—O1xii90.09 (9)K1xix—K2—K1ix93.77 (4)
Yb1xi—K1—O1xvi38.26 (9)K1xix—K2—K1xxv91.63 (4)
Yb1xi—K1—O1xvii147.70 (10)K1xix—K2—Si1xviii52.72 (4)
Yb1xi—K1—O2xii85.13 (8)K1xix—K2—Si1iv84.71 (6)
Yb1xi—K1—O2iv144.37 (14)K1xix—K2—O1164.73 (10)
Yb1xi—K1—O2xiii38.45 (13)K1xix—K2—O1xix46.60 (10)
Yb1xii—K1—K1ix111.71 (6)K1xix—K2—O1xx96.96 (9)
Yb1xii—K1—K1iv121.54 (5)K1xix—K2—O1viii99.00 (10)
Yb1xii—K1—K1v55.28 (4)K1xix—K2—O2xviii46.90 (3)
Yb1xii—K1—K1x55.28 (4)K1xix—K2—O2iv102.41 (11)
Yb1xii—K1—K2124.88 (5)K1ix—K2—K1xxv91.63 (4)
Yb1xii—K1—K2xi124.88 (5)K1ix—K2—Si1xviii52.72 (4)
Yb1xii—K1—K2xii54.40 (4)K1ix—K2—Si1iv84.71 (6)
Yb1xii—K1—Si1xii70.53 (6)K1ix—K2—O199.00 (10)
Yb1xii—K1—Si1iv66.89 (5)K1ix—K2—O1xix96.96 (9)
Yb1xii—K1—Si1xiii66.89 (5)K1ix—K2—O1xx46.60 (10)
Yb1xii—K1—Si1xiv167.74 (6)K1ix—K2—O1viii164.73 (10)
Yb1xii—K1—O1146.57 (10)K1ix—K2—O2xviii46.90 (3)
Yb1xii—K1—O1xii39.40 (9)K1ix—K2—O2iv102.41 (11)
Yb1xii—K1—O1xvi146.57 (10)K1xxv—K2—Si1xviii119.98 (4)
Yb1xii—K1—O1xvii39.40 (9)K1xxv—K2—Si1iv174.64 (6)
Yb1xii—K1—O2xii39.67 (13)K1xxv—K2—O196.31 (11)
Yb1xii—K1—O2iv86.62 (13)K1xxv—K2—O1xix45.20 (10)
Yb1xii—K1—O2xiii86.62 (13)K1xxv—K2—O1xx45.20 (10)
K1ix—K1—K1iv126.75 (6)K1xxv—K2—O1viii96.31 (11)
K1ix—K1—K1v128.51 (4)K1xxv—K2—O2xviii93.91 (13)
K1ix—K1—K1x128.51 (4)K1xxv—K2—O2iv159.29 (15)
K1ix—K1—K255.99 (3)Si1xviii—K2—Si1iv54.66 (6)
K1ix—K1—K2xi55.99 (3)Si1xviii—K2—O1131.31 (11)
K1ix—K1—K2xii57.31 (4)Si1xviii—K2—O1xix88.15 (10)
K1ix—K1—Si1xii177.76 (9)Si1xviii—K2—O1xx88.15 (10)
K1ix—K1—Si1iv80.46 (4)Si1xviii—K2—O1viii131.31 (11)
K1ix—K1—Si1xiii80.46 (4)Si1xviii—K2—O2xviii26.07 (14)
K1ix—K1—Si1xiv80.55 (5)Si1xviii—K2—O2iv80.73 (15)
K1ix—K1—O187.58 (9)Si1iv—K2—O188.15 (10)
K1ix—K1—O1xii87.61 (9)Si1iv—K2—O1xix131.31 (11)
K1ix—K1—O1xvi87.58 (9)Si1iv—K2—O1xx131.31 (11)
K1ix—K1—O1xvii87.61 (9)Si1iv—K2—O1viii88.15 (10)
K1ix—K1—O2xii151.38 (15)Si1iv—K2—O2xviii80.73 (15)
K1ix—K1—O2iv91.64 (14)Si1iv—K2—O2iv26.07 (14)
K1ix—K1—O2xiii91.64 (14)O1—K2—O1xix138.62 (16)
K1iv—K1—K1v85.41 (4)O1—K2—O1xx97.89 (14)
K1iv—K1—K1x85.41 (4)O1—K2—O1viii67.23 (14)
K1iv—K1—K291.15 (5)O1—K2—O2xviii144.69 (11)
K1iv—K1—K2xi91.15 (5)O1—K2—O2iv66.75 (14)
K1iv—K1—K2xii175.94 (6)O1xix—K2—O1xx67.23 (14)
K1iv—K1—Si1xii51.01 (6)O1xix—K2—O1viii97.89 (14)
K1iv—K1—Si1iv119.38 (4)O1xix—K2—O2xviii66.75 (14)
K1iv—K1—Si1xiii119.38 (4)O1xix—K2—O2iv144.69 (11)
K1iv—K1—Si1xiv46.21 (5)O1xx—K2—O1viii138.62 (16)
K1iv—K1—O147.09 (9)O1xx—K2—O2xviii66.75 (14)
K1iv—K1—O1xii134.81 (9)O1xx—K2—O2iv144.69 (11)
K1iv—K1—O1xvi47.09 (9)O1viii—K2—O2xviii144.69 (11)
K1iv—K1—O1xvii134.81 (9)O1viii—K2—O2iv66.75 (14)
K1iv—K1—O2xii81.87 (13)O2xviii—K2—O2iv106.8 (2)
K1iv—K1—O2iv91.41 (13)K1ii—Si1—K1iii79.36 (5)
K1iv—K1—O2xiii91.41 (13)K1ii—Si1—K1iv79.36 (5)
K1v—K1—K1x87.60 (4)K1ii—Si1—K1xxiii82.78 (7)
K1v—K1—K289.22 (2)K1ii—Si1—K2vi115.09 (8)
K1v—K1—K2xi175.49 (5)K1ii—Si1—O1xxiii75.73 (16)
K1v—K1—K2xii91.66 (5)K1ii—Si1—O1xxiv75.73 (16)
K1v—K1—Si1xii52.56 (4)K1ii—Si1—O264.6 (3)
K1v—K1—Si1iv48.08 (4)K1ii—Si1—O3169.9 (4)
K1v—K1—Si1xiii121.18 (7)K1iii—Si1—K1iv117.89 (9)
K1v—K1—Si1xiv117.54 (5)K1iii—Si1—K1xxiii117.04 (5)
K1v—K1—O191.29 (10)K1iii—Si1—K2vi69.03 (5)
K1v—K1—O1xii94.67 (10)K1iii—Si1—O1xxiii59.63 (16)
K1v—K1—O1xvi132.36 (10)K1iii—Si1—O1xxiv154.97 (17)
K1v—K1—O1xvii49.53 (9)K1iii—Si1—O259.05 (5)
K1v—K1—O2xii43.83 (2)K1iii—Si1—O395.59 (18)
K1v—K1—O2iv43.31 (14)K1iv—Si1—K1xxiii117.04 (5)
K1v—K1—O2xiii130.85 (15)K1iv—Si1—K2vi69.03 (5)
K1x—K1—K2175.49 (5)K1iv—Si1—O1xxiii154.97 (17)
K1x—K1—K2xi89.22 (2)K1iv—Si1—O1xxiv59.63 (16)
K1x—K1—K2xii91.66 (5)K1iv—Si1—O259.05 (5)
K1x—K1—Si1xii52.56 (4)K1iv—Si1—O395.59 (18)
K1x—K1—Si1iv121.18 (7)K1xxiii—Si1—K2vi162.12 (7)
K1x—K1—Si1xiii48.08 (4)K1xxiii—Si1—O1xxiii57.50 (17)
K1x—K1—Si1xiv117.54 (5)K1xxiii—Si1—O1xxiv57.50 (17)
K1x—K1—O1132.36 (10)K1xxiii—Si1—O2147.3 (3)
K1x—K1—O1xii49.53 (9)K1xxiii—Si1—O3107.3 (3)
K1x—K1—O1xvi91.29 (10)K2vi—Si1—O1xxiii124.52 (17)
K1x—K1—O1xvii94.67 (10)K2vi—Si1—O1xxiv124.52 (17)
K1x—K1—O2xii43.83 (2)K2vi—Si1—O250.5 (3)
K1x—K1—O2iv130.85 (15)K2vi—Si1—O354.8 (3)
K1x—K1—O2xiii43.31 (14)O1xxiii—Si1—O1xxiv111.0 (3)
K2—K1—K2xi93.77 (4)O1xxiii—Si1—O2110.8 (2)
K2—K1—K2xii91.63 (4)O1xxiii—Si1—O3109.4 (2)
K2—K1—Si1xii122.93 (4)O1xxiv—Si1—O2110.8 (2)
K2—K1—Si1iv58.25 (5)O1xxiv—Si1—O3109.4 (2)
K2—K1—Si1xiii136.43 (6)O2—Si1—O3105.3 (4)
K2—K1—Si1xiv61.36 (5)Yb1—O1—K189.03 (14)
K2—K1—O144.50 (9)Yb1—O1—K1ii84.99 (15)
K2—K1—O1xii134.04 (10)Yb1—O1—K288.48 (15)
K2—K1—O1xvi88.49 (11)Yb1—O1—Si1xiv155.8 (3)
K2—K1—O1xvii85.68 (10)K1—O1—K1ii173.87 (18)
K2—K1—O2xii132.78 (2)K1—O1—K288.91 (13)
K2—K1—O2iv46.19 (14)K1—O1—Si1xiv93.7 (2)
K2—K1—O2xiii139.92 (15)K1ii—O1—K292.24 (14)
K2xi—K1—K2xii91.63 (4)K1ii—O1—Si1xiv91.23 (19)
K2xi—K1—Si1xii122.93 (4)K2—O1—Si1xiv115.6 (2)
K2xi—K1—Si1iv136.43 (6)Yb1—O2—K1ii85.9 (2)
K2xi—K1—Si1xiii58.25 (5)Yb1—O2—K1iii88.37 (13)
K2xi—K1—Si1xiv61.36 (5)Yb1—O2—K1iv88.37 (13)
K2xi—K1—O188.49 (11)Yb1—O2—K2vi86.2 (2)
K2xi—K1—O1xii85.68 (10)Yb1—O2—Si1170.4 (4)
K2xi—K1—O1xvi44.50 (9)K1ii—O2—K1iii92.87 (14)
K2xi—K1—O1xvii134.04 (10)K1ii—O2—K1iv92.87 (14)
K2xi—K1—O2xii132.78 (2)K1ii—O2—K2vi172.0 (3)
K2xi—K1—O2iv139.92 (15)K1ii—O2—Si184.6 (3)
K2xi—K1—O2xiii46.19 (14)K1iii—O2—K1iv173.2 (3)
K2xii—K1—Si1xii124.93 (8)K1iii—O2—K2vi86.90 (14)
K2xii—K1—Si1iv59.96 (5)K1iii—O2—Si192.10 (13)
K2xii—K1—Si1xiii59.96 (5)K1iv—O2—K2vi86.90 (14)
K2xii—K1—Si1xiv137.86 (6)K1iv—O2—Si192.10 (13)
K2xii—K1—O1135.97 (9)K2vi—O2—Si1103.4 (3)
K2xii—K1—O1xii42.56 (9)Si1—O3—Si1xxvi164.3 (7)
K2xii—K1—O1xvi135.97 (9)
Symmetry codes: (i) x1, y, z; (ii) x1/2, y1/2, z; (iii) x1, y, z+1; (iv) x, y, z+1; (v) x1/2, y+1/2, z+1; (vi) x, y, z+1/2; (vii) x, y, z+1; (viii) x, y, z; (ix) x+1, y, z+1/2; (x) x+1/2, y+1/2, z+1; (xi) x+1, y, z; (xii) x+1/2, y+1/2, z; (xiii) x+1, y, z+1; (xiv) x+1/2, y1/2, z+1; (xv) x+1, y, z+1; (xvi) x+1, y, z; (xvii) x+1/2, y+1/2, z; (xviii) x, y, z1/2; (xix) x, y, z+1/2; (xx) x, y, z+1/2; (xxi) x1/2, y1/2, z1/2; (xxii) x+1/2, y1/2, z1/2; (xxiii) x1/2, y1/2, z+1; (xxiv) x+1/2, y1/2, z+1; (xxv) x+1/2, y1/2, z+1/2; (xxvi) x, y, z+3/2.
(93_K) top
Crystal data top
K3O7Si2YbDx = 3.896 Mg m3
Mr = 458.52Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmcmCell parameters from 1225 reflections
a = 5.7059 (5) Åθ = 4.4–29.2°
b = 9.8800 (8) ŵ = 13.87 mm1
c = 13.8658 (11) ÅT = 95 K
V = 781.67 (11) Å3Prismatic, colourless
Z = 40.13 × 0.11 × 0.09 mm
F(000) = 844
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
479 reflections with I > 2σ(I)
ω scansRint = 0.040
Absorption correction: analytical
CrysAlisPro 1.171.40.76a (Rigaku Oxford Diffraction, 2020) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 27.5°, θmin = 4.1°
Tmin = 0.306, Tmax = 0.398h = 57
2641 measured reflectionsk = 1212
538 independent reflectionsl = 1816
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + 7.4861P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.022(Δ/σ)max < 0.001
wR(F2) = 0.043Δρmax = 1.10 e Å3
S = 1.12Δρmin = 1.14 e Å3
538 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
29 parametersExtinction coefficient: 0.00251 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 3-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.0000000.0000000.5000000.00124 (16)
K10.5000000.1737 (3)0.40748 (12)0.0047 (3)
K20.0000000.0187 (3)0.2500000.0056 (6)
Si10.0000000.3388 (4)0.63220 (15)0.0012 (4)
O10.2659 (12)0.0797 (6)0.3986 (4)0.0084 (13)
O20.0000000.1889 (8)0.5865 (7)0.001 (2)
O30.0000000.3169 (14)0.7500000.009 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.00094 (17)0.00094 (17)0.0018 (2)0.0000.0000.000
K10.0047 (5)0.0047 (5)0.0048 (7)0.0000.0000.000
K20.0069 (8)0.0069 (8)0.0030 (9)0.0000.0000.000
Si10.0007 (6)0.0007 (6)0.0021 (8)0.0000.0000.000
O10.006 (4)0.003 (3)0.017 (3)0.0000.0000.000
O20.001 (2)0.001 (2)0.001 (2)0.0000.0000.000
O30.012 (3)0.012 (3)0.003 (3)0.0000.0000.000
Geometric parameters (Å, º) top
Yb1—O12.213 (5)K1—Si1vii3.118 (3)
Yb1—O1i2.213 (5)K1—O1ix3.143 (6)
Yb1—O1ii2.213 (5)K1—O1ii3.143 (6)
Yb1—O1iii2.213 (5)K1—Si1ix3.332 (3)
Yb1—O22.218 (8)K1—Si1iii3.332 (3)
Yb1—O2iii2.218 (8)K2—O12.737 (5)
Yb1—K1iv3.470 (3)K2—O1xi2.737 (5)
Yb1—K1v3.470 (3)K2—O1xii2.737 (5)
Yb1—K23.4714 (3)K2—O1i2.737 (5)
Yb1—K2iii3.4714 (3)K2—O2iii2.822 (10)
Yb1—K1iii3.5677 (18)K2—O2xiii2.822 (10)
Yb1—K1vi3.5677 (18)K2—O3iii2.946 (15)
K1—O2vii2.830 (9)K2—Si1iii3.559 (5)
K1—O12.840 (9)K2—Si1xiii3.559 (5)
K1—O1viii2.840 (9)K2—Si1xiv3.737 (3)
K1—O2ix2.8581 (6)Si1—O21.611 (9)
K1—O2iii2.8581 (6)Si1—O1xv1.617 (6)
K1—O1vii2.873 (9)Si1—O1xvi1.617 (6)
K1—O1x2.873 (9)Si1—O31.648 (3)
O1—Yb1—O1i86.5 (4)O1xi—K2—O2xiii66.86 (14)
O1—Yb1—O1ii93.5 (4)O1xii—K2—O2xiii66.86 (14)
O1i—Yb1—O1ii180.0O1i—K2—O2xiii144.72 (16)
O1—Yb1—O1iii180.0 (2)O2iii—K2—O2xiii106.9 (4)
O1i—Yb1—O1iii93.5 (4)O1—K2—O3iii110.82 (14)
O1ii—Yb1—O1iii86.5 (4)O1xi—K2—O3iii110.82 (14)
O1—Yb1—O292.5 (2)O1xii—K2—O3iii110.82 (14)
O1i—Yb1—O292.5 (2)O1i—K2—O3iii110.82 (14)
O1ii—Yb1—O287.5 (2)O2iii—K2—O3iii53.45 (18)
O1iii—Yb1—O287.5 (2)O2xiii—K2—O3iii53.45 (18)
O1—Yb1—O2iii87.5 (2)O1—K2—Yb1xiii137.11 (12)
O1i—Yb1—O2iii87.5 (2)O1xi—K2—Yb1xiii39.59 (11)
O1ii—Yb1—O2iii92.5 (2)O1xii—K2—Yb1xiii39.59 (11)
O1iii—Yb1—O2iii92.5 (2)O1i—K2—Yb1xiii137.11 (12)
O2—Yb1—O2iii180.0O2iii—K2—Yb1xiii146.5 (2)
O1—Yb1—K1iv55.56 (19)O2xiii—K2—Yb1xiii39.61 (17)
O1i—Yb1—K1iv55.56 (19)O3iii—K2—Yb1xiii93.06 (6)
O1ii—Yb1—K1iv124.44 (19)O1—K2—Yb139.59 (11)
O1iii—Yb1—K1iv124.4 (2)O1xi—K2—Yb1137.11 (12)
O2—Yb1—K1iv54.4 (2)O1xii—K2—Yb1137.11 (12)
O2iii—Yb1—K1iv125.6 (2)O1i—K2—Yb139.59 (11)
O1—Yb1—K1v124.44 (19)O2iii—K2—Yb139.61 (17)
O1i—Yb1—K1v124.44 (19)O2xiii—K2—Yb1146.5 (2)
O1ii—Yb1—K1v55.56 (19)O3iii—K2—Yb193.06 (6)
O1iii—Yb1—K1v55.56 (19)Yb1xiii—K2—Yb1173.88 (11)
O2—Yb1—K1v125.6 (2)O1—K2—Si1iii88.30 (13)
O2iii—Yb1—K1v54.4 (2)O1xi—K2—Si1iii131.39 (17)
K1iv—Yb1—K1v180.00 (5)O1xii—K2—Si1iii131.39 (17)
O1—Yb1—K252.02 (14)O1i—K2—Si1iii88.30 (13)
O1i—Yb1—K252.02 (14)O2iii—K2—Si1iii26.13 (18)
O1ii—Yb1—K2127.98 (14)O2xiii—K2—Si1iii80.77 (19)
O1iii—Yb1—K2127.98 (14)O3iii—K2—Si1iii27.32 (5)
O2—Yb1—K2125.8 (3)Yb1xiii—K2—Si1iii120.38 (10)
O2iii—Yb1—K254.2 (3)Yb1—K2—Si1iii65.74 (5)
K1iv—Yb1—K271.36 (7)O1—K2—Si1xiii131.39 (17)
K1v—Yb1—K2108.64 (7)O1xi—K2—Si1xiii88.30 (13)
O1—Yb1—K2iii127.98 (14)O1xii—K2—Si1xiii88.30 (13)
O1i—Yb1—K2iii127.98 (14)O1i—K2—Si1xiii131.39 (17)
O1ii—Yb1—K2iii52.02 (14)O2iii—K2—Si1xiii80.77 (19)
O1iii—Yb1—K2iii52.02 (14)O2xiii—K2—Si1xiii26.13 (18)
O2—Yb1—K2iii54.2 (3)O3iii—K2—Si1xiii27.32 (5)
O2iii—Yb1—K2iii125.8 (3)Yb1xiii—K2—Si1xiii65.74 (5)
K1iv—Yb1—K2iii108.64 (7)Yb1—K2—Si1xiii120.38 (10)
K1v—Yb1—K2iii71.36 (7)Si1iii—K2—Si1xiii54.64 (10)
K2—Yb1—K2iii180.0O1—K2—Si1xiv125.66 (19)
O1—Yb1—K1iii127.3 (2)O1xi—K2—Si1xiv22.92 (11)
O1i—Yb1—K1iii60.61 (14)O1xii—K2—Si1xiv85.70 (16)
O1ii—Yb1—K1iii119.39 (14)O1i—K2—Si1xiv74.74 (12)
O1iii—Yb1—K1iii52.7 (2)O2iii—K2—Si1xiv129.37 (5)
O2—Yb1—K1iii53.20 (4)O2xiii—K2—Si1xiv86.11 (12)
O2iii—Yb1—K1iii126.80 (4)O3iii—K2—Si1xiv118.40 (8)
K1iv—Yb1—K1iii71.70 (4)Yb1xiii—K2—Si1xiv62.50 (4)
K1v—Yb1—K1iii108.30 (4)Yb1—K2—Si1xiv114.27 (6)
K2—Yb1—K1iii112.62 (4)Si1iii—K2—Si1xiv128.55 (8)
K2iii—Yb1—K1iii67.38 (4)Si1xiii—K2—Si1xiv102.83 (6)
O1—Yb1—K1vi119.39 (14)O2—Si1—O1xv110.7 (3)
O1i—Yb1—K1vi52.7 (2)O2—Si1—O1xvi110.7 (3)
O1ii—Yb1—K1vi127.3 (2)O1xv—Si1—O1xvi111.4 (6)
O1iii—Yb1—K1vi60.61 (14)O2—Si1—O3105.6 (7)
O2—Yb1—K1vi126.80 (4)O1xv—Si1—O3109.1 (3)
O2iii—Yb1—K1vi53.20 (4)O1xvi—Si1—O3109.1 (3)
K1iv—Yb1—K1vi108.30 (4)O2—Si1—K1iv64.6 (4)
K1v—Yb1—K1vi71.70 (4)O1xv—Si1—K1iv75.9 (2)
K2—Yb1—K1vi67.38 (4)O1xvi—Si1—K1iv75.9 (2)
K2iii—Yb1—K1vi112.62 (4)O3—Si1—K1iv170.2 (5)
K1iii—Yb1—K1vi73.81 (8)O2—Si1—K1ix59.00 (9)
O2vii—K1—O1117.5 (2)O1xv—Si1—K1ix155.2 (2)
O2vii—K1—O1viii117.5 (2)O1xvi—Si1—K1ix59.5 (3)
O1—K1—O1viii56.1 (2)O3—Si1—K1ix95.7 (3)
O2vii—K1—O2ix87.08 (19)K1iv—Si1—K1ix79.38 (5)
O1—K1—O2ix121.1 (2)O2—Si1—K1iii59.00 (9)
O1viii—K1—O2ix65.04 (16)O1xv—Si1—K1iii59.5 (3)
O2vii—K1—O2iii87.08 (19)O1xvi—Si1—K1iii155.2 (2)
O1—K1—O2iii65.04 (16)O3—Si1—K1iii95.7 (3)
O1viii—K1—O2iii121.1 (2)K1iv—Si1—K1iii79.38 (5)
O2ix—K1—O2iii173.1 (4)K1ix—Si1—K1iii117.78 (18)
O2vii—K1—O1vii68.32 (14)O2—Si1—K1xvi147.4 (3)
O1—K1—O1vii173.7 (2)O1xv—Si1—K1xvi57.7 (3)
O1viii—K1—O1vii119.82 (2)O1xvi—Si1—K1xvi57.7 (3)
O2ix—K1—O1vii55.22 (16)O3—Si1—K1xvi107.0 (5)
O2iii—K1—O1vii118.9 (2)K1iv—Si1—K1xvi82.82 (8)
O2vii—K1—O1x68.32 (14)K1ix—Si1—K1xvi117.12 (9)
O1—K1—O1x119.82 (2)K1iii—Si1—K1xvi117.12 (9)
O1viii—K1—O1x173.7 (2)O2—Si1—K2iii50.5 (3)
O2ix—K1—O1x118.9 (2)O1xv—Si1—K2iii124.3 (3)
O2iii—K1—O1x55.22 (16)O1xvi—Si1—K2iii124.3 (3)
O1vii—K1—O1x63.7 (2)O3—Si1—K2iii55.1 (5)
O2vii—K1—Si1vii30.95 (18)K1iv—Si1—K2iii115.06 (11)
O1—K1—Si1vii90.49 (13)K1ix—Si1—K2iii68.95 (9)
O1viii—K1—Si1vii90.49 (13)K1iii—Si1—K2iii68.95 (10)
O2ix—K1—Si1vii88.45 (19)K1xvi—Si1—K2iii162.12 (8)
O2iii—K1—Si1vii88.45 (19)O2—Si1—K2xvii127.54 (11)
O1vii—K1—Si1vii94.38 (13)O1xv—Si1—K2xvii41.23 (19)
O1x—K1—Si1vii94.38 (13)O1xvi—Si1—K2xvii120.6 (3)
O2vii—K1—O1ix52.50 (14)O3—Si1—K2xvii68.2 (3)
O1—K1—O1ix88.67 (19)K1iv—Si1—K2xvii117.10 (6)
O1viii—K1—O1ix64.97 (17)K1ix—Si1—K2xvii163.46 (6)
O2ix—K1—O1ix64.3 (2)K1iii—Si1—K2xvii69.61 (6)
O2iii—K1—O1ix114.5 (2)K1xvi—Si1—K2xvii66.57 (8)
O1vii—K1—O1ix93.60 (15)K2iii—Si1—K2xvii102.83 (6)
O1x—K1—O1ix120.77 (11)O2—Si1—K2xvi127.54 (11)
Si1vii—K1—O1ix29.93 (10)O1xv—Si1—K2xvi120.6 (3)
O2vii—K1—O1ii52.50 (14)O1xvi—Si1—K2xvi41.23 (19)
O1—K1—O1ii64.97 (17)O3—Si1—K2xvi68.2 (3)
O1viii—K1—O1ii88.67 (18)K1iv—Si1—K2xvi117.10 (6)
O2ix—K1—O1ii114.5 (2)K1ix—Si1—K2xvi69.61 (6)
O2iii—K1—O1ii64.3 (2)K1iii—Si1—K2xvi163.46 (6)
O1vii—K1—O1ii120.77 (11)K1xvi—Si1—K2xvi66.57 (8)
O1x—K1—O1ii93.60 (15)K2iii—Si1—K2xvi102.83 (6)
Si1vii—K1—O1ii29.93 (10)K2xvii—Si1—K2xvi99.52 (10)
O1ix—K1—O1ii50.3 (3)Si1xvi—O1—Yb1155.7 (3)
O2vii—K1—Si1ix84.83 (12)Si1xvi—O1—K2115.9 (3)
O1—K1—Si1ix145.80 (16)Yb1—O1—K288.39 (17)
O1viii—K1—Si1ix91.24 (13)Si1xvi—O1—K193.5 (3)
O2ix—K1—Si1ix28.90 (18)Yb1—O1—K188.92 (19)
O2iii—K1—Si1ix146.5 (2)K2—O1—K188.86 (17)
O1vii—K1—Si1ix29.02 (12)Si1xvi—O1—K1iv91.5 (3)
O1x—K1—Si1ix91.70 (15)Yb1—O1—K1iv85.0 (2)
Si1vii—K1—Si1ix100.62 (5)K2—O1—K1iv92.4 (2)
O1ix—K1—Si1ix85.52 (14)K1—O1—K1iv173.7 (2)
O1ii—K1—Si1ix130.53 (11)Si1xvi—O1—K1ix74.2 (2)
O2vii—K1—Si1iii84.83 (12)Yb1—O1—K1ix81.54 (16)
O1—K1—Si1iii91.24 (13)K2—O1—K1ix169.9 (2)
O1viii—K1—Si1iii145.80 (16)K1—O1—K1ix91.33 (18)
O2ix—K1—Si1iii146.5 (2)K1iv—O1—K1ix86.40 (15)
O2iii—K1—Si1iii28.90 (18)Si1—O2—Yb1170.4 (6)
O1vii—K1—Si1iii91.70 (15)Si1—O2—K2iii103.4 (4)
O1x—K1—Si1iii29.02 (12)Yb1—O2—K2iii86.2 (3)
Si1vii—K1—Si1iii100.62 (5)Si1—O2—K1iv84.5 (4)
O1ix—K1—Si1iii130.53 (11)Yb1—O2—K1iv86.0 (3)
O1ii—K1—Si1iii85.52 (14)K2iii—O2—K1iv172.1 (3)
Si1ix—K1—Si1iii117.77 (18)Si1—O2—K1ix92.11 (19)
O1—K2—O1xi138.4 (3)Yb1—O2—K1ix88.37 (18)
O1—K2—O1xii97.6 (2)K2iii—O2—K1ix86.86 (19)
O1xi—K2—O1xii67.3 (3)K1iv—O2—K1ix92.91 (19)
O1—K2—O1i67.3 (3)Si1—O2—K1iii92.11 (19)
O1xi—K2—O1i97.6 (2)Yb1—O2—K1iii88.37 (18)
O1xii—K2—O1i138.4 (3)K2iii—O2—K1iii86.86 (19)
O1—K2—O2iii66.86 (14)K1iv—O2—K1iii92.91 (19)
O1xi—K2—O2iii144.72 (16)K1ix—O2—K1iii173.1 (4)
O1xii—K2—O2iii144.72 (16)Si1xviii—O3—Si1164.9 (10)
O1i—K2—O2iii66.86 (14)Si1xviii—O3—K2iii97.5 (5)
O1—K2—O2xiii144.72 (16)Si1—O3—K2iii97.5 (5)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1; (iii) x, y, z+1; (iv) x1/2, y1/2, z; (v) x+1/2, y+1/2, z+1; (vi) x1, y, z; (vii) x+1/2, y+1/2, z; (viii) x+1, y, z; (ix) x+1, y, z+1; (x) x+1/2, y+1/2, z; (xi) x, y, z+1/2; (xii) x, y, z+1/2; (xiii) x, y, z1/2; (xiv) x1/2, y1/2, z1/2; (xv) x1/2, y1/2, z+1; (xvi) x+1/2, y1/2, z+1; (xvii) x1/2, y1/2, z+1; (xviii) x, y, z+3/2.
(103_K) top
Crystal data top
K3O7Si2YbDx = 3.871 Mg m3
Mr = 458.52Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmcmCell parameters from 1218 reflections
a = 5.7112 (7) Åθ = 7.1–29.3°
b = 9.9118 (14) ŵ = 13.78 mm1
c = 13.8975 (17) ÅT = 103 K
V = 786.72 (17) Å3Prismatic, colourless
Z = 40.13 × 0.11 × 0.09 mm
F(000) = 844
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
486 reflections with I > 2σ(I)
ω scansRint = 0.040
Absorption correction: analytical
CrysAlisPro 1.171.40.77a (Rigaku Oxford Diffraction, 2020) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 27.5°, θmin = 2.9°
Tmin = 0.306, Tmax = 0.399h = 75
2685 measured reflectionsk = 1212
542 independent reflectionsl = 1618
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0089P)2 + 2.0136P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.021(Δ/σ)max < 0.001
wR(F2) = 0.042Δρmax = 0.89 e Å3
S = 1.16Δρmin = 1.14 e Å3
542 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
30 parametersExtinction coefficient: 0.00253 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 3-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.0000000.0000000.5000000.00161 (16)
K10.5000000.1739 (3)0.40749 (12)0.0046 (3)
K20.0000000.0182 (3)0.2500000.0065 (5)
Si10.0000000.3387 (4)0.63250 (15)0.0017 (4)
O10.2677 (11)0.0792 (5)0.3989 (4)0.0093 (13)
O20.0000000.1877 (8)0.5869 (6)0.001 (2)
O30.0000000.3166 (13)0.7500000.0090 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.00137 (17)0.00137 (17)0.0021 (2)0.0000.0000.000
K10.0040 (5)0.0040 (5)0.0059 (7)0.0000.0000.000
K20.0082 (8)0.0082 (8)0.0030 (9)0.0000.0000.000
Si10.0016 (6)0.0016 (6)0.0017 (8)0.0000.0000.000
O10.009 (4)0.002 (3)0.017 (3)0.0000.0000.000
O20.002 (3)0.001 (4)0.002 (3)0.0000.0000.000
O30.012 (3)0.012 (3)0.003 (3)0.0000.0000.000
Geometric parameters (Å, º) top
Yb1—O22.218 (8)K1—Si1viii3.130 (3)
Yb1—O2i2.218 (8)K1—O1vi3.143 (6)
Yb1—O1ii2.220 (5)K1—O1iii3.143 (6)
Yb1—O1iii2.220 (5)K1—Si1vi3.336 (3)
Yb1—O1i2.220 (5)K1—Si1i3.336 (3)
Yb1—O12.220 (5)K2—O12.748 (5)
Yb1—K1iv3.478 (3)K2—O1x2.748 (5)
Yb1—K1v3.478 (3)K2—O1xi2.748 (5)
Yb1—K23.4791 (4)K2—O1ii2.748 (5)
Yb1—K2i3.4791 (4)K2—O2i2.822 (9)
Yb1—K1i3.5748 (17)K2—O2xii2.822 (9)
Yb1—K1vi3.5748 (17)K2—O3i2.957 (14)
K1—O12.841 (8)K2—Si1i3.572 (5)
K1—O1vii2.841 (8)K2—Si1xii3.572 (5)
K1—O2viii2.845 (9)K2—Si1xiii3.740 (3)
K1—O2vi2.8600 (6)Si1—O1xiv1.616 (5)
K1—O2i2.8600 (6)Si1—O1xv1.616 (5)
K1—O1viii2.888 (8)Si1—O21.625 (9)
K1—O1ix2.888 (8)Si1—O31.648 (3)
O2—Yb1—O2i180.0O1x—K2—O2xii66.68 (13)
O2—Yb1—O1ii92.7 (2)O1xi—K2—O2xii66.68 (13)
O2i—Yb1—O1ii87.3 (2)O1ii—K2—O2xii144.51 (15)
O2—Yb1—O1iii87.3 (2)O2i—K2—O2xii106.9 (3)
O2i—Yb1—O1iii92.7 (2)O1—K2—O3i110.57 (13)
O1ii—Yb1—O1iii180.0O1x—K2—O3i110.57 (13)
O2—Yb1—O1i87.3 (2)O1xi—K2—O3i110.57 (13)
O2i—Yb1—O1i92.7 (2)O1ii—K2—O3i110.57 (13)
O1ii—Yb1—O1i92.9 (3)O2i—K2—O3i53.46 (16)
O1iii—Yb1—O1i87.1 (3)O2xii—K2—O3i53.46 (16)
O2—Yb1—O192.7 (2)O1—K2—Yb1xii137.20 (11)
O2i—Yb1—O187.3 (2)O1x—K2—Yb1xii39.62 (11)
O1ii—Yb1—O187.1 (3)O1xi—K2—Yb1xii39.62 (11)
O1iii—Yb1—O192.9 (3)O1ii—K2—Yb1xii137.20 (11)
O1i—Yb1—O1180.0O2i—K2—Yb1xii146.44 (19)
O2—Yb1—K1iv54.7 (2)O2xii—K2—Yb1xii39.52 (16)
O2i—Yb1—K1iv125.3 (2)O3i—K2—Yb1xii92.98 (5)
O1ii—Yb1—K1iv55.77 (18)O1—K2—Yb139.62 (11)
O1iii—Yb1—K1iv124.23 (18)O1x—K2—Yb1137.20 (11)
O1i—Yb1—K1iv124.23 (18)O1xi—K2—Yb1137.20 (11)
O1—Yb1—K1iv55.77 (18)O1ii—K2—Yb139.62 (11)
O2—Yb1—K1v125.3 (2)O2i—K2—Yb139.52 (16)
O2i—Yb1—K1v54.7 (2)O2xii—K2—Yb1146.44 (19)
O1ii—Yb1—K1v124.23 (18)O3i—K2—Yb192.98 (5)
O1iii—Yb1—K1v55.77 (18)Yb1xii—K2—Yb1174.04 (11)
O1i—Yb1—K1v55.77 (18)O1—K2—Si1i88.18 (12)
O1—Yb1—K1v124.23 (18)O1x—K2—Si1i131.06 (16)
K1iv—Yb1—K1v180.00 (5)O1xi—K2—Si1i131.06 (16)
O2—Yb1—K2125.9 (2)O1ii—K2—Si1i88.18 (12)
O2i—Yb1—K254.1 (2)O2i—K2—Si1i26.25 (17)
O1ii—Yb1—K252.15 (14)O2xii—K2—Si1i80.67 (18)
O1iii—Yb1—K2127.85 (14)O3i—K2—Si1i27.21 (5)
O1i—Yb1—K2127.85 (14)Yb1xii—K2—Si1i120.19 (9)
O1—Yb1—K252.15 (14)Yb1—K2—Si1i65.77 (5)
K1iv—Yb1—K271.29 (7)O1—K2—Si1xii131.06 (16)
K1v—Yb1—K2108.71 (7)O1x—K2—Si1xii88.18 (12)
O2—Yb1—K2i54.1 (2)O1xi—K2—Si1xii88.18 (12)
O2i—Yb1—K2i126.0 (2)O1ii—K2—Si1xii131.06 (16)
O1ii—Yb1—K2i127.85 (14)O2i—K2—Si1xii80.67 (18)
O1iii—Yb1—K2i52.15 (14)O2xii—K2—Si1xii26.25 (17)
O1i—Yb1—K2i52.15 (14)O3i—K2—Si1xii27.21 (5)
O1—Yb1—K2i127.85 (14)Yb1xii—K2—Si1xii65.77 (5)
K1iv—Yb1—K2i108.71 (7)Yb1—K2—Si1xii120.19 (9)
K1v—Yb1—K2i71.29 (7)Si1i—K2—Si1xii54.41 (10)
K2—Yb1—K2i180.00 (11)O1—K2—Si1xiii125.90 (17)
O2—Yb1—K1i53.11 (4)O1x—K2—Si1xiii22.97 (11)
O2i—Yb1—K1i126.89 (4)O1xi—K2—Si1xiii85.91 (16)
O1ii—Yb1—K1i60.45 (13)O1ii—K2—Si1xiii74.74 (11)
O1iii—Yb1—K1i119.55 (13)O2i—K2—Si1xiii129.35 (4)
O1i—Yb1—K1i52.61 (19)O2xii—K2—Si1xiii86.13 (11)
O1—Yb1—K1i127.39 (19)O3i—K2—Si1xiii118.41 (7)
K1iv—Yb1—K1i71.63 (4)Yb1xii—K2—Si1xiii62.56 (4)
K1v—Yb1—K1i108.37 (4)Yb1—K2—Si1xiii114.29 (5)
K2—Yb1—K1i112.59 (4)Si1i—K2—Si1xiii128.52 (7)
K2i—Yb1—K1i67.41 (4)Si1xii—K2—Si1xiii102.92 (5)
O2—Yb1—K1vi53.11 (4)O1xiv—Si1—O1xv110.3 (5)
O2i—Yb1—K1vi126.89 (4)O1xiv—Si1—O2111.0 (3)
O1ii—Yb1—K1vi127.39 (19)O1xv—Si1—O2111.0 (3)
O1iii—Yb1—K1vi52.61 (19)O1xiv—Si1—O3109.6 (3)
O1i—Yb1—K1vi119.55 (13)O1xv—Si1—O3109.6 (3)
O1—Yb1—K1vi60.45 (13)O2—Si1—O3105.3 (6)
K1iv—Yb1—K1vi71.63 (4)O1xiv—Si1—K1iv75.5 (2)
K1v—Yb1—K1vi108.37 (4)O1xv—Si1—K1iv75.5 (2)
K2—Yb1—K1vi112.59 (4)O2—Si1—K1iv64.7 (3)
K2i—Yb1—K1vi67.41 (4)O3—Si1—K1iv170.1 (5)
K1i—Yb1—K1vi106.03 (7)O1xiv—Si1—K1vi154.7 (2)
O1—K1—O1vii55.7 (2)O1xv—Si1—K1vi59.9 (3)
O1—K1—O2viii117.5 (2)O2—Si1—K1vi58.95 (8)
O1vii—K1—O2viii117.5 (2)O3—Si1—K1vi95.7 (2)
O1—K1—O2vi120.6 (2)K1iv—Si1—K1vi79.28 (5)
O1vii—K1—O2vi64.98 (15)O1xiv—Si1—K1i59.9 (3)
O2viii—K1—O2vi87.30 (18)O1xv—Si1—K1i154.7 (2)
O1—K1—O2i64.98 (15)O2—Si1—K1i58.95 (8)
O1vii—K1—O2i120.6 (2)O3—Si1—K1i95.7 (2)
O2viii—K1—O2i87.30 (18)K1iv—Si1—K1i79.28 (5)
O2vi—K1—O2i173.7 (3)K1vi—Si1—K1i117.72 (16)
O1—K1—O1viii173.7 (2)O1xiv—Si1—K1xv57.2 (3)
O1vii—K1—O1viii119.96 (2)O1xv—Si1—K1xv57.2 (3)
O2viii—K1—O1viii68.15 (13)O2—Si1—K1xv147.5 (3)
O2vi—K1—O1viii55.38 (15)O3—Si1—K1xv107.1 (5)
O2i—K1—O1viii119.3 (2)K1iv—Si1—K1xv82.80 (8)
O1—K1—O1ix119.96 (2)K1vi—Si1—K1xv117.09 (8)
O1vii—K1—O1ix173.7 (2)K1i—Si1—K1xv117.09 (8)
O2viii—K1—O1ix68.15 (13)O1xiv—Si1—K2i124.8 (3)
O2vi—K1—O1ix119.3 (2)O1xv—Si1—K2i124.8 (3)
O2i—K1—O1ix55.38 (15)O2—Si1—K2i50.2 (3)
O1viii—K1—O1ix63.94 (19)O3—Si1—K2i55.1 (5)
O1—K1—Si1viii90.37 (12)K1iv—Si1—K2i114.91 (10)
O1vii—K1—Si1viii90.37 (12)K1vi—Si1—K2i68.95 (9)
O2viii—K1—Si1viii31.11 (17)K1i—Si1—K2i68.95 (9)
O2vi—K1—Si1viii88.54 (18)K1xv—Si1—K2i162.29 (8)
O2i—K1—Si1viii88.54 (18)O1xiv—Si1—K2xvi41.57 (19)
O1viii—K1—Si1viii94.31 (13)O1xv—Si1—K2xvi120.3 (3)
O1ix—K1—Si1viii94.31 (13)O2—Si1—K2xvi127.48 (10)
O1—K1—O1vi88.23 (17)O3—Si1—K2xvi68.3 (3)
O1vii—K1—O1vi64.84 (17)K1iv—Si1—K2xvi117.09 (6)
O2viii—K1—O1vi52.70 (13)K1vi—Si1—K2xvi163.57 (6)
O2vi—K1—O1vi64.5 (2)K1i—Si1—K2xvi69.64 (6)
O2i—K1—O1vi114.3 (2)K1xv—Si1—K2xvi66.59 (8)
O1viii—K1—O1vi93.72 (15)K2i—Si1—K2xvi102.92 (5)
O1ix—K1—O1vi120.79 (11)O1xiv—Si1—K2xv120.3 (3)
Si1viii—K1—O1vi29.86 (10)O1xv—Si1—K2xv41.57 (19)
O1—K1—O1iii64.84 (17)O2—Si1—K2xv127.48 (10)
O1vii—K1—O1iii88.23 (17)O3—Si1—K2xv68.3 (3)
O2viii—K1—O1iii52.70 (13)K1iv—Si1—K2xv117.09 (6)
O2vi—K1—O1iii114.3 (2)K1vi—Si1—K2xv69.64 (6)
O2i—K1—O1iii64.5 (2)K1i—Si1—K2xv163.57 (6)
O1viii—K1—O1iii120.79 (11)K1xv—Si1—K2xv66.59 (8)
O1ix—K1—O1iii93.72 (15)K2i—Si1—K2xv102.92 (5)
Si1viii—K1—O1iii29.86 (10)K2xvi—Si1—K2xv99.55 (10)
O1vi—K1—O1iii49.9 (2)Si1xv—O1—Yb1156.1 (3)
O1—K1—Si1vi145.60 (14)Si1xv—O1—K2115.5 (3)
O1vii—K1—Si1vi91.47 (12)Yb1—O1—K288.23 (16)
O2viii—K1—Si1vi84.84 (11)Si1xv—O1—K194.2 (3)
O2vi—K1—Si1vi29.14 (16)Yb1—O1—K189.01 (18)
O2i—K1—Si1vi146.7 (2)K2—O1—K188.91 (17)
O1viii—K1—Si1vi28.97 (11)Si1xv—O1—K1iv91.1 (3)
O1ix—K1—Si1vi91.80 (14)Yb1—O1—K1iv84.8 (2)
Si1viii—K1—Si1vi100.72 (5)K2—O1—K1iv92.0 (2)
O1vi—K1—Si1vi85.85 (13)K1—O1—K1iv173.7 (2)
O1iii—K1—Si1vi130.55 (11)Si1xv—O1—K1vi74.6 (2)
O1—K1—Si1i91.47 (12)Yb1—O1—K1vi81.65 (15)
O1vii—K1—Si1i145.60 (14)K2—O1—K1vi169.8 (2)
O2viii—K1—Si1i84.84 (11)K1—O1—K1vi91.77 (17)
O2vi—K1—Si1i146.7 (2)K1iv—O1—K1vi86.28 (15)
O2i—K1—Si1i29.14 (16)Si1—O2—Yb1170.0 (5)
O1viii—K1—Si1i91.80 (14)Si1—O2—K2i103.6 (4)
O1ix—K1—Si1i28.97 (11)Yb1—O2—K2i86.4 (3)
Si1viii—K1—Si1i100.72 (5)Si1—O2—K1iv84.2 (3)
O1vi—K1—Si1i130.55 (11)Yb1—O2—K1iv85.8 (3)
O1iii—K1—Si1i85.85 (13)K2i—O2—K1iv172.3 (3)
Si1vi—K1—Si1i117.72 (16)Si1—O2—K1vi91.91 (17)
O1—K2—O1x138.9 (3)Yb1—O2—K1vi88.56 (17)
O1—K2—O1xi97.7 (2)K2i—O2—K1vi87.10 (17)
O1x—K2—O1xi67.6 (3)K1iv—O2—K1vi92.70 (18)
O1—K2—O1ii67.6 (3)Si1—O2—K1i91.91 (17)
O1x—K2—O1ii97.7 (2)Yb1—O2—K1i88.56 (17)
O1xi—K2—O1ii138.9 (3)K2i—O2—K1i87.10 (17)
O1—K2—O2i66.68 (13)K1iv—O2—K1i92.70 (18)
O1x—K2—O2i144.51 (15)K1vi—O2—K1i173.7 (3)
O1xi—K2—O2i144.51 (15)Si1xvii—O3—Si1164.7 (9)
O1ii—K2—O2i66.68 (13)Si1xvii—O3—K2i97.6 (5)
O1—K2—O2xii144.51 (15)Si1—O3—K2i97.6 (5)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z; (iii) x, y, z+1; (iv) x1/2, y1/2, z; (v) x+1/2, y+1/2, z+1; (vi) x+1, y, z+1; (vii) x+1, y, z; (viii) x+1/2, y+1/2, z; (ix) x+1/2, y+1/2, z; (x) x, y, z+1/2; (xi) x, y, z+1/2; (xii) x, y, z1/2; (xiii) x1/2, y1/2, z1/2; (xiv) x1/2, y1/2, z+1; (xv) x+1/2, y1/2, z+1; (xvi) x1/2, y1/2, z+1; (xvii) x, y, z+3/2.
(113_K) top
Crystal data top
K3O7Si2YbDx = 3.887 Mg m3
Mr = 458.52Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmcmCell parameters from 1196 reflections
a = 5.7071 (6) Åθ = 4.3–29.2°
b = 9.8905 (9) ŵ = 13.83 mm1
c = 13.8818 (12) ÅT = 113 K
V = 783.57 (13) Å3Prismatic, colourless
Z = 40.13 × 0.11 × 0.09 mm
F(000) = 844
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
475 reflections with I > 2σ(I)
ω scansRint = 0.037
Absorption correction: analytical
CrysAlisPro 1.171.40.77a (Rigaku Oxford Diffraction, 2020) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 27.4°, θmin = 2.9°
Tmin = 0.303, Tmax = 0.396h = 67
2683 measured reflectionsk = 1210
539 independent reflectionsl = 1816
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0082P)2 + 2.143P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.020(Δ/σ)max < 0.001
wR(F2) = 0.038Δρmax = 0.97 e Å3
S = 1.13Δρmin = 1.20 e Å3
539 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
28 parametersExtinction coefficient: 0.00260 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 3-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.0000000.0000000.5000000.00159 (15)
K10.5000000.1730 (3)0.40752 (11)0.0050 (3)
K20.0000000.0178 (3)0.2500000.0070 (5)
Si10.0000000.3390 (4)0.63238 (14)0.0019 (4)
O10.2669 (10)0.0793 (5)0.3988 (3)0.0080 (11)
O20.0000000.1887 (7)0.5866 (6)0.0012 (17)
O30.0000000.3172 (12)0.7500000.0086 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.00127 (16)0.00127 (16)0.0022 (2)0.0000.0000.000
K10.0044 (4)0.0044 (4)0.0064 (6)0.0000.0000.000
K20.0089 (7)0.0089 (7)0.0032 (9)0.0000.0000.000
Si10.0017 (5)0.0017 (5)0.0024 (7)0.0000.0000.000
O10.0042 (14)0.0042 (14)0.016 (2)0.0000.0000.000
O20.0012 (17)0.0012 (17)0.0012 (17)0.0000.0000.000
O30.011 (3)0.011 (3)0.004 (3)0.0000.0000.000
Geometric parameters (Å, º) top
Yb1—O12.215 (4)K1—Si1viii3.124 (3)
Yb1—O1i2.215 (4)K1—O1ix3.139 (5)
Yb1—O1ii2.215 (4)K1—O1ii3.139 (5)
Yb1—O1iii2.215 (4)K1—Si1ix3.338 (3)
Yb1—O2iii2.219 (7)K1—Si1iii3.338 (3)
Yb1—O22.219 (7)K2—O12.741 (5)
Yb1—K23.4749 (4)K2—O1xi2.741 (5)
Yb1—K2iii3.4749 (3)K2—O1xii2.741 (5)
Yb1—K1iv3.480 (3)K2—O1i2.741 (5)
Yb1—K1v3.480 (3)K2—O2iii2.829 (8)
Yb1—K1iii3.5663 (16)K2—O2xiii2.829 (8)
Yb1—K1vi3.5663 (15)K2—O3iii2.961 (13)
K1—O12.831 (8)K2—Si1iii3.571 (5)
K1—O1vii2.831 (8)K2—Si1xiii3.571 (5)
K1—O2viii2.837 (8)K2—Si1xiv3.733 (3)
K1—O2ix2.8589 (6)Si1—O1xv1.616 (5)
K1—O2iii2.8589 (6)Si1—O1xvi1.616 (5)
K1—O1viii2.887 (8)Si1—O21.617 (8)
K1—O1x2.887 (8)Si1—O31.647 (3)
O1—Yb1—O1i86.9 (3)O1xi—K2—O2xiii66.72 (12)
O1—Yb1—O1ii93.1 (3)O1xii—K2—O2xiii66.72 (12)
O1i—Yb1—O1ii180.0O1i—K2—O2xiii144.49 (14)
O1—Yb1—O1iii180.0 (2)O2iii—K2—O2xiii106.6 (3)
O1i—Yb1—O1iii93.1 (3)O1—K2—O3iii110.52 (13)
O1ii—Yb1—O1iii86.9 (3)O1xi—K2—O3iii110.52 (13)
O1—Yb1—O2iii87.40 (19)O1xii—K2—O3iii110.52 (13)
O1i—Yb1—O2iii87.40 (18)O1i—K2—O3iii110.52 (13)
O1ii—Yb1—O2iii92.60 (19)O2iii—K2—O3iii53.32 (15)
O1iii—Yb1—O2iii92.60 (18)O2xiii—K2—O3iii53.32 (15)
O1—Yb1—O292.60 (18)O1—K2—Yb1xiii137.32 (10)
O1i—Yb1—O292.60 (19)O1xi—K2—Yb1xiii39.59 (9)
O1ii—Yb1—O287.40 (18)O1xii—K2—Yb1xiii39.59 (9)
O1iii—Yb1—O287.40 (19)O1i—K2—Yb1xiii137.32 (10)
O2iii—Yb1—O2180.0O2iii—K2—Yb1xiii146.22 (17)
O1—Yb1—K252.04 (12)O2xiii—K2—Yb1xiii39.59 (15)
O1i—Yb1—K252.04 (12)O3iii—K2—Yb1xiii92.90 (5)
O1ii—Yb1—K2127.96 (12)O1—K2—Yb139.59 (9)
O1iii—Yb1—K2127.96 (12)O1xi—K2—Yb1137.32 (10)
O2iii—Yb1—K254.3 (2)O1xii—K2—Yb1137.32 (10)
O2—Yb1—K2125.7 (2)O1i—K2—Yb139.59 (9)
O1—Yb1—K2iii127.96 (12)O2iii—K2—Yb139.59 (15)
O1i—Yb1—K2iii127.96 (12)O2xiii—K2—Yb1146.22 (17)
O1ii—Yb1—K2iii52.04 (12)O3iii—K2—Yb192.90 (5)
O1iii—Yb1—K2iii52.04 (12)Yb1xiii—K2—Yb1174.19 (10)
O2iii—Yb1—K2iii125.7 (2)O1—K2—Si1iii88.12 (11)
O2—Yb1—K2iii54.3 (2)O1xi—K2—Si1iii131.03 (15)
K2—Yb1—K2iii180.0O1xii—K2—Si1iii131.03 (15)
O1—Yb1—K1iv55.73 (17)O1i—K2—Si1iii88.12 (11)
O1i—Yb1—K1iv55.73 (17)O2iii—K2—Si1iii26.12 (15)
O1ii—Yb1—K1iv124.27 (17)O2xiii—K2—Si1iii80.52 (17)
O1iii—Yb1—K1iv124.27 (17)O3iii—K2—Si1iii27.20 (5)
O2iii—Yb1—K1iv125.6 (2)Yb1xiii—K2—Si1iii120.11 (9)
O2—Yb1—K1iv54.4 (2)Yb1—K2—Si1iii65.70 (4)
K2—Yb1—K1iv71.25 (6)O1—K2—Si1xiii131.03 (15)
K2iii—Yb1—K1iv108.75 (6)O1xi—K2—Si1xiii88.12 (11)
O1—Yb1—K1v124.27 (17)O1xii—K2—Si1xiii88.12 (11)
O1i—Yb1—K1v124.27 (17)O1i—K2—Si1xiii131.03 (15)
O1ii—Yb1—K1v55.73 (17)O2iii—K2—Si1xiii80.52 (17)
O1iii—Yb1—K1v55.73 (17)O2xiii—K2—Si1xiii26.12 (15)
O2iii—Yb1—K1v54.4 (2)O3iii—K2—Si1xiii27.20 (5)
O2—Yb1—K1v125.6 (2)Yb1xiii—K2—Si1xiii65.70 (4)
K2—Yb1—K1v108.75 (6)Yb1—K2—Si1xiii120.11 (9)
K2iii—Yb1—K1v71.25 (6)Si1iii—K2—Si1xiii54.41 (10)
K1iv—Yb1—K1v180.0O1—K2—Si1xiv126.04 (17)
O1—Yb1—K1iii127.47 (18)O1xi—K2—Si1xiv23.00 (9)
O1i—Yb1—K1iii60.53 (12)O1xii—K2—Si1xiv85.93 (14)
O1ii—Yb1—K1iii119.47 (12)O1i—K2—Si1xiv74.86 (10)
O1iii—Yb1—K1iii52.53 (18)O2iii—K2—Si1xiv129.33 (4)
O2iii—Yb1—K1iii126.75 (4)O2xiii—K2—Si1xiv86.12 (10)
O2—Yb1—K1iii53.25 (4)O3iii—K2—Si1xiv118.28 (7)
K2—Yb1—K1iii112.57 (4)Yb1xiii—K2—Si1xiv62.56 (3)
K2iii—Yb1—K1iii67.43 (4)Yb1—K2—Si1xiv114.38 (5)
K1iv—Yb1—K1iii71.75 (4)Si1iii—K2—Si1xiv128.41 (7)
K1v—Yb1—K1iii108.25 (4)Si1xiii—K2—Si1xiv102.79 (5)
O1—Yb1—K1vi119.47 (12)O1xv—Si1—O1xvi110.9 (5)
O1i—Yb1—K1vi52.53 (18)O1xv—Si1—O2110.7 (3)
O1ii—Yb1—K1vi127.47 (18)O1xvi—Si1—O2110.7 (3)
O1iii—Yb1—K1vi60.53 (12)O1xv—Si1—O3109.3 (3)
O2iii—Yb1—K1vi53.25 (4)O1xvi—Si1—O3109.3 (3)
O2—Yb1—K1vi126.75 (4)O2—Si1—O3105.7 (6)
K2—Yb1—K1vi67.43 (4)O1xv—Si1—K1iv75.57 (17)
K2iii—Yb1—K1vi112.57 (4)O1xvi—Si1—K1iv75.57 (17)
K1iv—Yb1—K1vi108.25 (4)O2—Si1—K1iv64.7 (3)
K1v—Yb1—K1vi71.75 (4)O3—Si1—K1iv170.3 (5)
K1iii—Yb1—K1vi73.71 (7)O1xv—Si1—K1ix154.85 (18)
O1—K1—O1vii56.07 (18)O1xvi—Si1—K1ix59.8 (2)
O1—K1—O2viii117.54 (18)O2—Si1—K1ix58.85 (8)
O1vii—K1—O2viii117.54 (18)O3—Si1—K1ix95.8 (2)
O1—K1—O2ix121.2 (2)K1iv—Si1—K1ix79.37 (5)
O1vii—K1—O2ix65.16 (14)O1xv—Si1—K1iii59.8 (2)
O2viii—K1—O2ix87.06 (16)O1xvi—Si1—K1iii154.85 (18)
O1—K1—O2iii65.16 (14)O2—Si1—K1iii58.85 (8)
O1vii—K1—O2iii121.2 (2)O3—Si1—K1iii95.8 (2)
O2viii—K1—O2iii87.06 (16)K1iv—Si1—K1iii79.37 (5)
O2ix—K1—O2iii173.0 (3)K1ix—Si1—K1iii117.47 (16)
O1—K1—O1viii173.85 (18)O1xv—Si1—K1xvi57.5 (3)
O1vii—K1—O1viii119.889 (19)O1xvi—Si1—K1xvi57.5 (3)
O2viii—K1—O1viii68.12 (12)O2—Si1—K1xvi147.3 (3)
O2ix—K1—O1viii55.15 (14)O3—Si1—K1xvi107.0 (4)
O2iii—K1—O1viii118.8 (2)K1iv—Si1—K1xvi82.65 (7)
O1—K1—O1x119.889 (19)K1ix—Si1—K1xvi117.23 (8)
O1vii—K1—O1x173.85 (18)K1iii—Si1—K1xvi117.23 (8)
O2viii—K1—O1x68.12 (12)O1xv—Si1—K2iii124.6 (3)
O2ix—K1—O1x118.8 (2)O1xvi—Si1—K2iii124.6 (3)
O2iii—K1—O1x55.15 (14)O2—Si1—K2iii50.4 (3)
O1viii—K1—O1x63.68 (18)O3—Si1—K2iii55.3 (4)
O1—K1—Si1viii90.52 (11)K1iv—Si1—K2iii115.04 (10)
O1vii—K1—Si1viii90.52 (11)K1ix—Si1—K2iii68.81 (8)
O2viii—K1—Si1viii31.00 (16)K1iii—Si1—K2iii68.81 (9)
O2ix—K1—Si1viii88.47 (17)K1xvi—Si1—K2iii162.31 (8)
O2iii—K1—Si1viii88.47 (17)O1xv—Si1—K2xvii41.50 (17)
O1viii—K1—Si1viii94.23 (11)O1xvi—Si1—K2xvii120.6 (3)
O1x—K1—Si1viii94.23 (11)O2—Si1—K2xvii127.42 (10)
O1—K1—O1ix88.60 (16)O3—Si1—K2xvii68.2 (3)
O1vii—K1—O1ix64.98 (14)K1iv—Si1—K2xvii117.06 (5)
O2viii—K1—O1ix52.57 (12)K1ix—Si1—K2xvii163.52 (6)
O2ix—K1—O1ix64.43 (18)K1iii—Si1—K2xvii69.65 (5)
O2iii—K1—O1ix114.5 (2)K1xvi—Si1—K2xvii66.74 (8)
O1viii—K1—O1ix93.58 (13)K2iii—Si1—K2xvii102.79 (5)
O1x—K1—O1ix120.64 (9)O1xv—Si1—K2xvi120.6 (3)
Si1viii—K1—O1ix29.90 (9)O1xvi—Si1—K2xvi41.50 (17)
O1—K1—O1ii64.98 (14)O2—Si1—K2xvi127.42 (10)
O1vii—K1—O1ii88.60 (16)O3—Si1—K2xvi68.2 (2)
O2viii—K1—O1ii52.57 (12)K1iv—Si1—K2xvi117.06 (5)
O2ix—K1—O1ii114.5 (2)K1ix—Si1—K2xvi69.65 (5)
O2iii—K1—O1ii64.43 (18)K1iii—Si1—K2xvi163.52 (6)
O1viii—K1—O1ii120.64 (9)K1xvi—Si1—K2xvi66.74 (8)
O1x—K1—O1ii93.58 (13)K2iii—Si1—K2xvi102.79 (5)
Si1viii—K1—O1ii29.90 (9)K2xvii—Si1—K2xvi99.70 (10)
O1ix—K1—O1ii50.2 (2)Si1xvi—O1—Yb1156.0 (3)
O1—K1—Si1ix145.92 (14)Si1xvi—O1—K2115.5 (2)
O1vii—K1—Si1ix91.42 (11)Yb1—O1—K288.37 (15)
O2viii—K1—Si1ix84.73 (10)Si1xvi—O1—K193.7 (3)
O2ix—K1—Si1ix28.95 (15)Yb1—O1—K189.08 (17)
O2iii—K1—Si1ix146.2 (2)K2—O1—K189.09 (15)
O1viii—K1—Si1ix28.94 (10)Si1xvi—O1—K1iv91.2 (2)
O1x—K1—Si1ix91.54 (13)Yb1—O1—K1iv84.92 (19)
Si1viii—K1—Si1ix100.63 (5)K2—O1—K1iv92.05 (18)
O1ix—K1—Si1ix85.69 (12)K1—O1—K1iv173.85 (18)
O1ii—K1—Si1ix130.50 (10)Si1xvi—O1—K1ix74.53 (18)
O1—K1—Si1iii91.42 (11)Yb1—O1—K1ix81.56 (13)
O1vii—K1—Si1iii145.92 (14)K2—O1—K1ix169.91 (18)
O2viii—K1—Si1iii84.73 (10)K1—O1—K1ix91.40 (16)
O2ix—K1—Si1iii146.2 (2)K1iv—O1—K1ix86.42 (13)
O2iii—K1—Si1iii28.95 (15)Si1—O2—Yb1170.4 (5)
O1viii—K1—Si1iii91.54 (13)Si1—O2—K2iii103.5 (4)
O1x—K1—Si1iii28.94 (10)Yb1—O2—K2iii86.1 (2)
Si1viii—K1—Si1iii100.63 (5)Si1—O2—K1iv84.3 (3)
O1ix—K1—Si1iii130.50 (9)Yb1—O2—K1iv86.1 (3)
O1ii—K1—Si1iii85.69 (12)K2iii—O2—K1iv172.2 (3)
Si1ix—K1—Si1iii117.47 (16)Si1—O2—K1ix92.21 (16)
O1—K2—O1xi139.0 (3)Yb1—O2—K1ix88.28 (16)
O1—K2—O1xii97.86 (18)K2iii—O2—K1ix86.82 (16)
O1xi—K2—O1xii67.5 (2)K1iv—O2—K1ix92.94 (16)
O1—K2—O1i67.5 (2)Si1—O2—K1iii92.21 (16)
O1xi—K2—O1i97.86 (18)Yb1—O2—K1iii88.28 (16)
O1xii—K2—O1i139.0 (3)K2iii—O2—K1iii86.82 (16)
O1—K2—O2iii66.72 (12)K1iv—O2—K1iii92.94 (16)
O1xi—K2—O2iii144.49 (14)K1ix—O2—K1iii173.0 (3)
O1xii—K2—O2iii144.49 (14)Si1xviii—O3—Si1165.0 (9)
O1i—K2—O2iii66.72 (12)Si1xviii—O3—K2iii97.5 (4)
O1—K2—O2xiii144.49 (14)Si1—O3—K2iii97.5 (4)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1; (iii) x, y, z+1; (iv) x1/2, y1/2, z; (v) x+1/2, y+1/2, z+1; (vi) x1, y, z; (vii) x+1, y, z; (viii) x+1/2, y+1/2, z; (ix) x+1, y, z+1; (x) x+1/2, y+1/2, z; (xi) x, y, z+1/2; (xii) x, y, z+1/2; (xiii) x, y, z1/2; (xiv) x1/2, y1/2, z1/2; (xv) x1/2, y1/2, z+1; (xvi) x+1/2, y1/2, z+1; (xvii) x1/2, y1/2, z+1; (xviii) x, y, z+3/2.
(123_K) top
Crystal data top
K3O7Si2YbDx = 3.868 Mg m3
Mr = 458.52Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmcmCell parameters from 1208 reflections
a = 5.7161 (6) Åθ = 4.1–29.3°
b = 9.9090 (12) ŵ = 13.77 mm1
c = 13.9021 (15) ÅT = 123 K
V = 787.42 (15) Å3Prismatic, colourless
Z = 40.13 × 0.11 × 0.09 mm
F(000) = 844
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
470 reflections with I > 2σ(I)
ω scansRint = 0.039
Absorption correction: analytical
CrysAlisPro 1.171.40.77a (Rigaku Oxford Diffraction, 2020) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 27.5°, θmin = 2.9°
Tmin = 0.303, Tmax = 0.397h = 57
2687 measured reflectionsk = 1212
542 independent reflectionsl = 1816
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0082P)2 + 1.5863P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.019(Δ/σ)max < 0.001
wR(F2) = 0.037Δρmax = 1.11 e Å3
S = 1.11Δρmin = 1.52 e Å3
542 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
29 parametersExtinction coefficient: 0.00307 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 3-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.0000000.0000000.5000000.00218 (15)
K10.5000000.1731 (3)0.40754 (11)0.0057 (3)
K20.0000000.0171 (3)0.2500000.0084 (5)
Si10.0000000.3390 (4)0.63246 (14)0.0021 (4)
O10.2670 (11)0.0799 (5)0.3989 (3)0.0095 (13)
O20.0000000.1878 (8)0.5865 (6)0.0030 (19)
O30.0000000.3172 (12)0.7500000.0086 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.00191 (16)0.00191 (16)0.0027 (2)0.0000.0000.000
K10.0050 (5)0.0050 (5)0.0071 (6)0.0000.0000.000
K20.0107 (8)0.0107 (8)0.0039 (9)0.0000.0000.000
Si10.0018 (6)0.0018 (6)0.0027 (7)0.0000.0000.000
O10.008 (4)0.004 (3)0.017 (2)0.0000.0000.000
O20.0030 (19)0.0030 (19)0.0030 (19)0.0000.0000.000
O30.011 (3)0.004 (5)0.011 (3)0.0000.0000.000
Geometric parameters (Å, º) top
Yb1—O22.216 (8)K1—Si1viii3.129 (3)
Yb1—O2i2.216 (8)K1—O1vi3.142 (5)
Yb1—O12.221 (5)K1—O1iii3.142 (5)
Yb1—O1ii2.221 (5)K1—Si1vi3.344 (3)
Yb1—O1iii2.221 (5)K1—Si1i3.344 (3)
Yb1—O1i2.221 (5)K2—O12.745 (5)
Yb1—K2i3.4797 (4)K2—O1x2.745 (5)
Yb1—K23.4797 (4)K2—O1xi2.745 (5)
Yb1—K1iv3.485 (3)K2—O1ii2.745 (5)
Yb1—K1v3.485 (3)K2—O2i2.834 (9)
Yb1—K1i3.5725 (17)K2—O2xii2.834 (9)
Yb1—K1vi3.5725 (17)K2—O3i2.974 (13)
K1—O12.841 (8)K2—Si1i3.584 (5)
K1—O1vii2.841 (8)K2—Si1xii3.584 (5)
K1—O2viii2.844 (9)K2—Si1xiii3.735 (3)
K1—O2vi2.8629 (6)Si1—O1xiv1.615 (5)
K1—O2i2.8629 (6)Si1—O1xv1.615 (5)
K1—O1viii2.887 (8)Si1—O21.629 (9)
K1—O1ix2.887 (8)Si1—O31.648 (3)
O2—Yb1—O2i180.0O1x—K2—O2xii66.69 (13)
O2—Yb1—O192.5 (2)O1xi—K2—O2xii66.69 (13)
O2i—Yb1—O187.5 (2)O1ii—K2—O2xii144.46 (14)
O2—Yb1—O1ii92.5 (2)O2i—K2—O2xii106.7 (3)
O2i—Yb1—O1ii87.5 (2)O1—K2—O3i110.49 (13)
O1—Yb1—O1ii86.8 (3)O1x—K2—O3i110.49 (13)
O2—Yb1—O1iii87.5 (2)O1xi—K2—O3i110.49 (13)
O2i—Yb1—O1iii92.5 (2)O1ii—K2—O3i110.49 (13)
O1—Yb1—O1iii93.2 (3)O2i—K2—O3i53.34 (17)
O1ii—Yb1—O1iii180.00 (19)O2xii—K2—O3i53.34 (17)
O2—Yb1—O1i87.5 (2)O1—K2—Yb1xii137.39 (11)
O2i—Yb1—O1i92.5 (2)O1x—K2—Yb1xii39.65 (10)
O1—Yb1—O1i180.0 (2)O1xi—K2—Yb1xii39.65 (10)
O1ii—Yb1—O1i93.2 (3)O1ii—K2—Yb1xii137.39 (11)
O1iii—Yb1—O1i86.8 (3)O2i—K2—Yb1xii146.13 (19)
O2—Yb1—K2i54.4 (2)O2xii—K2—Yb1xii39.45 (16)
O2i—Yb1—K2i125.7 (2)O3i—K2—Yb1xii92.79 (6)
O1—Yb1—K2i127.95 (13)O1—K2—Yb139.65 (10)
O1ii—Yb1—K2i127.95 (13)O1x—K2—Yb1137.39 (11)
O1iii—Yb1—K2i52.05 (13)O1xi—K2—Yb1137.39 (11)
O1i—Yb1—K2i52.05 (13)O1ii—K2—Yb139.65 (10)
O2—Yb1—K2125.7 (2)O2i—K2—Yb139.45 (16)
O2i—Yb1—K254.3 (2)O2xii—K2—Yb1146.13 (19)
O1—Yb1—K252.05 (13)O3i—K2—Yb192.79 (6)
O1ii—Yb1—K252.05 (13)Yb1xii—K2—Yb1174.42 (11)
O1iii—Yb1—K2127.95 (13)O1—K2—Si1i88.16 (11)
O1i—Yb1—K2127.95 (13)O1x—K2—Si1i130.94 (16)
K2i—Yb1—K2180.0O1xi—K2—Si1i130.94 (16)
O2—Yb1—K1iv54.5 (2)O1ii—K2—Si1i88.16 (11)
O2i—Yb1—K1iv125.5 (2)O2i—K2—Si1i26.22 (17)
O1—Yb1—K1iv55.61 (18)O2xii—K2—Si1i80.46 (18)
O1ii—Yb1—K1iv55.61 (18)O3i—K2—Si1i27.12 (5)
O1iii—Yb1—K1iv124.39 (18)Yb1xii—K2—Si1i119.91 (10)
O1i—Yb1—K1iv124.39 (18)Yb1—K2—Si1i65.67 (5)
K2i—Yb1—K1iv108.86 (7)O1—K2—Si1xii130.94 (16)
K2—Yb1—K1iv71.14 (7)O1x—K2—Si1xii88.16 (11)
O2—Yb1—K1v125.5 (2)O1xi—K2—Si1xii88.16 (11)
O2i—Yb1—K1v54.5 (2)O1ii—K2—Si1xii130.94 (16)
O1—Yb1—K1v124.39 (18)O2i—K2—Si1xii80.46 (18)
O1ii—Yb1—K1v124.39 (18)O2xii—K2—Si1xii26.22 (17)
O1iii—Yb1—K1v55.61 (18)O3i—K2—Si1xii27.12 (5)
O1i—Yb1—K1v55.61 (18)Yb1xii—K2—Si1xii65.67 (5)
K2i—Yb1—K1v71.14 (7)Yb1—K2—Si1xii119.91 (10)
K2—Yb1—K1v108.86 (7)Si1i—K2—Si1xii54.25 (10)
K1iv—Yb1—K1v180.00 (5)O1—K2—Si1xiii126.15 (18)
O2—Yb1—K1i53.23 (4)O1x—K2—Si1xiii22.99 (10)
O2i—Yb1—K1i126.77 (4)O1xi—K2—Si1xiii86.00 (15)
O1—Yb1—K1i127.32 (19)O1ii—K2—Si1xiii74.87 (11)
O1ii—Yb1—K1i60.45 (12)O2i—K2—Si1xiii129.27 (4)
O1iii—Yb1—K1i119.55 (12)O2xii—K2—Si1xiii86.05 (11)
O1i—Yb1—K1i52.68 (19)O3i—K2—Si1xiii118.19 (8)
K2i—Yb1—K1i67.50 (4)Yb1xii—K2—Si1xiii62.62 (4)
K2—Yb1—K1i112.50 (4)Yb1—K2—Si1xiii114.45 (5)
K1iv—Yb1—K1i71.72 (4)Si1i—K2—Si1xiii128.31 (8)
K1v—Yb1—K1i108.28 (4)Si1xii—K2—Si1xiii102.77 (6)
O2—Yb1—K1vi53.23 (4)O1xiv—Si1—O1xv111.1 (5)
O2i—Yb1—K1vi126.77 (4)O1xiv—Si1—O2110.6 (3)
O1—Yb1—K1vi60.45 (12)O1xv—Si1—O2110.6 (3)
O1ii—Yb1—K1vi127.32 (19)O1xiv—Si1—O3109.4 (3)
O1iii—Yb1—K1vi52.68 (19)O1xv—Si1—O3109.4 (3)
O1i—Yb1—K1vi119.55 (12)O2—Si1—O3105.6 (6)
K2i—Yb1—K1vi67.50 (4)O1xiv—Si1—K1iv75.51 (18)
K2—Yb1—K1vi112.50 (4)O1xv—Si1—K1iv75.51 (18)
K1iv—Yb1—K1vi71.72 (4)O2—Si1—K1iv64.7 (3)
K1v—Yb1—K1vi108.28 (4)O3—Si1—K1iv170.3 (5)
K1i—Yb1—K1vi106.26 (7)O1xiv—Si1—K1vi154.76 (19)
O1—K1—O1vii55.9 (2)O1xv—Si1—K1vi59.7 (3)
O1—K1—O2viii117.7 (2)O2—Si1—K1vi58.84 (9)
O1vii—K1—O2viii117.7 (2)O3—Si1—K1vi95.8 (2)
O1—K1—O2vi120.9 (2)K1iv—Si1—K1vi79.33 (5)
O1vii—K1—O2vi65.06 (15)O1xiv—Si1—K1i59.7 (3)
O2viii—K1—O2vi87.13 (17)O1xv—Si1—K1i154.76 (19)
O1—K1—O2i65.06 (15)O2—Si1—K1i58.84 (9)
O1vii—K1—O2i120.9 (2)O3—Si1—K1i95.8 (2)
O2viii—K1—O2i87.13 (17)K1iv—Si1—K1i79.33 (5)
O2vi—K1—O2i173.3 (3)K1vi—Si1—K1i117.47 (18)
O1—K1—O1viii173.7 (2)O1xiv—Si1—K1xv57.6 (3)
O1vii—K1—O1viii119.90 (2)O1xv—Si1—K1xv57.6 (3)
O2viii—K1—O1viii68.03 (13)O2—Si1—K1xv147.4 (3)
O2vi—K1—O1viii55.27 (15)O3—Si1—K1xv107.1 (5)
O2i—K1—O1viii119.1 (2)K1iv—Si1—K1xv82.67 (8)
O1—K1—O1ix119.90 (2)K1vi—Si1—K1xv117.21 (9)
O1vii—K1—O1ix173.7 (2)K1i—Si1—K1xv117.21 (9)
O2viii—K1—O1ix68.03 (13)O1xiv—Si1—K2i124.4 (3)
O2vi—K1—O1ix119.1 (2)O1xv—Si1—K2i124.4 (3)
O2i—K1—O1ix55.27 (15)O2—Si1—K2i50.2 (3)
O1viii—K1—O1ix63.84 (19)O3—Si1—K2i55.3 (4)
O1—K1—Si1viii90.49 (12)K1iv—Si1—K2i114.92 (11)
O1vii—K1—Si1viii90.49 (12)K1vi—Si1—K2i68.79 (10)
O2viii—K1—Si1viii31.18 (18)K1i—Si1—K2i68.79 (10)
O2vi—K1—Si1viii88.45 (18)K1xv—Si1—K2i162.41 (8)
O2i—K1—Si1viii88.45 (18)O1xiv—Si1—K2xvi41.58 (18)
O1viii—K1—Si1viii94.27 (12)O1xv—Si1—K2xvi120.9 (3)
O1ix—K1—Si1viii94.27 (12)O2—Si1—K2xvi127.31 (11)
O1—K1—O1vi88.60 (17)O3—Si1—K2xvi68.2 (3)
O1vii—K1—O1vi65.06 (15)K1iv—Si1—K2xvi117.08 (6)
O2viii—K1—O1vi52.63 (13)K1vi—Si1—K2xvi163.54 (6)
O2vi—K1—O1vi64.34 (19)K1i—Si1—K2xvi69.57 (6)
O2i—K1—O1vi114.4 (2)K1xv—Si1—K2xvi66.83 (9)
O1viii—K1—O1vi93.50 (13)K2i—Si1—K2xvi102.77 (6)
O1ix—K1—O1vi120.61 (10)O1xiv—Si1—K2xv120.9 (3)
Si1viii—K1—O1vi29.85 (9)O1xv—Si1—K2xv41.58 (18)
O1—K1—O1iii65.06 (15)O2—Si1—K2xv127.31 (11)
O1vii—K1—O1iii88.60 (17)O3—Si1—K2xv68.2 (3)
O2viii—K1—O1iii52.63 (13)K1iv—Si1—K2xv117.08 (6)
O2vi—K1—O1iii114.4 (2)K1vi—Si1—K2xv69.57 (6)
O2i—K1—O1iii64.34 (19)K1i—Si1—K2xv163.54 (6)
O1viii—K1—O1iii120.61 (10)K1xv—Si1—K2xv66.83 (9)
O1ix—K1—O1iii93.50 (13)K2i—Si1—K2xv102.77 (6)
Si1viii—K1—O1iii29.85 (9)K2xvi—Si1—K2xv99.84 (11)
O1vi—K1—O1iii50.2 (2)Si1xv—O1—Yb1156.1 (3)
O1—K1—Si1vi145.82 (15)Si1xv—O1—K2115.4 (2)
O1vii—K1—Si1vi91.50 (13)Yb1—O1—K288.30 (16)
O2viii—K1—Si1vi84.68 (11)Si1xv—O1—K193.7 (3)
O2vi—K1—Si1vi29.13 (17)Yb1—O1—K188.89 (17)
O2i—K1—Si1vi146.4 (2)K2—O1—K189.07 (16)
O1viii—K1—Si1vi28.87 (12)Si1xv—O1—K1iv91.5 (3)
O1ix—K1—Si1vi91.62 (15)Yb1—O1—K1iv85.0 (2)
Si1viii—K1—Si1vi100.67 (5)K2—O1—K1iv92.0 (2)
O1vi—K1—Si1vi85.68 (13)K1—O1—K1iv173.7 (2)
O1iii—K1—Si1vi130.49 (10)Si1xv—O1—K1vi74.64 (19)
O1—K1—Si1i91.50 (13)Yb1—O1—K1vi81.59 (14)
O1vii—K1—Si1i145.82 (15)K2—O1—K1vi169.87 (19)
O2viii—K1—Si1i84.68 (11)K1—O1—K1vi91.40 (17)
O2vi—K1—Si1i146.4 (2)K1iv—O1—K1vi86.50 (13)
O2i—K1—Si1i29.13 (17)Si1—O2—Yb1170.2 (5)
O1viii—K1—Si1i91.62 (15)Si1—O2—K2i103.6 (4)
O1ix—K1—Si1i28.87 (12)Yb1—O2—K2i86.2 (3)
Si1viii—K1—Si1i100.67 (5)Si1—O2—K1iv84.1 (3)
O1vi—K1—Si1i130.49 (10)Yb1—O2—K1iv86.1 (3)
O1iii—K1—Si1i85.68 (13)K2i—O2—K1iv172.3 (3)
Si1vi—K1—Si1i117.47 (18)Si1—O2—K1vi92.03 (18)
O1—K2—O1x139.0 (3)Yb1—O2—K1vi88.45 (17)
O1—K2—O1xi97.85 (19)K2i—O2—K1vi86.92 (17)
O1x—K2—O1xi67.6 (3)K1iv—O2—K1vi92.87 (17)
O1—K2—O1ii67.6 (3)Si1—O2—K1i92.03 (18)
O1x—K2—O1ii97.8 (2)Yb1—O2—K1i88.45 (17)
O1xi—K2—O1ii139.0 (3)K2i—O2—K1i86.92 (17)
O1—K2—O2i66.69 (13)K1iv—O2—K1i92.87 (17)
O1x—K2—O2i144.46 (14)K1vi—O2—K1i173.3 (3)
O1xi—K2—O2i144.46 (14)Si1xvii—O3—Si1164.9 (9)
O1ii—K2—O2i66.69 (13)Si1xvii—O3—K2i97.5 (5)
O1—K2—O2xii144.46 (14)Si1—O3—K2i97.5 (5)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z; (iii) x, y, z+1; (iv) x1/2, y1/2, z; (v) x+1/2, y+1/2, z+1; (vi) x+1, y, z+1; (vii) x+1, y, z; (viii) x+1/2, y+1/2, z; (ix) x+1/2, y+1/2, z; (x) x, y, z+1/2; (xi) x, y, z+1/2; (xii) x, y, z1/2; (xiii) x1/2, y1/2, z1/2; (xiv) x1/2, y1/2, z+1; (xv) x+1/2, y1/2, z+1; (xvi) x1/2, y1/2, z+1; (xvii) x, y, z+3/2.
(133_K) top
Crystal data top
K3O7Si2YbDx = 3.879 Mg m3
Mr = 458.52Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmcmCell parameters from 1204 reflections
a = 5.7090 (6) Åθ = 7.1–29.2°
b = 9.9018 (10) ŵ = 13.81 mm1
c = 13.8876 (13) ÅT = 133 K
V = 785.06 (14) Å3Prismatic, colourless
Z = 40.13 × 0.11 × 0.09 mm
F(000) = 844
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
474 reflections with I > 2σ(I)
ω scansRint = 0.041
Absorption correction: analytical
CrysAlisPro 1.171.40.77a (Rigaku Oxford Diffraction, 2020) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 27.5°, θmin = 2.9°
Tmin = 0.306, Tmax = 0.399h = 76
2682 measured reflectionsk = 1012
540 independent reflectionsl = 1816
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + 0.4229P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.019(Δ/σ)max < 0.001
wR(F2) = 0.035Δρmax = 0.99 e Å3
S = 1.12Δρmin = 1.16 e Å3
540 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
29 parametersExtinction coefficient: 0.00302 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 3-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.0000000.0000000.5000000.00215 (14)
K10.5000000.1729 (3)0.40752 (10)0.0062 (3)
K20.0000000.0165 (3)0.2500000.0078 (5)
Si10.0000000.3384 (4)0.63242 (13)0.0022 (3)
O10.2682 (11)0.0798 (5)0.3992 (3)0.0095 (12)
O20.0000000.1879 (7)0.5874 (6)0.0037 (19)
O30.0000000.3174 (12)0.7500000.0083 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.00194 (15)0.00194 (15)0.0026 (2)0.0000.0000.000
K10.0056 (4)0.0056 (4)0.0075 (6)0.0000.0000.000
K20.0096 (7)0.0096 (7)0.0042 (8)0.0000.0000.000
Si10.0019 (5)0.0019 (5)0.0028 (7)0.0000.0000.000
O10.0060 (14)0.0060 (14)0.017 (2)0.0000.0000.000
O20.004 (3)0.004 (3)0.004 (3)0.0000.0000.000
O30.011 (2)0.011 (2)0.002 (3)0.0000.0000.000
Geometric parameters (Å, º) top
Yb1—O1i2.220 (5)K1—Si1vii3.125 (3)
Yb1—O1ii2.220 (5)K1—O1viii3.132 (5)
Yb1—O1iii2.220 (5)K1—O1ii3.132 (5)
Yb1—O12.220 (5)K1—Si1viii3.338 (3)
Yb1—O2iii2.221 (7)K1—Si1iii3.338 (3)
Yb1—O22.221 (7)K2—O12.747 (5)
Yb1—K23.4757 (4)K2—O1x2.747 (5)
Yb1—K2iii3.4757 (4)K2—O1xi2.747 (5)
Yb1—K1iv3.484 (3)K2—O1i2.747 (5)
Yb1—K1v3.484 (3)K2—O2iii2.824 (8)
Yb1—K13.5676 (16)K2—O2xii2.824 (8)
Yb1—K1iii3.5676 (16)K2—O3iii2.980 (13)
K1—O1vi2.832 (8)K2—Si1iii3.581 (5)
K1—O12.832 (8)K2—Si1xii3.581 (5)
K1—O2vii2.854 (8)K2—Si1xiii3.732 (3)
K1—O2viii2.8592 (6)Si1—O1xiv1.613 (5)
K1—O2iii2.8592 (6)Si1—O1xv1.613 (5)
K1—O1vii2.891 (8)Si1—O21.616 (8)
K1—O1ix2.891 (8)Si1—O31.646 (2)
O1i—Yb1—O1ii180.0O1x—K2—O2xii66.76 (12)
O1i—Yb1—O1iii92.8 (3)O1xi—K2—O2xii66.76 (12)
O1ii—Yb1—O1iii87.2 (3)O1i—K2—O2xii144.23 (14)
O1i—Yb1—O187.2 (3)O2iii—K2—O2xii106.1 (3)
O1ii—Yb1—O192.8 (3)O1—K2—O3iii110.30 (13)
O1iii—Yb1—O1180.0O1x—K2—O3iii110.30 (13)
O1i—Yb1—O2iii87.31 (19)O1xi—K2—O3iii110.30 (13)
O1ii—Yb1—O2iii92.69 (19)O1i—K2—O3iii110.30 (13)
O1iii—Yb1—O2iii92.69 (19)O2iii—K2—O3iii53.07 (15)
O1—Yb1—O2iii87.31 (19)O2xii—K2—O3iii53.07 (15)
O1i—Yb1—O292.69 (19)O1—K2—Yb1xii137.49 (10)
O1ii—Yb1—O287.31 (19)O1x—K2—Yb1xii39.67 (10)
O1iii—Yb1—O287.31 (19)O1xi—K2—Yb1xii39.67 (10)
O1—Yb1—O292.69 (19)O1i—K2—Yb1xii137.49 (10)
O2iii—Yb1—O2180.0O2iii—K2—Yb1xii145.76 (17)
O1i—Yb1—K252.18 (12)O2xii—K2—Yb1xii39.62 (15)
O1ii—Yb1—K2127.82 (12)O3iii—K2—Yb1xii92.69 (5)
O1iii—Yb1—K2127.82 (12)O1—K2—Yb139.67 (10)
O1—Yb1—K252.18 (12)O1x—K2—Yb1137.49 (10)
O2iii—Yb1—K254.2 (2)O1xi—K2—Yb1137.49 (10)
O2—Yb1—K2125.8 (2)O1i—K2—Yb139.67 (10)
O1i—Yb1—K2iii127.82 (12)O2iii—K2—Yb139.62 (15)
O1ii—Yb1—K2iii52.18 (12)O2xii—K2—Yb1145.76 (17)
O1iii—Yb1—K2iii52.18 (12)O3iii—K2—Yb192.69 (5)
O1—Yb1—K2iii127.82 (12)Yb1xii—K2—Yb1174.62 (10)
O2iii—Yb1—K2iii125.8 (2)O1—K2—Si1iii87.98 (11)
O2—Yb1—K2iii54.2 (2)O1x—K2—Si1iii130.74 (15)
K2—Yb1—K2iii180.0O1xi—K2—Si1iii130.74 (15)
O1i—Yb1—K1iv55.73 (17)O1i—K2—Si1iii87.98 (11)
O1ii—Yb1—K1iv124.27 (17)O2iii—K2—Si1iii25.94 (15)
O1iii—Yb1—K1iv124.27 (17)O2xii—K2—Si1iii80.20 (17)
O1—Yb1—K1iv55.73 (17)O3iii—K2—Si1iii27.13 (5)
O2iii—Yb1—K1iv125.2 (2)Yb1xii—K2—Si1iii119.82 (9)
O2—Yb1—K1iv54.8 (2)Yb1—K2—Si1iii65.56 (4)
K2—Yb1—K1iv71.06 (6)O1—K2—Si1xii130.74 (15)
K2iii—Yb1—K1iv108.94 (6)O1x—K2—Si1xii87.98 (11)
O1i—Yb1—K1v124.27 (17)O1xi—K2—Si1xii87.98 (11)
O1ii—Yb1—K1v55.73 (17)O1i—K2—Si1xii130.74 (15)
O1iii—Yb1—K1v55.73 (17)O2iii—K2—Si1xii80.20 (17)
O1—Yb1—K1v124.27 (17)O2xii—K2—Si1xii25.94 (15)
O2iii—Yb1—K1v54.8 (2)O3iii—K2—Si1xii27.13 (5)
O2—Yb1—K1v125.2 (2)Yb1xii—K2—Si1xii65.56 (4)
K2—Yb1—K1v108.94 (6)Yb1—K2—Si1xii119.82 (9)
K2iii—Yb1—K1v71.06 (6)Si1iii—K2—Si1xii54.26 (9)
K1iv—Yb1—K1v180.00 (4)O1—K2—Si1xiii126.34 (17)
O1i—Yb1—K1119.71 (12)O1x—K2—Si1xiii23.01 (10)
O1ii—Yb1—K160.29 (12)O1xi—K2—Si1xiii86.12 (15)
O1iii—Yb1—K1127.46 (18)O1i—K2—Si1xiii74.91 (10)
O1—Yb1—K152.54 (18)O2iii—K2—Si1xiii129.33 (4)
O2iii—Yb1—K153.23 (4)O2xii—K2—Si1xiii86.23 (10)
O2—Yb1—K1126.77 (4)O3iii—K2—Si1xiii118.20 (7)
K2—Yb1—K167.53 (3)Yb1xii—K2—Si1xiii62.66 (3)
K2iii—Yb1—K1112.47 (3)Yb1—K2—Si1xiii114.52 (5)
K1iv—Yb1—K1108.26 (4)Si1iii—K2—Si1xiii128.33 (7)
K1v—Yb1—K171.74 (4)Si1xii—K2—Si1xiii102.77 (5)
O1i—Yb1—K1iii60.29 (12)O1xiv—Si1—O1xv110.3 (5)
O1ii—Yb1—K1iii119.71 (12)O1xiv—Si1—O2111.0 (3)
O1iii—Yb1—K1iii52.54 (18)O1xv—Si1—O2111.0 (3)
O1—Yb1—K1iii127.46 (18)O1xiv—Si1—O3109.5 (3)
O2iii—Yb1—K1iii126.77 (4)O1xv—Si1—O3109.5 (3)
O2—Yb1—K1iii53.23 (4)O2—Si1—O3105.5 (6)
K2—Yb1—K1iii112.47 (3)O1xiv—Si1—K1iv75.28 (18)
K2iii—Yb1—K1iii67.53 (3)O1xv—Si1—K1iv75.28 (18)
K1iv—Yb1—K1iii71.74 (4)O2—Si1—K1iv65.2 (3)
K1v—Yb1—K1iii108.26 (4)O3—Si1—K1iv170.7 (5)
K1—Yb1—K1iii180.0O1xiv—Si1—K1viii154.59 (19)
O1vi—K1—O155.71 (19)O1xv—Si1—K1viii60.0 (3)
O1vi—K1—O2vii117.55 (19)O2—Si1—K1viii58.87 (8)
O1—K1—O2vii117.55 (19)O3—Si1—K1viii95.9 (2)
O1vi—K1—O2viii65.19 (13)K1iv—Si1—K1viii79.42 (5)
O1—K1—O2viii120.9 (2)O1xiv—Si1—K1iii60.0 (3)
O2vii—K1—O2viii87.33 (16)O1xv—Si1—K1iii154.59 (19)
O1vi—K1—O2iii120.9 (2)O2—Si1—K1iii58.87 (8)
O1—K1—O2iii65.19 (13)O3—Si1—K1iii95.9 (2)
O2vii—K1—O2iii87.33 (16)K1iv—Si1—K1iii79.42 (5)
O2viii—K1—O2iii173.4 (3)K1viii—Si1—K1iii117.57 (16)
O1vi—K1—O1vii119.95 (2)O1xiv—Si1—K1xv57.3 (3)
O1—K1—O1vii173.79 (19)O1xv—Si1—K1xv57.3 (3)
O2vii—K1—O1vii68.01 (12)O2—Si1—K1xv147.8 (3)
O2viii—K1—O1vii55.13 (13)O3—Si1—K1xv106.7 (4)
O2iii—K1—O1vii119.1 (2)K1iv—Si1—K1xv82.54 (7)
O1vi—K1—O1ix173.79 (19)K1viii—Si1—K1xv117.18 (8)
O1—K1—O1ix119.948 (19)K1iii—Si1—K1xv117.18 (8)
O2vii—K1—O1ix68.01 (12)O1xiv—Si1—K2iii124.9 (3)
O2viii—K1—O1ix119.1 (2)O1xv—Si1—K2iii124.9 (3)
O2iii—K1—O1ix55.13 (13)O2—Si1—K2iii49.9 (3)
O1vii—K1—O1ix63.97 (18)O3—Si1—K2iii55.6 (4)
O1vi—K1—Si1vii90.54 (11)K1iv—Si1—K2iii115.09 (10)
O1—K1—Si1vii90.54 (11)K1viii—Si1—K2iii68.83 (9)
O2vii—K1—Si1vii30.93 (16)K1iii—Si1—K2iii68.83 (9)
O2viii—K1—Si1vii88.70 (17)K1xv—Si1—K2iii162.38 (7)
O2iii—K1—Si1vii88.70 (17)O1xiv—Si1—K2xvi41.75 (17)
O1vii—K1—Si1vii94.02 (11)O1xv—Si1—K2xvi120.6 (3)
O1ix—K1—Si1vii94.02 (11)O2—Si1—K2xvi127.23 (10)
O1vi—K1—O1viii65.01 (15)O3—Si1—K2xvi68.0 (2)
O1—K1—O1viii88.42 (17)K1iv—Si1—K2xvi117.01 (5)
O2vii—K1—O1viii52.54 (12)K1viii—Si1—K2xvi163.52 (5)
O2viii—K1—O1viii64.69 (19)K1iii—Si1—K2xvi69.55 (5)
O2iii—K1—O1viii114.6 (2)K1xv—Si1—K2xvi66.81 (8)
O1vii—K1—O1viii93.43 (13)K2iii—Si1—K2xvi102.77 (5)
O1ix—K1—O1viii120.50 (9)O1xiv—Si1—K2xv120.6 (3)
Si1vii—K1—O1viii29.87 (9)O1xv—Si1—K2xv41.75 (17)
O1vi—K1—O1ii88.42 (17)O2—Si1—K2xv127.23 (10)
O1—K1—O1ii65.01 (15)O3—Si1—K2xv68.0 (2)
O2vii—K1—O1ii52.54 (12)K1iv—Si1—K2xv117.01 (5)
O2viii—K1—O1ii114.6 (2)K1viii—Si1—K2xv69.55 (5)
O2iii—K1—O1ii64.69 (19)K1iii—Si1—K2xv163.52 (5)
O1vii—K1—O1ii120.50 (9)K1xv—Si1—K2xv66.81 (8)
O1ix—K1—O1ii93.43 (13)K2iii—Si1—K2xv102.77 (5)
Si1vii—K1—O1ii29.87 (9)K2xvi—Si1—K2xv99.81 (9)
O1viii—K1—O1ii50.0 (2)Si1xv—O1—Yb1156.4 (3)
O1vi—K1—Si1viii91.56 (11)Si1xv—O1—K2115.2 (2)
O1—K1—Si1viii145.73 (14)Yb1—O1—K288.15 (15)
O2vii—K1—Si1viii84.73 (10)Si1xv—O1—K194.1 (3)
O2viii—K1—Si1viii28.93 (15)Yb1—O1—K188.99 (17)
O2iii—K1—Si1viii146.3 (2)K2—O1—K189.13 (15)
O1vii—K1—Si1viii28.89 (11)Si1xv—O1—K1iv91.1 (2)
O1ix—K1—Si1viii91.74 (14)Yb1—O1—K1iv84.9 (2)
Si1vii—K1—Si1viii100.57 (5)K2—O1—K1iv91.65 (19)
O1viii—K1—Si1viii85.73 (13)K1—O1—K1iv173.79 (19)
O1ii—K1—Si1viii130.42 (10)Si1xv—O1—K1viii74.85 (18)
O1vi—K1—Si1iii145.73 (14)Yb1—O1—K1viii81.70 (14)
O1—K1—Si1iii91.56 (11)K2—O1—K1viii169.81 (19)
O2vii—K1—Si1iii84.73 (10)K1—O1—K1viii91.58 (16)
O2viii—K1—Si1iii146.3 (2)K1iv—O1—K1viii86.57 (13)
O2iii—K1—Si1iii28.93 (15)Si1—O2—Yb1169.6 (5)
O1vii—K1—Si1iii91.74 (14)Si1—O2—K2iii104.2 (4)
O1ix—K1—Si1iii28.89 (11)Yb1—O2—K2iii86.2 (2)
Si1vii—K1—Si1iii100.57 (5)Si1—O2—K1iv83.8 (3)
O1viii—K1—Si1iii130.42 (10)Yb1—O2—K1iv85.8 (3)
O1ii—K1—Si1iii85.73 (13)K2iii—O2—K1iv172.0 (3)
Si1viii—K1—Si1iii117.56 (16)Si1—O2—K1viii92.20 (16)
O1—K2—O1x139.4 (3)Yb1—O2—K1viii88.28 (16)
O1—K2—O1xi97.92 (19)K2iii—O2—K1viii87.09 (16)
O1x—K2—O1xi67.8 (3)K1iv—O2—K1viii92.67 (16)
O1—K2—O1i67.8 (3)Si1—O2—K1iii92.20 (16)
O1x—K2—O1i97.92 (19)Yb1—O2—K1iii88.28 (16)
O1xi—K2—O1i139.4 (3)K2iii—O2—K1iii87.09 (16)
O1—K2—O2iii66.77 (12)K1iv—O2—K1iii92.67 (16)
O1x—K2—O2iii144.23 (14)K1viii—O2—K1iii173.4 (3)
O1xi—K2—O2iii144.23 (14)Si1—O3—Si1xvii165.5 (9)
O1i—K2—O2iii66.76 (12)Si1—O3—K2iii97.2 (4)
O1—K2—O2xii144.23 (14)Si1xvii—O3—K2iii97.2 (4)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1; (iii) x, y, z+1; (iv) x1/2, y1/2, z; (v) x+1/2, y+1/2, z+1; (vi) x+1, y, z; (vii) x+1/2, y+1/2, z; (viii) x+1, y, z+1; (ix) x+1/2, y+1/2, z; (x) x, y, z+1/2; (xi) x, y, z+1/2; (xii) x, y, z1/2; (xiii) x1/2, y1/2, z1/2; (xiv) x1/2, y1/2, z+1; (xv) x+1/2, y1/2, z+1; (xvi) x1/2, y1/2, z+1; (xvii) x, y, z+3/2.
(143_K) top
Crystal data top
K3O7Si2YbDx = 3.868 Mg m3
Mr = 458.52Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmcmCell parameters from 1211 reflections
a = 5.7166 (6) Åθ = 4.1–29.4°
b = 9.9059 (10) ŵ = 13.77 mm1
c = 13.9043 (14) ÅT = 143 K
V = 787.38 (14) Å3Prismatic, colourless
Z = 40.13 × 0.11 × 0.09 mm
F(000) = 844
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
476 reflections with I > 2σ(I)
ω scansRint = 0.039
Absorption correction: analytical
CrysAlisPro 1.171.40.77a (Rigaku Oxford Diffraction, 2020) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 27.5°, θmin = 2.9°
Tmin = 0.306, Tmax = 0.399h = 77
2677 measured reflectionsk = 1012
539 independent reflectionsl = 1816
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0068P)2 + 2.2016P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.019(Δ/σ)max < 0.001
wR(F2) = 0.037Δρmax = 0.99 e Å3
S = 1.08Δρmin = 0.82 e Å3
539 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
29 parametersExtinction coefficient: 0.00313 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 3-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.0000000.0000000.5000000.00227 (14)
K10.5000000.1731 (3)0.40764 (11)0.0063 (3)
K20.0000000.0162 (3)0.2500000.0080 (5)
Si10.0000000.3377 (4)0.63232 (13)0.0024 (3)
O10.2660 (11)0.0809 (5)0.3992 (3)0.0089 (11)
O20.0000000.1879 (7)0.5867 (6)0.0044 (19)
O30.0000000.3175 (13)0.7500000.0103 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.00194 (15)0.00194 (15)0.0029 (2)0.0000.0000.000
K10.0052 (4)0.0052 (4)0.0084 (6)0.0000.0000.000
K20.0101 (7)0.0101 (7)0.0039 (8)0.0000.0000.000
Si10.0027 (5)0.0027 (5)0.0017 (7)0.0000.0000.000
O10.0077 (14)0.0077 (14)0.011 (2)0.0000.0000.000
O20.006 (3)0.002 (3)0.006 (3)0.0000.0000.000
O30.014 (3)0.014 (3)0.004 (3)0.0000.0000.000
Geometric parameters (Å, º) top
Yb1—O1i2.218 (5)K1—Si1vi3.126 (3)
Yb1—O1ii2.218 (5)K1—O1viii3.136 (5)
Yb1—O1iii2.218 (5)K1—O1ii3.136 (5)
Yb1—O12.218 (5)K1—Si1viii3.337 (3)
Yb1—O2iii2.218 (8)K1—Si1iii3.337 (3)
Yb1—O22.218 (8)K2—O12.746 (5)
Yb1—K2iii3.4798 (4)K2—O1x2.746 (5)
Yb1—K23.4798 (4)K2—O1xi2.746 (5)
Yb1—K1iv3.484 (3)K2—O1i2.746 (5)
Yb1—K1v3.484 (3)K2—O2iii2.837 (9)
Yb1—K13.5720 (17)K2—O2xii2.837 (9)
Yb1—K1iii3.5720 (17)K2—O3iii2.985 (14)
K1—O2vi2.845 (8)K2—Si1iii3.581 (5)
K1—O12.852 (8)K2—Si1xii3.581 (5)
K1—O1vii2.852 (8)K2—Si1xiii3.738 (3)
K1—O2viii2.8632 (6)Si1—O21.614 (8)
K1—O2iii2.8632 (6)Si1—O1xiv1.622 (5)
K1—O1vi2.875 (8)Si1—O1xv1.622 (5)
K1—O1ix2.875 (8)Si1—O31.649 (3)
O1i—Yb1—O1ii180.0O1x—K2—O2xii66.76 (12)
O1i—Yb1—O1iii93.4 (3)O1xi—K2—O2xii66.76 (12)
O1ii—Yb1—O1iii86.6 (3)O1i—K2—O2xii144.55 (15)
O1i—Yb1—O186.6 (3)O2iii—K2—O2xii106.3 (3)
O1ii—Yb1—O193.4 (3)O1—K2—O3iii110.50 (13)
O1iii—Yb1—O1180.0 (2)O1x—K2—O3iii110.50 (13)
O1i—Yb1—O2iii87.70 (19)O1xi—K2—O3iii110.50 (13)
O1ii—Yb1—O2iii92.30 (19)O1i—K2—O3iii110.50 (13)
O1iii—Yb1—O2iii92.30 (19)O2iii—K2—O3iii53.16 (16)
O1—Yb1—O2iii87.70 (19)O2xii—K2—O3iii53.16 (16)
O1i—Yb1—O292.30 (19)O1—K2—Yb1xii137.60 (10)
O1ii—Yb1—O287.70 (19)O1x—K2—Yb1xii39.58 (10)
O1iii—Yb1—O287.70 (19)O1xi—K2—Yb1xii39.58 (10)
O1—Yb1—O292.30 (19)O1i—K2—Yb1xii137.60 (10)
O2iii—Yb1—O2180.0O2iii—K2—Yb1xii145.80 (18)
O1i—Yb1—K2iii127.92 (12)O2xii—K2—Yb1xii39.49 (16)
O1ii—Yb1—K2iii52.08 (12)O3iii—K2—Yb1xii92.64 (5)
O1iii—Yb1—K2iii52.08 (12)O1—K2—Yb139.58 (10)
O1—Yb1—K2iii127.92 (12)O1x—K2—Yb1137.60 (10)
O2iii—Yb1—K2iii125.6 (2)O1xi—K2—Yb1137.60 (10)
O2—Yb1—K2iii54.4 (2)O1i—K2—Yb139.58 (10)
O1i—Yb1—K252.08 (12)O2iii—K2—Yb139.49 (16)
O1ii—Yb1—K2127.92 (12)O2xii—K2—Yb1145.80 (18)
O1iii—Yb1—K2127.92 (12)O3iii—K2—Yb192.64 (5)
O1—Yb1—K252.08 (12)Yb1xii—K2—Yb1174.71 (11)
O2iii—Yb1—K254.4 (2)O1—K2—Si1iii88.07 (11)
O2—Yb1—K2125.6 (2)O1x—K2—Si1iii131.05 (16)
K2iii—Yb1—K2180.0O1xi—K2—Si1iii131.05 (16)
O1i—Yb1—K1iv55.33 (18)O1i—K2—Si1iii88.07 (11)
O1ii—Yb1—K1iv124.67 (17)O2iii—K2—Si1iii25.96 (16)
O1iii—Yb1—K1iv124.67 (18)O2xii—K2—Si1iii80.35 (17)
O1—Yb1—K1iv55.33 (18)O3iii—K2—Si1iii27.19 (5)
O2iii—Yb1—K1iv125.4 (2)Yb1xii—K2—Si1iii119.84 (9)
O2—Yb1—K1iv54.6 (2)Yb1—K2—Si1iii65.45 (4)
K2iii—Yb1—K1iv108.99 (6)O1—K2—Si1xii131.05 (16)
K2—Yb1—K1iv71.01 (6)O1x—K2—Si1xii88.07 (11)
O1i—Yb1—K1v124.67 (18)O1xi—K2—Si1xii88.07 (11)
O1ii—Yb1—K1v55.33 (17)O1i—K2—Si1xii131.05 (16)
O1iii—Yb1—K1v55.33 (18)O2iii—K2—Si1xii80.35 (17)
O1—Yb1—K1v124.67 (18)O2xii—K2—Si1xii25.96 (16)
O2iii—Yb1—K1v54.6 (2)O3iii—K2—Si1xii27.19 (5)
O2—Yb1—K1v125.4 (2)Yb1xii—K2—Si1xii65.45 (4)
K2iii—Yb1—K1v71.01 (6)Yb1—K2—Si1xii119.84 (9)
K2—Yb1—K1v108.99 (6)Si1iii—K2—Si1xii54.38 (10)
K1iv—Yb1—K1v180.0O1—K2—Si1xiii126.05 (18)
O1i—Yb1—K1119.67 (12)O1x—K2—Si1xiii23.11 (10)
O1ii—Yb1—K160.33 (12)O1xi—K2—Si1xiii85.82 (15)
O1iii—Yb1—K1127.04 (19)O1i—K2—Si1xiii75.03 (10)
O1—Yb1—K152.96 (19)O2iii—K2—Si1xiii129.34 (4)
O2iii—Yb1—K153.25 (4)O2xii—K2—Si1xiii86.17 (11)
O2—Yb1—K1126.75 (4)O3iii—K2—Si1xiii118.23 (8)
K2iii—Yb1—K1112.41 (4)Yb1xii—K2—Si1xiii62.67 (3)
K2—Yb1—K167.59 (4)Yb1—K2—Si1xiii114.55 (5)
K1iv—Yb1—K1108.28 (4)Si1iii—K2—Si1xiii128.37 (8)
K1v—Yb1—K171.72 (4)Si1xii—K2—Si1xiii102.75 (5)
O1i—Yb1—K1iii60.33 (12)O2—Si1—O1xiv110.5 (3)
O1ii—Yb1—K1iii119.67 (12)O2—Si1—O1xv110.5 (3)
O1iii—Yb1—K1iii52.96 (19)O1xiv—Si1—O1xv111.1 (5)
O1—Yb1—K1iii127.04 (19)O2—Si1—O3106.2 (6)
O2iii—Yb1—K1iii126.75 (4)O1xiv—Si1—O3109.2 (3)
O2—Yb1—K1iii53.25 (4)O1xv—Si1—O3109.2 (3)
K2iii—Yb1—K1iii67.59 (4)O2—Si1—K1iv64.9 (3)
K2—Yb1—K1iii112.41 (4)O1xiv—Si1—K1iv75.34 (17)
K1iv—Yb1—K1iii71.72 (4)O1xv—Si1—K1iv75.34 (17)
K1v—Yb1—K1iii108.28 (4)O3—Si1—K1iv171.1 (5)
K1—Yb1—K1iii180.0O2—Si1—K1viii59.02 (9)
O2vi—K1—O1117.57 (19)O1xiv—Si1—K1viii154.70 (18)
O2vi—K1—O1vii117.57 (19)O1xv—Si1—K1viii59.4 (3)
O1—K1—O1vii55.9 (2)O3—Si1—K1viii96.1 (3)
O2vi—K1—O2viii87.20 (17)K1iv—Si1—K1viii79.45 (5)
O1—K1—O2viii121.0 (2)O2—Si1—K1iii59.02 (9)
O1vii—K1—O2viii65.05 (14)O1xiv—Si1—K1iii59.4 (3)
O2vi—K1—O2iii87.20 (17)O1xv—Si1—K1iii154.70 (18)
O1—K1—O2iii65.05 (14)O3—Si1—K1iii96.1 (3)
O1vii—K1—O2iii121.0 (2)K1iv—Si1—K1iii79.45 (5)
O2viii—K1—O2iii173.3 (3)K1viii—Si1—K1iii117.84 (18)
O2vi—K1—O1vi68.01 (12)O2—Si1—K1xv147.4 (3)
O1—K1—O1vi173.85 (19)O1xiv—Si1—K1xv57.7 (3)
O1vii—K1—O1vi119.872 (19)O1xv—Si1—K1xv57.7 (3)
O2viii—K1—O1vi55.21 (14)O3—Si1—K1xv106.5 (5)
O2iii—K1—O1vi119.1 (2)K1iv—Si1—K1xv82.47 (8)
O2vi—K1—O1ix68.01 (12)K1viii—Si1—K1xv117.04 (9)
O1—K1—O1ix119.871 (19)K1iii—Si1—K1xv117.04 (9)
O1vii—K1—O1ix173.86 (19)O2—Si1—K2iii50.3 (3)
O2viii—K1—O1ix119.1 (2)O1xiv—Si1—K2iii124.4 (3)
O2iii—K1—O1ix55.21 (14)O1xv—Si1—K2iii124.4 (3)
O1vi—K1—O1ix63.87 (19)O3—Si1—K2iii55.8 (5)
O2vi—K1—Si1vi30.90 (17)K1iv—Si1—K2iii115.23 (11)
O1—K1—Si1vi90.62 (11)K1viii—Si1—K2iii68.99 (10)
O1vii—K1—Si1vi90.62 (11)K1iii—Si1—K2iii68.99 (10)
O2viii—K1—Si1vi88.53 (18)K1xv—Si1—K2iii162.30 (8)
O2iii—K1—Si1vi88.53 (18)O2—Si1—K2xvi127.37 (11)
O1vi—K1—Si1vi94.00 (11)O1xiv—Si1—K2xvi41.64 (17)
O1ix—K1—Si1vi94.00 (11)O1xv—Si1—K2xvi120.9 (3)
O2vi—K1—O1viii52.52 (12)O3—Si1—K2xvi67.8 (3)
O1—K1—O1viii88.76 (17)K1iv—Si1—K2xvi116.98 (6)
O1vii—K1—O1viii65.06 (15)K1viii—Si1—K2xvi163.51 (5)
O2viii—K1—O1viii64.26 (19)K1iii—Si1—K2xvi69.46 (6)
O2iii—K1—O1viii114.7 (2)K1xv—Si1—K2xvi66.78 (8)
O1vi—K1—O1viii93.22 (14)K2iii—Si1—K2xvi102.75 (5)
O1ix—K1—O1viii120.49 (10)O2—Si1—K2xv127.37 (11)
Si1vi—K1—O1viii30.02 (9)O1xiv—Si1—K2xv120.9 (3)
O2vi—K1—O1ii52.52 (12)O1xv—Si1—K2xv41.64 (17)
O1—K1—O1ii65.06 (15)O3—Si1—K2xv67.8 (3)
O1vii—K1—O1ii88.76 (17)K1iv—Si1—K2xv116.98 (6)
O2viii—K1—O1ii114.7 (2)K1viii—Si1—K2xv69.46 (6)
O2iii—K1—O1ii64.26 (19)K1iii—Si1—K2xv163.51 (5)
O1vi—K1—O1ii120.49 (10)K1xv—Si1—K2xv66.78 (8)
O1ix—K1—O1ii93.22 (13)K2iii—Si1—K2xv102.75 (5)
Si1vi—K1—O1ii30.02 (9)K2xvi—Si1—K2xv99.75 (10)
O1viii—K1—O1ii50.5 (2)Si1xv—O1—Yb1156.3 (3)
O2vi—K1—Si1viii84.79 (11)Si1xv—O1—K2115.2 (2)
O1—K1—Si1viii145.69 (15)Yb1—O1—K288.34 (15)
O1vii—K1—Si1viii91.30 (12)Si1xv—O1—K193.6 (3)
O2viii—K1—Si1viii28.89 (16)Yb1—O1—K188.67 (17)
O2iii—K1—Si1viii146.6 (2)K2—O1—K188.95 (16)
O1vi—K1—Si1viii29.07 (11)Si1xv—O1—K1iv91.5 (3)
O1ix—K1—Si1viii91.84 (15)Yb1—O1—K1iv85.3 (2)
Si1vi—K1—Si1viii100.55 (5)K2—O1—K1iv91.99 (19)
O1viii—K1—Si1viii85.39 (13)K1—O1—K1iv173.86 (19)
O1ii—K1—Si1viii130.55 (10)Si1xv—O1—K1viii74.63 (18)
O2vi—K1—Si1iii84.79 (11)Yb1—O1—K1viii81.75 (14)
O1—K1—Si1iii91.30 (12)K2—O1—K1viii170.08 (19)
O1vii—K1—Si1iii145.69 (15)K1—O1—K1viii91.24 (17)
O2viii—K1—Si1iii146.6 (2)K1iv—O1—K1viii86.78 (13)
O2iii—K1—Si1iii28.89 (16)Si1—O2—Yb1170.2 (5)
O1vi—K1—Si1iii91.84 (15)Si1—O2—K2iii103.7 (4)
O1ix—K1—Si1iii29.07 (11)Yb1—O2—K2iii86.1 (2)
Si1vi—K1—Si1iii100.55 (5)Si1—O2—K1iv84.2 (3)
O1viii—K1—Si1iii130.55 (10)Yb1—O2—K1iv86.0 (3)
O1ii—K1—Si1iii85.39 (13)K2iii—O2—K1iv172.1 (3)
Si1viii—K1—Si1iii117.84 (18)Si1—O2—K1viii92.09 (17)
O1—K2—O1x139.0 (3)Yb1—O2—K1viii88.39 (17)
O1—K2—O1xi98.13 (19)K2iii—O2—K1viii86.97 (17)
O1x—K2—O1xi67.2 (3)K1iv—O2—K1viii92.80 (17)
O1—K2—O1i67.2 (3)Si1—O2—K1iii92.09 (17)
O1x—K2—O1i98.13 (19)Yb1—O2—K1iii88.39 (17)
O1xi—K2—O1i139.0 (3)K2iii—O2—K1iii86.97 (17)
O1—K2—O2iii66.76 (12)K1iv—O2—K1iii92.80 (17)
O1x—K2—O2iii144.55 (15)K1viii—O2—K1iii173.3 (3)
O1xi—K2—O2iii144.55 (15)Si1—O3—Si1xvii166.1 (10)
O1i—K2—O2iii66.76 (12)Si1—O3—K2iii97.0 (5)
O1—K2—O2xii144.55 (15)Si1xvii—O3—K2iii97.0 (5)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1; (iii) x, y, z+1; (iv) x1/2, y1/2, z; (v) x+1/2, y+1/2, z+1; (vi) x+1/2, y+1/2, z; (vii) x+1, y, z; (viii) x+1, y, z+1; (ix) x+1/2, y+1/2, z; (x) x, y, z+1/2; (xi) x, y, z+1/2; (xii) x, y, z1/2; (xiii) x1/2, y1/2, z1/2; (xiv) x1/2, y1/2, z+1; (xv) x+1/2, y1/2, z+1; (xvi) x1/2, y1/2, z+1; (xvii) x, y, z+3/2.
(153_K) top
Crystal data top
K3O7Si2YbDx = 3.882 Mg m3
Mr = 458.52Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmcmCell parameters from 1202 reflections
a = 5.7095 (5) Åθ = 4.1–29.2°
b = 9.8960 (9) ŵ = 13.81 mm1
c = 13.8868 (12) ÅT = 153 K
V = 784.61 (12) Å3Prismatic, colourless
Z = 40.13 × 0.11 × 0.09 mm
F(000) = 844
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
475 reflections with I > 2σ(I)
ω scansRint = 0.040
Absorption correction: analytical
CrysAlisPro 1.171.40.81a (Rigaku Oxford Diffraction, 2020) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 27.5°, θmin = 2.9°
Tmin = 0.305, Tmax = 0.398h = 77
2736 measured reflectionsk = 1210
537 independent reflectionsl = 1618
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0011P)2 + 3.5301P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.020(Δ/σ)max < 0.001
wR(F2) = 0.037Δρmax = 0.89 e Å3
S = 1.08Δρmin = 0.91 e Å3
537 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
30 parametersExtinction coefficient: 0.00322 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 3-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.0000000.0000000.5000000.00200 (14)
K10.5000000.1729 (4)0.40769 (11)0.0062 (3)
K20.0000000.0157 (4)0.2500000.0085 (5)
Si10.0000000.3378 (4)0.63238 (13)0.0021 (3)
O10.2664 (12)0.0815 (6)0.3999 (4)0.0084 (12)
O20.0000000.1872 (8)0.5877 (7)0.006 (2)
O30.0000000.3201 (14)0.7500000.0132 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.00169 (15)0.00169 (15)0.0026 (2)0.0000.0000.000
K10.0056 (5)0.0056 (5)0.0075 (6)0.0000.0000.000
K20.0111 (8)0.0111 (8)0.0033 (8)0.0000.0000.000
Si10.0022 (5)0.0022 (5)0.0018 (7)0.0000.0000.000
O10.0057 (15)0.0057 (15)0.014 (2)0.0000.0000.000
O20.007 (3)0.004 (3)0.007 (3)0.0000.0000.000
O30.034 (8)0.002 (6)0.004 (3)0.0000.0000.000
Geometric parameters (Å, º) top
Yb1—O1i2.213 (5)K1—O1ix3.121 (5)
Yb1—O1ii2.213 (5)K1—O1ii3.121 (5)
Yb1—O1iii2.213 (5)K1—Si1viii3.122 (3)
Yb1—O12.213 (5)K1—Si1ix3.335 (3)
Yb1—O2iii2.217 (9)K1—Si1iii3.335 (3)
Yb1—O22.217 (9)K2—O12.752 (5)
Yb1—K23.4752 (3)K2—O1xi2.752 (5)
Yb1—K2iii3.4752 (3)K2—O1xii2.752 (5)
Yb1—K1iv3.481 (4)K2—O1i2.752 (5)
Yb1—K1v3.481 (4)K2—O2iii2.821 (10)
Yb1—K1iii3.5666 (19)K2—O2xiii2.821 (10)
Yb1—K1vi3.5666 (19)K2—O3iii3.012 (15)
K1—O1vii2.851 (9)K2—Si1iii3.581 (6)
K1—O12.851 (9)K2—Si1xiii3.581 (6)
K1—O2viii2.858 (10)K2—Si1xiv3.731 (3)
K1—O2ix2.8590 (6)Si1—O21.614 (9)
K1—O2iii2.8590 (6)Si1—O1xv1.617 (5)
K1—O1viii2.869 (9)Si1—O1xvi1.617 (5)
K1—O1x2.869 (9)Si1—O31.643 (3)
O1i—Yb1—O1ii180.0O1xi—K2—O2xiii66.81 (14)
O1i—Yb1—O1iii93.2 (4)O1xii—K2—O2xiii66.81 (14)
O1ii—Yb1—O1iii86.8 (4)O1i—K2—O2xiii144.55 (16)
O1i—Yb1—O186.8 (4)O2iii—K2—O2xiii106.0 (4)
O1ii—Yb1—O193.2 (4)O1—K2—O3iii110.48 (14)
O1iii—Yb1—O1180.0O1xi—K2—O3iii110.48 (14)
O1i—Yb1—O2iii87.7 (2)O1xii—K2—O3iii110.48 (14)
O1ii—Yb1—O2iii92.3 (2)O1i—K2—O3iii110.48 (14)
O1iii—Yb1—O2iii92.3 (2)O2iii—K2—O3iii53.02 (18)
O1—Yb1—O2iii87.7 (2)O2xiii—K2—O3iii53.02 (18)
O1i—Yb1—O292.3 (2)O1—K2—Yb1xiii137.72 (11)
O1ii—Yb1—O287.7 (2)O1xi—K2—Yb1xiii39.54 (10)
O1iii—Yb1—O287.7 (2)O1xii—K2—Yb1xiii39.54 (10)
O1—Yb1—O292.3 (2)O1i—K2—Yb1xiii137.72 (11)
O2iii—Yb1—O2180.0O2iii—K2—Yb1xiii145.6 (2)
O1i—Yb1—K252.32 (13)O2xiii—K2—Yb1xiii39.55 (18)
O1ii—Yb1—K2127.68 (13)O3iii—K2—Yb1xiii92.57 (6)
O1iii—Yb1—K2127.68 (13)O1—K2—Yb139.54 (10)
O1—Yb1—K252.32 (13)O1xi—K2—Yb1137.72 (11)
O2iii—Yb1—K254.1 (3)O1xii—K2—Yb1137.72 (11)
O2—Yb1—K2125.9 (3)O1i—K2—Yb139.54 (11)
O1i—Yb1—K2iii127.68 (13)O2iii—K2—Yb139.55 (18)
O1ii—Yb1—K2iii52.32 (13)O2xiii—K2—Yb1145.6 (2)
O1iii—Yb1—K2iii52.32 (13)O3iii—K2—Yb192.57 (6)
O1—Yb1—K2iii127.68 (13)Yb1xiii—K2—Yb1174.87 (12)
O2iii—Yb1—K2iii125.9 (3)O1—K2—Si1iii88.07 (12)
O2—Yb1—K2iii54.1 (3)O1xi—K2—Si1iii131.02 (17)
K2—Yb1—K2iii180.0O1xii—K2—Si1iii131.02 (17)
O1i—Yb1—K1iv55.23 (19)O1i—K2—Si1iii88.07 (12)
O1ii—Yb1—K1iv124.77 (19)O2iii—K2—Si1iii25.88 (18)
O1iii—Yb1—K1iv124.77 (19)O2xiii—K2—Si1iii80.2 (2)
O1—Yb1—K1iv55.23 (19)O3iii—K2—Si1iii27.14 (5)
O2iii—Yb1—K1iv125.1 (2)Yb1xiii—K2—Si1iii119.70 (11)
O2—Yb1—K1iv54.9 (2)Yb1—K2—Si1iii65.43 (5)
K2—Yb1—K1iv70.96 (7)O1—K2—Si1xiii131.02 (17)
K2iii—Yb1—K1iv109.04 (7)O1xi—K2—Si1xiii88.07 (12)
O1i—Yb1—K1v124.77 (19)O1xii—K2—Si1xiii88.07 (12)
O1ii—Yb1—K1v55.23 (19)O1i—K2—Si1xiii131.02 (17)
O1iii—Yb1—K1v55.23 (19)O2iii—K2—Si1xiii80.2 (2)
O1—Yb1—K1v124.77 (19)O2xiii—K2—Si1xiii25.88 (18)
O2iii—Yb1—K1v54.9 (2)O3iii—K2—Si1xiii27.14 (5)
O2—Yb1—K1v125.1 (2)Yb1xiii—K2—Si1xiii65.43 (5)
K2—Yb1—K1v109.04 (7)Yb1—K2—Si1xiii119.70 (11)
K2iii—Yb1—K1v70.96 (7)Si1iii—K2—Si1xiii54.27 (11)
K1iv—Yb1—K1v180.00 (5)O1—K2—Si1xiv126.1 (2)
O1i—Yb1—K1iii60.05 (13)O1xi—K2—Si1xiv23.18 (10)
O1ii—Yb1—K1iii119.95 (13)O1xii—K2—Si1xiv85.80 (17)
O1iii—Yb1—K1iii53.1 (2)O1i—K2—Si1xiv75.11 (11)
O1—Yb1—K1iii126.9 (2)O2iii—K2—Si1xiv129.32 (5)
O2iii—Yb1—K1iii126.75 (4)O2xiii—K2—Si1xiv86.23 (12)
O2—Yb1—K1iii53.25 (4)O3iii—K2—Si1xiv118.17 (8)
K2—Yb1—K1iii112.37 (4)Yb1xiii—K2—Si1xiv62.71 (4)
K2iii—Yb1—K1iii67.63 (4)Yb1—K2—Si1xiv114.60 (6)
K1iv—Yb1—K1iii71.72 (5)Si1iii—K2—Si1xiv128.30 (8)
K1v—Yb1—K1iii108.28 (4)Si1xiii—K2—Si1xiv102.73 (6)
O1i—Yb1—K1vi53.1 (2)O2—Si1—O1xv110.5 (3)
O1ii—Yb1—K1vi126.9 (2)O2—Si1—O1xvi110.5 (3)
O1iii—Yb1—K1vi60.05 (13)O1xv—Si1—O1xvi111.1 (6)
O1—Yb1—K1vi119.95 (13)O2—Si1—O3106.5 (7)
O2iii—Yb1—K1vi53.25 (4)O1xv—Si1—O3109.1 (3)
O2—Yb1—K1vi126.75 (4)O1xvi—Si1—O3109.1 (3)
K2—Yb1—K1vi67.63 (4)O2—Si1—K1iv65.5 (4)
K2iii—Yb1—K1vi112.37 (4)O1xv—Si1—K1iv74.93 (19)
K1iv—Yb1—K1vi108.28 (5)O1xvi—Si1—K1iv74.93 (19)
K1v—Yb1—K1vi71.72 (4)O3—Si1—K1iv171.9 (6)
K1iii—Yb1—K1vi73.66 (8)O2—Si1—K1ix58.95 (10)
O1vii—K1—O155.8 (2)O1xv—Si1—K1ix154.3 (2)
O1vii—K1—O2viii117.5 (2)O1xvi—Si1—K1ix59.3 (3)
O1—K1—O2viii117.5 (2)O3—Si1—K1ix96.5 (3)
O1vii—K1—O2ix65.01 (15)K1iv—Si1—K1ix79.44 (5)
O1—K1—O2ix120.8 (3)O2—Si1—K1iii58.95 (10)
O2viii—K1—O2ix87.51 (19)O1xv—Si1—K1iii59.3 (3)
O1vii—K1—O2iii120.8 (3)O1xvi—Si1—K1iii154.3 (2)
O1—K1—O2iii65.01 (15)O3—Si1—K1iii96.5 (3)
O2viii—K1—O2iii87.51 (19)K1iv—Si1—K1iii79.44 (5)
O2ix—K1—O2iii173.8 (4)K1ix—Si1—K1iii117.75 (19)
O1vii—K1—O1viii119.90 (2)O2—Si1—K1xvi147.9 (4)
O1—K1—O1viii174.0 (2)O1xv—Si1—K1xvi57.8 (3)
O2viii—K1—O1viii67.84 (14)O1xvi—Si1—K1xvi57.8 (3)
O2ix—K1—O1viii55.21 (15)O3—Si1—K1xvi105.6 (5)
O2iii—K1—O1viii119.2 (3)K1iv—Si1—K1xvi82.41 (8)
O1vii—K1—O1x174.0 (2)K1ix—Si1—K1xvi117.06 (10)
O1—K1—O1x119.90 (2)K1iii—Si1—K1xvi117.06 (10)
O2viii—K1—O1x67.84 (14)O2—Si1—K2iii49.7 (3)
O2ix—K1—O1x119.2 (3)O1xv—Si1—K2iii124.4 (3)
O2iii—K1—O1x55.21 (15)O1xvi—Si1—K2iii124.4 (3)
O1viii—K1—O1x64.0 (2)O3—Si1—K2iii56.8 (5)
O1vii—K1—O1ix64.97 (16)K1iv—Si1—K2iii115.20 (11)
O1—K1—O1ix88.66 (18)K1ix—Si1—K2iii68.95 (10)
O2viii—K1—O1ix52.49 (14)K1iii—Si1—K2iii68.95 (10)
O2ix—K1—O1ix64.4 (2)K1xvi—Si1—K2iii162.39 (8)
O2iii—K1—O1ix115.0 (3)O2—Si1—K2xvii127.16 (12)
O1viii—K1—O1ix92.94 (15)O1xv—Si1—K2xvii42.04 (18)
O1x—K1—O1ix120.29 (11)O1xvi—Si1—K2xvii121.3 (3)
O1vii—K1—O1ii88.66 (18)O3—Si1—K2xvii67.4 (3)
O1—K1—O1ii64.97 (16)K1iv—Si1—K2xvii116.97 (6)
O2viii—K1—O1ii52.49 (14)K1ix—Si1—K2xvii163.54 (5)
O2ix—K1—O1ii115.0 (3)K1iii—Si1—K2xvii69.45 (7)
O2iii—K1—O1ii64.4 (2)K1xvi—Si1—K2xvii66.85 (9)
O1viii—K1—O1ii120.29 (11)K2iii—Si1—K2xvii102.73 (6)
O1x—K1—O1ii92.94 (15)O2—Si1—K2xvi127.16 (12)
O1ix—K1—O1ii50.6 (3)O1xv—Si1—K2xvi121.3 (3)
O1vii—K1—Si1viii90.47 (12)O1xvi—Si1—K2xvi42.04 (18)
O1—K1—Si1viii90.47 (12)O3—Si1—K2xvi67.4 (3)
O2viii—K1—Si1viii30.91 (19)K1iv—Si1—K2xvi116.97 (6)
O2ix—K1—Si1viii88.8 (2)K1ix—Si1—K2xvi69.45 (7)
O2iii—K1—Si1viii88.8 (2)K1iii—Si1—K2xvi163.54 (5)
O1viii—K1—Si1viii93.81 (13)K1xvi—Si1—K2xvi66.85 (9)
O1x—K1—Si1viii93.81 (13)K2iii—Si1—K2xvi102.73 (6)
O1ix—K1—Si1viii30.03 (10)K2xvii—Si1—K2xvi99.85 (11)
O1ii—K1—Si1viii30.03 (10)Si1xvi—O1—Yb1157.0 (3)
O1vii—K1—Si1ix91.45 (13)Si1xvi—O1—K2114.8 (2)
O1—K1—Si1ix145.69 (16)Yb1—O1—K288.15 (16)
O2viii—K1—Si1ix84.78 (12)Si1xvi—O1—K193.5 (3)
O2ix—K1—Si1ix28.92 (18)Yb1—O1—K188.60 (19)
O2iii—K1—Si1ix146.5 (2)K2—O1—K188.76 (17)
O1viii—K1—Si1ix29.00 (12)Si1xvi—O1—K1iv91.7 (3)
O1x—K1—Si1ix91.90 (16)Yb1—O1—K1iv85.4 (2)
O1ix—K1—Si1ix85.34 (14)K2—O1—K1iv91.8 (2)
O1ii—K1—Si1ix130.57 (11)K1—O1—K1iv174.0 (2)
Si1viii—K1—Si1ix100.56 (5)Si1xvi—O1—K1ix75.03 (19)
O1vii—K1—Si1iii145.69 (16)Yb1—O1—K1ix82.03 (15)
O1—K1—Si1iii91.45 (13)K2—O1—K1ix170.2 (2)
O2viii—K1—Si1iii84.78 (12)K1—O1—K1ix91.34 (18)
O2ix—K1—Si1iii146.5 (2)K1iv—O1—K1ix87.06 (15)
O2iii—K1—Si1iii28.92 (18)Si1—O2—Yb1169.3 (6)
O1viii—K1—Si1iii91.90 (16)Si1—O2—K2iii104.4 (4)
O1x—K1—Si1iii29.00 (12)Yb1—O2—K2iii86.4 (3)
O1ix—K1—Si1iii130.57 (11)Si1—O2—K1iv83.6 (4)
O1ii—K1—Si1iii85.34 (14)Yb1—O2—K1iv85.6 (3)
Si1viii—K1—Si1iii100.56 (5)K2iii—O2—K1iv172.0 (3)
Si1ix—K1—Si1iii117.75 (19)Si1—O2—K1ix92.1 (2)
O1—K2—O1xi139.0 (3)Yb1—O2—K1ix88.33 (19)
O1—K2—O1xii98.3 (2)K2iii—O2—K1ix87.28 (19)
O1xi—K2—O1xii67.1 (3)K1iv—O2—K1ix92.49 (19)
O1—K2—O1i67.1 (3)Si1—O2—K1iii92.1 (2)
O1xi—K2—O1i98.3 (2)Yb1—O2—K1iii88.33 (19)
O1xii—K2—O1i139.0 (3)K2iii—O2—K1iii87.28 (19)
O1—K2—O2iii66.81 (14)K1iv—O2—K1iii92.49 (19)
O1xi—K2—O2iii144.55 (16)K1ix—O2—K1iii173.8 (4)
O1xii—K2—O2iii144.55 (16)Si1—O3—Si1xviii167.8 (10)
O1i—K2—O2iii66.81 (14)Si1—O3—K2iii96.1 (5)
O1—K2—O2xiii144.55 (16)Si1xviii—O3—K2iii96.1 (5)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1; (iii) x, y, z+1; (iv) x1/2, y1/2, z; (v) x+1/2, y+1/2, z+1; (vi) x1, y, z; (vii) x+1, y, z; (viii) x+1/2, y+1/2, z; (ix) x+1, y, z+1; (x) x+1/2, y+1/2, z; (xi) x, y, z+1/2; (xii) x, y, z+1/2; (xiii) x, y, z1/2; (xiv) x1/2, y1/2, z1/2; (xv) x1/2, y1/2, z+1; (xvi) x+1/2, y1/2, z+1; (xvii) x1/2, y1/2, z+1; (xviii) x, y, z+3/2.
(163_K) top
Crystal data top
K3O7Si2YbDx = 3.868 Mg m3
Mr = 458.52Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmcmCell parameters from 1191 reflections
a = 5.7158 (6) Åθ = 5.0–29.9°
b = 9.9012 (10) ŵ = 13.77 mm1
c = 13.9112 (14) ÅT = 163 K
V = 787.28 (14) Å3Prismatic, colourless
Z = 40.13 × 0.11 × 0.09 mm
F(000) = 844
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
472 reflections with I > 2σ(I)
ω scansRint = 0.042
Absorption correction: analytical
CrysAlisPro 1.171.40.81a (Rigaku Oxford Diffraction, 2020) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 27.5°, θmin = 2.9°
Tmin = 0.305, Tmax = 0.398h = 77
2682 measured reflectionsk = 1210
539 independent reflectionsl = 1618
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0048P)2 + 4.5201P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.021(Δ/σ)max < 0.001
wR(F2) = 0.042Δρmax = 0.95 e Å3
S = 1.09Δρmin = 0.87 e Å3
539 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
29 parametersExtinction coefficient: 0.00358 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 3-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.0000000.0000000.5000000.00265 (16)
K10.5000000.1712 (4)0.40787 (12)0.0077 (3)
K20.0000000.0148 (4)0.2500000.0095 (5)
Si10.0000000.3380 (5)0.63220 (14)0.0028 (4)
O10.2675 (12)0.0807 (6)0.3997 (4)0.0088 (13)
O20.0000000.1871 (9)0.5880 (7)0.005 (2)
O30.0000000.3192 (15)0.7500000.0110 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.00237 (17)0.00237 (17)0.0032 (2)0.0000.0000.000
K10.0069 (5)0.0069 (5)0.0093 (7)0.0000.0000.000
K20.0120 (8)0.0120 (8)0.0043 (9)0.0000.0000.000
Si10.0027 (6)0.0027 (6)0.0031 (8)0.0000.0000.000
O10.0054 (16)0.0054 (16)0.015 (3)0.0000.0000.000
O20.004 (3)0.008 (4)0.004 (3)0.0000.0000.000
O30.005 (3)0.023 (7)0.005 (3)0.0000.0000.000
Geometric parameters (Å, º) top
Yb1—O1i2.219 (5)K1—O1vii3.120 (6)
Yb1—O1ii2.219 (5)K1—O1ii3.120 (6)
Yb1—O1iii2.219 (5)K1—Si1viii3.122 (3)
Yb1—O12.219 (5)K1—Si1x3.346 (7)
Yb1—O2iii2.220 (9)K1—Si1vii3.347 (3)
Yb1—O22.220 (9)K2—O12.751 (5)
Yb1—K23.4809 (4)K2—O1xi2.751 (5)
Yb1—K2iii3.4809 (4)K2—O1xii2.751 (5)
Yb1—K1iv3.498 (3)K2—O1i2.751 (5)
Yb1—K1v3.498 (3)K2—O2iii2.826 (10)
Yb1—K13.5616 (19)K2—O2xiii2.826 (10)
Yb1—K1iii3.5616 (19)K2—O3iii3.014 (17)
K1—O1vi2.829 (9)K2—Si1iii3.595 (6)
K1—O12.829 (9)K2—Si1xiii3.595 (6)
K1—O2vii2.8628 (7)K2—Si1xiv3.730 (3)
K1—O2iii2.8628 (6)Si1—O1xv1.616 (6)
K1—O2viii2.872 (10)Si1—O1x1.616 (6)
K1—O1viii2.895 (9)Si1—O21.616 (10)
K1—O1ix2.895 (9)Si1—O31.649 (3)
O1i—Yb1—O1ii180.0O1xi—K2—O2xiii66.66 (14)
O1i—Yb1—O1iii92.9 (4)O1xii—K2—O2xiii66.66 (14)
O1ii—Yb1—O1iii87.1 (4)O1i—K2—O2xiii144.19 (17)
O1i—Yb1—O187.1 (4)O2iii—K2—O2xiii105.8 (4)
O1ii—Yb1—O192.9 (4)O1—K2—O3iii110.10 (15)
O1iii—Yb1—O1180.0 (3)O1xi—K2—O3iii110.10 (15)
O1i—Yb1—O2iii87.3 (2)O1xii—K2—O3iii110.10 (15)
O1ii—Yb1—O2iii92.7 (2)O1i—K2—O3iii110.10 (15)
O1iii—Yb1—O2iii92.7 (2)O2iii—K2—O3iii52.88 (19)
O1—Yb1—O2iii87.3 (2)O2xiii—K2—O3iii52.88 (19)
O1i—Yb1—O292.7 (2)O1—K2—Yb1xiii137.89 (12)
O1ii—Yb1—O287.3 (2)O1xi—K2—Yb1xiii39.57 (11)
O1iii—Yb1—O287.3 (2)O1xii—K2—Yb1xiii39.57 (11)
O1—Yb1—O292.7 (2)O1i—K2—Yb1xiii137.89 (12)
O2iii—Yb1—O2180.0O2iii—K2—Yb1xiii145.3 (2)
O1i—Yb1—K252.19 (14)O2xiii—K2—Yb1xiii39.54 (18)
O1ii—Yb1—K2127.81 (14)O3iii—K2—Yb1xiii92.42 (7)
O1iii—Yb1—K2127.81 (14)O1—K2—Yb139.57 (11)
O1—Yb1—K252.19 (14)O1xi—K2—Yb1137.89 (12)
O2iii—Yb1—K254.1 (3)O1xii—K2—Yb1137.89 (12)
O2—Yb1—K2125.9 (3)O1i—K2—Yb139.57 (11)
O1i—Yb1—K2iii127.81 (14)O2iii—K2—Yb139.54 (18)
O1ii—Yb1—K2iii52.19 (14)O2xiii—K2—Yb1145.3 (2)
O1iii—Yb1—K2iii52.19 (14)O3iii—K2—Yb192.42 (7)
O1—Yb1—K2iii127.81 (14)Yb1xiii—K2—Yb1175.17 (13)
O2iii—Yb1—K2iii125.9 (3)O1—K2—Si1iii87.76 (13)
O2—Yb1—K2iii54.1 (3)O1xi—K2—Si1iii130.61 (19)
K2—Yb1—K2iii180.00 (13)O1xii—K2—Si1iii130.61 (19)
O1i—Yb1—K1iv55.6 (2)O1i—K2—Si1iii87.76 (13)
O1ii—Yb1—K1iv124.4 (2)O2iii—K2—Si1iii25.76 (19)
O1iii—Yb1—K1iv124.4 (2)O2xiii—K2—Si1iii80.0 (2)
O1—Yb1—K1iv55.6 (2)O3iii—K2—Si1iii27.11 (6)
O2iii—Yb1—K1iv125.0 (2)Yb1xiii—K2—Si1iii119.53 (11)
O2—Yb1—K1iv55.0 (2)Yb1—K2—Si1iii65.30 (5)
K2—Yb1—K1iv70.92 (8)O1—K2—Si1xiii130.61 (19)
K2iii—Yb1—K1iv109.08 (8)O1xi—K2—Si1xiii87.76 (13)
O1i—Yb1—K1v124.4 (2)O1xii—K2—Si1xiii87.76 (13)
O1ii—Yb1—K1v55.6 (2)O1i—K2—Si1xiii130.61 (19)
O1iii—Yb1—K1v55.6 (2)O2iii—K2—Si1xiii80.0 (2)
O1—Yb1—K1v124.4 (2)O2xiii—K2—Si1xiii25.76 (19)
O2iii—Yb1—K1v55.0 (2)O3iii—K2—Si1xiii27.11 (6)
O2—Yb1—K1v125.0 (2)Yb1xiii—K2—Si1xiii65.30 (5)
K2—Yb1—K1v109.08 (8)Yb1—K2—Si1xiii119.53 (11)
K2iii—Yb1—K1v70.92 (8)Si1iii—K2—Si1xiii54.23 (11)
K1iv—Yb1—K1v180.00 (5)O1—K2—Si1xiv126.7 (2)
O1i—Yb1—K1119.88 (14)O1xi—K2—Si1xiv23.14 (11)
O1ii—Yb1—K160.12 (14)O1xii—K2—Si1xiv86.10 (18)
O1iii—Yb1—K1127.4 (2)O1i—K2—Si1xiv75.26 (12)
O1—Yb1—K152.6 (2)O2iii—K2—Si1xiv129.30 (5)
O2iii—Yb1—K153.45 (4)O2xiii—K2—Si1xiv86.15 (13)
O2—Yb1—K1126.55 (4)O3iii—K2—Si1xiv117.98 (9)
K2—Yb1—K167.69 (4)Yb1xiii—K2—Si1xiv62.70 (4)
K2iii—Yb1—K1112.31 (4)Yb1—K2—Si1xiv114.78 (6)
K1iv—Yb1—K1108.13 (5)Si1iii—K2—Si1xiv128.16 (9)
K1v—Yb1—K171.87 (5)Si1xiii—K2—Si1xiv102.56 (6)
O1i—Yb1—K1iii60.12 (14)O1xv—Si1—O1x110.7 (6)
O1ii—Yb1—K1iii119.88 (14)O1xv—Si1—O2110.9 (3)
O1iii—Yb1—K1iii52.6 (2)O1x—Si1—O2110.9 (3)
O1—Yb1—K1iii127.4 (2)O1xv—Si1—O3109.2 (4)
O2iii—Yb1—K1iii126.55 (4)O1x—Si1—O3109.2 (4)
O2—Yb1—K1iii53.45 (4)O2—Si1—O3105.9 (7)
K2—Yb1—K1iii112.31 (4)O1xv—Si1—K1iv74.9 (2)
K2iii—Yb1—K1iii67.69 (4)O1x—Si1—K1iv74.9 (2)
K1iv—Yb1—K1iii71.87 (5)O2—Si1—K1iv66.0 (4)
K1v—Yb1—K1iii108.13 (5)O3—Si1—K1iv171.8 (6)
K1—Yb1—K1iii180.00 (10)O1xv—Si1—K1x57.5 (3)
O1vi—K1—O156.0 (2)O1x—Si1—K1x57.5 (3)
O1vi—K1—O2vii65.17 (16)O2—Si1—K1x148.1 (4)
O1—K1—O2vii121.2 (3)O3—Si1—K1x106.1 (6)
O1vi—K1—O2iii121.2 (3)K1iv—Si1—K1x82.10 (9)
O1—K1—O2iii65.17 (16)O1xv—Si1—K1vii154.4 (2)
O2vii—K1—O2iii173.3 (4)O1x—Si1—K1vii59.9 (3)
O1vi—K1—O2viii117.8 (2)O2—Si1—K1vii58.69 (10)
O1—K1—O2viii117.8 (2)O3—Si1—K1vii96.3 (3)
O2vii—K1—O2viii87.5 (2)K1iv—Si1—K1vii79.57 (5)
O2iii—K1—O2viii87.5 (2)K1x—Si1—K1vii117.30 (10)
O1vi—K1—O1viii119.90 (2)O1xv—Si1—K1iii59.9 (3)
O1—K1—O1viii174.0 (2)O1x—Si1—K1iii154.4 (2)
O2vii—K1—O1viii55.05 (16)O2—Si1—K1iii58.69 (10)
O2iii—K1—O1viii118.8 (3)O3—Si1—K1iii96.3 (3)
O2viii—K1—O1viii67.66 (14)K1iv—Si1—K1iii79.57 (5)
O1vi—K1—O1ix174.0 (2)K1x—Si1—K1iii117.30 (10)
O1—K1—O1ix119.90 (2)K1vii—Si1—K1iii117.24 (19)
O2vii—K1—O1ix118.8 (3)O1xv—Si1—K2iii124.7 (3)
O2iii—K1—O1ix55.05 (16)O1x—Si1—K2iii124.7 (3)
O2viii—K1—O1ix67.66 (14)O2—Si1—K2iii49.5 (4)
O1viii—K1—O1ix63.8 (2)O3—Si1—K2iii56.4 (6)
O1vi—K1—O1vii65.22 (17)K1iv—Si1—K2iii115.43 (12)
O1—K1—O1vii88.91 (19)K1x—Si1—K2iii162.48 (9)
O2vii—K1—O1vii64.7 (2)K1vii—Si1—K2iii68.70 (10)
O2iii—K1—O1vii115.1 (3)K1iii—Si1—K2iii68.70 (11)
O2viii—K1—O1vii52.54 (14)O1xv—Si1—K2xvi42.02 (19)
O1viii—K1—O1vii93.01 (16)O1x—Si1—K2xvi121.1 (3)
O1ix—K1—O1vii120.15 (11)O2—Si1—K2xvi126.94 (13)
O1vi—K1—O1ii88.91 (19)O3—Si1—K2xvi67.5 (3)
O1—K1—O1ii65.22 (17)K1iv—Si1—K2xvi116.93 (6)
O2vii—K1—O1ii115.1 (3)K1x—Si1—K2xvi67.08 (10)
O2iii—K1—O1ii64.7 (2)K1vii—Si1—K2xvi163.47 (6)
O2viii—K1—O1ii52.54 (14)K1iii—Si1—K2xvi69.55 (7)
O1viii—K1—O1ii120.15 (11)K2iii—Si1—K2xvi102.56 (6)
O1ix—K1—O1ii93.01 (16)O1xv—Si1—K2x121.1 (3)
O1vii—K1—O1ii50.4 (3)O1x—Si1—K2x42.02 (19)
O1vi—K1—Si1viii90.80 (13)O2—Si1—K2x126.94 (13)
O1—K1—Si1viii90.80 (13)O3—Si1—K2x67.5 (3)
O2vii—K1—Si1viii88.9 (2)K1iv—Si1—K2x116.93 (6)
O2iii—K1—Si1viii88.9 (2)K1x—Si1—K2x67.08 (10)
O2viii—K1—Si1viii30.9 (2)K1vii—Si1—K2x69.55 (7)
O1viii—K1—Si1viii93.67 (13)K1iii—Si1—K2x163.47 (6)
O1ix—K1—Si1viii93.67 (13)K2iii—Si1—K2x102.56 (6)
O1vii—K1—Si1viii30.00 (11)K2xvi—Si1—K2x100.01 (12)
O1ii—K1—Si1viii30.00 (11)Si1x—O1—Yb1156.8 (3)
O1vi—K1—Si1x28.81 (11)Si1x—O1—K2114.8 (3)
O1—K1—Si1x28.81 (11)Yb1—O1—K288.24 (17)
O2vii—K1—Si1x93.29 (19)Si1x—O1—K193.7 (4)
O2iii—K1—Si1x93.29 (19)Yb1—O1—K188.9 (2)
O2viii—K1—Si1x128.83 (19)K2—O1—K189.33 (19)
O1viii—K1—Si1x146.09 (11)Si1x—O1—K1iv91.3 (3)
O1ix—K1—Si1x146.09 (11)Yb1—O1—K1iv85.2 (2)
O1vii—K1—Si1x81.92 (13)K2—O1—K1iv91.6 (2)
O1ii—K1—Si1x81.92 (13)K1—O1—K1iv174.0 (2)
Si1viii—K1—Si1x97.90 (9)Si1x—O1—K1vii75.1 (2)
O1vi—K1—Si1vii91.57 (13)Yb1—O1—K1vii81.82 (16)
O1—K1—Si1vii146.05 (16)K2—O1—K1vii170.0 (2)
O2vii—K1—Si1vii28.84 (19)K1—O1—K1vii91.09 (19)
O2iii—K1—Si1vii146.0 (2)K1iv—O1—K1vii86.99 (16)
O2viii—K1—Si1vii84.51 (12)Si1—O2—Yb1168.9 (6)
O1viii—K1—Si1vii28.85 (13)Si1—O2—K2iii104.8 (5)
O1ix—K1—Si1vii91.48 (16)Yb1—O2—K2iii86.3 (3)
O1vii—K1—Si1vii85.47 (15)Si1—O2—K1vii92.5 (2)
O1ii—K1—Si1vii130.41 (11)Yb1—O2—K1vii88.0 (2)
Si1viii—K1—Si1vii100.43 (5)K2iii—O2—K1vii87.2 (2)
Si1x—K1—Si1vii117.30 (10)Si1—O2—K1iii92.5 (2)
O1—K2—O1xi139.8 (3)Yb1—O2—K1iii88.0 (2)
O1—K2—O1xii98.4 (2)K2iii—O2—K1iii87.2 (2)
O1xi—K2—O1xii67.5 (3)K1vii—O2—K1iii173.3 (4)
O1—K2—O1i67.5 (3)Si1—O2—K1iv83.1 (4)
O1xi—K2—O1i98.4 (2)Yb1—O2—K1iv85.8 (3)
O1xii—K2—O1i139.8 (3)K2iii—O2—K1iv172.1 (4)
O1—K2—O2iii66.66 (14)K1vii—O2—K1iv92.5 (2)
O1xi—K2—O2iii144.19 (17)K1iii—O2—K1iv92.5 (2)
O1xii—K2—O2iii144.19 (17)Si1—O3—Si1xvii167.0 (11)
O1i—K2—O2iii66.66 (14)Si1—O3—K2iii96.5 (6)
O1—K2—O2xiii144.19 (17)Si1xvii—O3—K2iii96.5 (6)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1; (iii) x, y, z+1; (iv) x1/2, y1/2, z; (v) x+1/2, y+1/2, z+1; (vi) x+1, y, z; (vii) x+1, y, z+1; (viii) x+1/2, y+1/2, z; (ix) x+1/2, y+1/2, z; (x) x+1/2, y1/2, z+1; (xi) x, y, z+1/2; (xii) x, y, z+1/2; (xiii) x, y, z1/2; (xiv) x1/2, y1/2, z1/2; (xv) x1/2, y1/2, z+1; (xvi) x1/2, y1/2, z+1; (xvii) x, y, z+3/2.
(173_K) top
Crystal data top
K3O7Si2YbDx = 3.861 Mg m3
Mr = 458.52Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmcmCell parameters from 1195 reflections
a = 5.7197 (6) Åθ = 7.1–29.4°
b = 9.9102 (10) ŵ = 13.74 mm1
c = 13.9165 (14) ÅT = 173 K
V = 788.83 (14) Å3Prismatic, colourless
Z = 40.13 × 0.11 × 0.09 mm
F(000) = 844
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
476 reflections with I > 2σ(I)
ω scansRint = 0.040
Absorption correction: analytical
CrysAlisPro 1.171.40.81a (Rigaku Oxford Diffraction, 2020) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 27.4°, θmin = 2.9°
Tmin = 0.304, Tmax = 0.398h = 77
2683 measured reflectionsk = 1012
539 independent reflectionsl = 1816
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0087P)2 + 3.7066P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.020(Δ/σ)max < 0.001
wR(F2) = 0.041Δρmax = 0.94 e Å3
S = 1.08Δρmin = 0.80 e Å3
539 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
30 parametersExtinction coefficient: 0.00355 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 3-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.0000000.0000000.5000000.00269 (15)
K10.5000000.1720 (4)0.40796 (11)0.0076 (3)
K20.0000000.0138 (4)0.2500000.0096 (5)
Si10.0000000.3374 (4)0.63215 (14)0.0029 (4)
O10.2667 (12)0.0815 (6)0.3998 (4)0.0092 (13)
O20.0000000.1861 (8)0.5880 (7)0.004 (2)
O30.0000000.3214 (15)0.7500000.0137 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.00242 (17)0.00242 (17)0.0032 (2)0.0000.0000.000
K10.0062 (5)0.0062 (5)0.0103 (6)0.0000.0000.000
K20.0121 (8)0.0121 (8)0.0047 (9)0.0000.0000.000
Si10.0030 (5)0.0030 (5)0.0028 (7)0.0000.0000.000
O10.0070 (15)0.0070 (15)0.014 (2)0.0000.0000.000
O20.006 (3)0.001 (3)0.006 (3)0.0000.0000.000
O30.029 (9)0.006 (7)0.006 (3)0.0000.0000.000
Geometric parameters (Å, º) top
Yb1—O2i2.214 (8)K1—O1vi3.121 (6)
Yb1—O22.214 (8)K1—O1iii3.121 (6)
Yb1—O1ii2.219 (5)K1—Si1viii3.121 (3)
Yb1—O1iii2.219 (5)K1—Si1vi3.343 (3)
Yb1—O1i2.219 (5)K1—Si1i3.343 (3)
Yb1—O12.219 (5)K2—O12.750 (5)
Yb1—K23.4818 (4)K2—O1x2.750 (5)
Yb1—K2i3.4818 (4)K2—O1xi2.750 (5)
Yb1—K1iv3.494 (4)K2—O1ii2.750 (5)
Yb1—K1v3.494 (4)K2—O2i2.828 (10)
Yb1—K1i3.5670 (19)K2—O2xii2.828 (10)
Yb1—K1vi3.5670 (19)K2—O3i3.048 (16)
K1—O1vii2.847 (9)K2—Si1i3.602 (6)
K1—O12.847 (9)K2—Si1xii3.602 (6)
K1—O2vi2.8638 (6)K2—Si1xiii3.732 (3)
K1—O2i2.8638 (6)Si1—O21.620 (9)
K1—O2viii2.873 (10)Si1—O1xiv1.620 (5)
K1—O1viii2.882 (9)Si1—O1xv1.620 (5)
K1—O1ix2.882 (9)Si1—O31.648 (3)
O2i—Yb1—O2180.0O1x—K2—O2xii66.61 (13)
O2i—Yb1—O1ii87.5 (2)O1xi—K2—O2xii66.61 (13)
O2—Yb1—O1ii92.5 (2)O1ii—K2—O2xii144.24 (16)
O2i—Yb1—O1iii92.5 (2)O2i—K2—O2xii105.7 (4)
O2—Yb1—O1iii87.5 (2)O1—K2—O3i110.08 (15)
O1ii—Yb1—O1iii180.0 (2)O1x—K2—O3i110.08 (15)
O2i—Yb1—O1i92.5 (2)O1xi—K2—O3i110.08 (15)
O2—Yb1—O1i87.5 (2)O1ii—K2—O3i110.08 (15)
O1ii—Yb1—O1i93.1 (4)O2i—K2—O3i52.85 (18)
O1iii—Yb1—O1i86.9 (4)O2xii—K2—O3i52.85 (18)
O2i—Yb1—O187.5 (2)O1—K2—Yb1xii138.07 (12)
O2—Yb1—O192.5 (2)O1x—K2—Yb1xii39.57 (11)
O1ii—Yb1—O186.9 (4)O1xi—K2—Yb1xii39.57 (11)
O1iii—Yb1—O193.1 (4)O1ii—K2—Yb1xii138.07 (12)
O1i—Yb1—O1180.0 (4)O2i—K2—Yb1xii145.1 (2)
O2i—Yb1—K254.2 (3)O2xii—K2—Yb1xii39.39 (17)
O2—Yb1—K2125.8 (3)O3i—K2—Yb1xii92.25 (7)
O1ii—Yb1—K252.14 (14)O1—K2—Yb139.57 (11)
O1iii—Yb1—K2127.86 (14)O1x—K2—Yb1138.07 (12)
O1i—Yb1—K2127.86 (14)O1xi—K2—Yb1138.07 (12)
O1—Yb1—K252.14 (14)O1ii—K2—Yb139.57 (11)
O2i—Yb1—K2i125.8 (3)O2i—K2—Yb139.39 (17)
O2—Yb1—K2i54.2 (3)O2xii—K2—Yb1145.1 (2)
O1ii—Yb1—K2i127.86 (14)O3i—K2—Yb192.25 (6)
O1iii—Yb1—K2i52.14 (14)Yb1xii—K2—Yb1175.51 (13)
O1i—Yb1—K2i52.14 (14)O1—K2—Si1i87.74 (12)
O1—Yb1—K2i127.86 (14)O1x—K2—Si1i130.60 (18)
K2—Yb1—K2i180.0O1xi—K2—Si1i130.60 (18)
O2i—Yb1—K1iv124.9 (2)O1ii—K2—Si1i87.74 (12)
O2—Yb1—K1iv55.1 (2)O2i—K2—Si1i25.77 (18)
O1ii—Yb1—K1iv55.3 (2)O2xii—K2—Si1i79.94 (19)
O1iii—Yb1—K1iv124.69 (19)O3i—K2—Si1i27.09 (5)
O1i—Yb1—K1iv124.7 (2)Yb1xii—K2—Si1i119.33 (11)
O1—Yb1—K1iv55.3 (2)Yb1—K2—Si1i65.16 (5)
K2—Yb1—K1iv70.74 (8)O1—K2—Si1xii130.60 (18)
K2i—Yb1—K1iv109.26 (8)O1x—K2—Si1xii87.74 (12)
O2i—Yb1—K1v55.1 (2)O1xi—K2—Si1xii87.74 (12)
O2—Yb1—K1v124.9 (2)O1ii—K2—Si1xii130.60 (18)
O1ii—Yb1—K1v124.7 (2)O2i—K2—Si1xii79.94 (19)
O1iii—Yb1—K1v55.3 (2)O2xii—K2—Si1xii25.77 (18)
O1i—Yb1—K1v55.3 (2)O3i—K2—Si1xii27.09 (5)
O1—Yb1—K1v124.7 (2)Yb1xii—K2—Si1xii65.16 (5)
K2—Yb1—K1v109.26 (8)Yb1—K2—Si1xii119.33 (11)
K2i—Yb1—K1v70.74 (8)Si1i—K2—Si1xii54.17 (11)
K1iv—Yb1—K1v180.0O1—K2—Si1xiii126.7 (2)
O2i—Yb1—K1i126.63 (4)O1x—K2—Si1xiii23.22 (10)
O2—Yb1—K1i53.37 (4)O1xi—K2—Si1xiii86.05 (17)
O1ii—Yb1—K1i60.04 (13)O1ii—K2—Si1xiii75.36 (11)
O1iii—Yb1—K1i119.96 (14)O2i—K2—Si1xiii129.29 (5)
O1i—Yb1—K1i52.9 (2)O2xii—K2—Si1xiii86.13 (12)
O1—Yb1—K1i127.1 (2)O3i—K2—Si1xiii117.94 (9)
K2—Yb1—K1i112.18 (4)Yb1xii—K2—Si1xiii62.77 (4)
K2i—Yb1—K1i67.82 (4)Yb1—K2—Si1xiii114.89 (6)
K1iv—Yb1—K1i71.77 (5)Si1i—K2—Si1xiii128.11 (9)
K1v—Yb1—K1i108.23 (5)Si1xii—K2—Si1xiii102.53 (6)
O2i—Yb1—K1vi126.63 (4)O2—Si1—O1xiv110.8 (3)
O2—Yb1—K1vi53.37 (4)O2—Si1—O1xv110.8 (3)
O1ii—Yb1—K1vi127.1 (2)O1xiv—Si1—O1xv110.9 (6)
O1iii—Yb1—K1vi52.9 (2)O2—Si1—O3106.8 (7)
O1i—Yb1—K1vi119.96 (13)O1xiv—Si1—O3108.7 (3)
O1—Yb1—K1vi60.04 (13)O1xv—Si1—O3108.7 (3)
K2—Yb1—K1vi112.18 (4)O2—Si1—K1iv66.0 (4)
K2i—Yb1—K1vi67.82 (4)O1xiv—Si1—K1iv74.95 (19)
K1iv—Yb1—K1vi71.77 (5)O1xv—Si1—K1iv74.95 (19)
K1v—Yb1—K1vi108.23 (5)O3—Si1—K1iv172.8 (6)
K1i—Yb1—K1vi106.59 (8)O2—Si1—K1vi58.87 (10)
O1vii—K1—O155.9 (2)O1xiv—Si1—K1vi154.4 (2)
O1vii—K1—O2vi64.90 (15)O1xv—Si1—K1vi59.5 (3)
O1—K1—O2vi120.8 (3)O3—Si1—K1vi96.8 (3)
O1vii—K1—O2i120.8 (3)K1iv—Si1—K1vi79.55 (5)
O1—K1—O2i64.90 (15)O2—Si1—K1i58.87 (10)
O2vi—K1—O2i174.0 (4)O1xiv—Si1—K1i59.5 (3)
O1vii—K1—O2viii117.8 (2)O1xv—Si1—K1i154.4 (2)
O1—K1—O2viii117.8 (2)O3—Si1—K1i96.8 (3)
O2vi—K1—O2viii87.6 (2)K1iv—Si1—K1i79.55 (5)
O2i—K1—O2viii87.6 (2)K1vi—Si1—K1i117.61 (19)
O1vii—K1—O1viii119.89 (2)O2—Si1—K1xv148.2 (4)
O1—K1—O1viii174.0 (2)O1xiv—Si1—K1xv57.7 (3)
O2vi—K1—O1viii55.31 (15)O1xv—Si1—K1xv57.7 (3)
O2i—K1—O1viii119.2 (3)O3—Si1—K1xv105.1 (5)
O2viii—K1—O1viii67.63 (13)K1iv—Si1—K1xv82.14 (8)
O1vii—K1—O1ix174.0 (2)K1vi—Si1—K1xv117.12 (10)
O1—K1—O1ix119.89 (2)K1i—Si1—K1xv117.12 (10)
O2vi—K1—O1ix119.2 (3)O2—Si1—K2i49.4 (3)
O2i—K1—O1ix55.31 (15)O1xiv—Si1—K2i124.5 (3)
O2viii—K1—O1ix67.63 (13)O1xv—Si1—K2i124.5 (3)
O1viii—K1—O1ix63.9 (2)O3—Si1—K2i57.4 (5)
O1vii—K1—O1vi65.18 (16)K1iv—Si1—K2i115.39 (11)
O1—K1—O1vi88.92 (19)K1vi—Si1—K2i68.87 (11)
O2vi—K1—O1vi64.5 (2)K1i—Si1—K2i68.87 (11)
O2i—K1—O1vi115.1 (3)K1xv—Si1—K2i162.47 (8)
O2viii—K1—O1vi52.64 (13)O2—Si1—K2xvi126.88 (12)
O1viii—K1—O1vi92.92 (15)O1xiv—Si1—K2xvi42.00 (19)
O1ix—K1—O1vi120.23 (11)O1xv—Si1—K2xvi121.3 (3)
O1vii—K1—O1iii88.92 (19)O3—Si1—K2xvi66.9 (3)
O1—K1—O1iii65.18 (16)K1iv—Si1—K2xvi116.95 (6)
O2vi—K1—O1iii115.1 (3)K1vi—Si1—K2xvi163.47 (6)
O2i—K1—O1iii64.5 (2)K1i—Si1—K2xvi69.36 (7)
O2viii—K1—O1iii52.64 (13)K1xv—Si1—K2xvi67.11 (9)
O1viii—K1—O1iii120.23 (11)K2i—Si1—K2xvi102.53 (6)
O1ix—K1—O1iii92.92 (15)O2—Si1—K2xv126.88 (12)
O1vi—K1—O1iii50.6 (3)O1xiv—Si1—K2xv121.3 (3)
O1vii—K1—Si1viii90.78 (12)O1xv—Si1—K2xv42.00 (18)
O1—K1—Si1viii90.78 (12)O3—Si1—K2xv66.9 (3)
O2vi—K1—Si1viii89.0 (2)K1iv—Si1—K2xv116.95 (6)
O2i—K1—Si1viii89.0 (2)K1vi—Si1—K2xv69.36 (7)
O2viii—K1—Si1viii31.01 (18)K1i—Si1—K2xv163.47 (6)
O1viii—K1—Si1viii93.70 (13)K1xv—Si1—K2xv67.11 (9)
O1ix—K1—Si1viii93.70 (13)K2i—Si1—K2xv102.53 (6)
O1vi—K1—Si1viii30.09 (10)K2xvi—Si1—K2xv100.06 (11)
O1iii—K1—Si1viii30.09 (10)Si1xv—O1—Yb1156.8 (3)
O1vii—K1—Si1vi91.43 (13)Si1xv—O1—K2114.8 (2)
O1—K1—Si1vi145.79 (17)Yb1—O1—K288.29 (17)
O2vi—K1—Si1vi28.96 (17)Si1xv—O1—K193.6 (4)
O2i—K1—Si1vi146.5 (2)Yb1—O1—K188.62 (19)
O2viii—K1—Si1vi84.58 (12)K2—O1—K189.27 (17)
O1viii—K1—Si1vi28.98 (12)Si1xv—O1—K1iv91.5 (3)
O1ix—K1—Si1vi91.75 (17)Yb1—O1—K1iv85.4 (2)
O1vi—K1—Si1vi85.31 (14)K2—O1—K1iv91.6 (2)
O1iii—K1—Si1vi130.52 (11)K1—O1—K1iv174.0 (2)
Si1viii—K1—Si1vi100.45 (5)Si1xv—O1—K1vi74.96 (19)
O1vii—K1—Si1i145.79 (17)Yb1—O1—K1vi81.94 (15)
O1—K1—Si1i91.43 (13)K2—O1—K1vi170.2 (2)
O2vi—K1—Si1i146.5 (2)K1—O1—K1vi91.08 (19)
O2i—K1—Si1i28.96 (17)K1iv—O1—K1vi87.08 (15)
O2viii—K1—Si1i84.58 (12)Si1—O2—Yb1168.7 (6)
O1viii—K1—Si1i91.75 (17)Si1—O2—K2i104.9 (4)
O1ix—K1—Si1i28.98 (12)Yb1—O2—K2i86.4 (3)
O1vi—K1—Si1i130.52 (11)Si1—O2—K1vi92.17 (19)
O1iii—K1—Si1i85.31 (14)Yb1—O2—K1vi88.29 (19)
Si1viii—K1—Si1i100.45 (5)K2i—O2—K1vi87.41 (19)
Si1vi—K1—Si1i117.61 (19)Si1—O2—K1i92.17 (19)
O1—K2—O1x139.8 (3)Yb1—O2—K1i88.29 (19)
O1—K2—O1xi98.6 (2)K2i—O2—K1i87.41 (19)
O1x—K2—O1xi67.4 (3)K1vi—O2—K1i174.0 (4)
O1—K2—O1ii67.4 (3)Si1—O2—K1iv83.0 (4)
O1x—K2—O1ii98.6 (2)Yb1—O2—K1iv85.7 (3)
O1xi—K2—O1ii139.8 (3)K2i—O2—K1iv172.2 (3)
O1—K2—O2i66.62 (13)K1vi—O2—K1iv92.4 (2)
O1x—K2—O2i144.24 (16)K1i—O2—K1iv92.4 (2)
O1xi—K2—O2i144.24 (16)Si1xvii—O3—Si1168.9 (11)
O1ii—K2—O2i66.61 (13)Si1xvii—O3—K2i95.5 (5)
O1—K2—O2xii144.24 (16)Si1—O3—K2i95.5 (5)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z; (iii) x, y, z+1; (iv) x1/2, y1/2, z; (v) x+1/2, y+1/2, z+1; (vi) x+1, y, z+1; (vii) x+1, y, z; (viii) x+1/2, y+1/2, z; (ix) x+1/2, y+1/2, z; (x) x, y, z+1/2; (xi) x, y, z+1/2; (xii) x, y, z1/2; (xiii) x1/2, y1/2, z1/2; (xiv) x1/2, y1/2, z+1; (xv) x+1/2, y1/2, z+1; (xvi) x1/2, y1/2, z+1; (xvii) x, y, z+3/2.
(183_K) top
Crystal data top
K3O7Si2YbDx = 3.865 Mg m3
Mr = 458.52Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmcmCell parameters from 1186 reflections
a = 5.7170 (6) Åθ = 4.1–29.4°
b = 9.9025 (10) ŵ = 13.76 mm1
c = 13.9173 (14) ÅT = 183 K
V = 787.89 (14) Å3Prismatic, colourless
Z = 40.13 × 0.11 × 0.09 mm
F(000) = 844
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
467 reflections with I > 2σ(I)
ω scansRint = 0.039
Absorption correction: analytical
CrysAlisPro 1.171.40.81a (Rigaku Oxford Diffraction, 2020) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 27.5°, θmin = 2.9°
Tmin = 0.304, Tmax = 0.397h = 77
2681 measured reflectionsk = 1210
539 independent reflectionsl = 1618
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0144P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.021(Δ/σ)max < 0.001
wR(F2) = 0.043Δρmax = 1.03 e Å3
S = 1.12Δρmin = 0.97 e Å3
539 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
29 parametersExtinction coefficient: 0.00346 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 3-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.0000000.0000000.5000000.00276 (16)
K10.5000000.1712 (4)0.40795 (11)0.0077 (3)
K20.0000000.0119 (4)0.2500000.0113 (5)
Si10.0000000.3369 (5)0.63239 (14)0.0034 (4)
O10.2666 (12)0.0821 (6)0.3998 (3)0.0093 (13)
O20.0000000.1864 (8)0.5881 (6)0.004 (2)
O30.0000000.3223 (16)0.7500000.0121 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.00260 (18)0.00260 (18)0.0031 (2)0.0000.0000.000
K10.0060 (4)0.0060 (4)0.0110 (7)0.0000.0000.000
K20.0144 (8)0.0144 (8)0.0053 (10)0.0000.0000.000
Si10.0035 (5)0.0035 (5)0.0032 (8)0.0000.0000.000
O10.0081 (17)0.0081 (17)0.012 (2)0.0000.0000.000
O20.004 (2)0.004 (2)0.004 (2)0.0000.0000.000
O30.024 (9)0.010 (7)0.003 (3)0.0000.0000.000
Geometric parameters (Å, º) top
Yb1—O2i2.216 (8)K1—O1vii3.117 (5)
Yb1—O22.216 (8)K1—O1iii3.117 (5)
Yb1—O1ii2.220 (5)K1—Si1viii3.125 (3)
Yb1—O1iii2.220 (5)K1—Si1vii3.343 (3)
Yb1—O1i2.220 (5)K1—Si1i3.343 (3)
Yb1—O12.220 (5)K2—O12.746 (5)
Yb1—K2i3.4813 (4)K2—O1x2.746 (5)
Yb1—K23.4813 (4)K2—O1xi2.746 (5)
Yb1—K1iv3.499 (4)K2—O1ii2.746 (5)
Yb1—K1v3.499 (4)K2—O2i2.839 (10)
Yb1—K1i3.5617 (19)K2—O2xii2.839 (10)
Yb1—K13.5617 (19)K2—O3i3.074 (18)
K1—O12.843 (9)K2—O3xiii3.420 (10)
K1—O1vi2.843 (9)K2—O3xiv3.420 (10)
K1—O2vii2.8630 (6)K2—Si1i3.610 (6)
K1—O2i2.8630 (6)Si1—O21.613 (9)
K1—O2viii2.877 (9)Si1—O1xv1.620 (5)
K1—O1viii2.882 (9)Si1—O1xiv1.620 (5)
K1—O1ix2.882 (9)Si1—O31.643 (3)
O2i—Yb1—O2180.0O1—K2—O3i109.83 (16)
O2i—Yb1—O1ii87.6 (2)O1x—K2—O3i109.83 (16)
O2—Yb1—O1ii92.4 (2)O1xi—K2—O3i109.83 (16)
O2i—Yb1—O1iii92.4 (2)O1ii—K2—O3i109.83 (16)
O2—Yb1—O1iii87.6 (2)O2i—K2—O3i52.52 (18)
O1ii—Yb1—O1iii180.0O2xii—K2—O3i52.52 (18)
O2i—Yb1—O1i92.4 (2)O1—K2—O3xiii106.1 (3)
O2—Yb1—O1i87.6 (2)O1x—K2—O3xiii49.44 (10)
O1ii—Yb1—O1i93.3 (4)O1xi—K2—O3xiii106.1 (3)
O1iii—Yb1—O1i86.7 (4)O1ii—K2—O3xiii49.44 (10)
O2i—Yb1—O187.6 (2)O2i—K2—O3xiii109.51 (14)
O2—Yb1—O192.4 (2)O2xii—K2—O3xiii109.51 (14)
O1ii—Yb1—O186.7 (4)O3i—K2—O3xiii123.3 (2)
O1iii—Yb1—O193.3 (4)O1—K2—O3xiv49.44 (10)
O1i—Yb1—O1180.0O1x—K2—O3xiv106.1 (3)
O2i—Yb1—K2i125.5 (3)O1xi—K2—O3xiv49.44 (10)
O2—Yb1—K2i54.5 (3)O1ii—K2—O3xiv106.1 (3)
O1ii—Yb1—K2i127.97 (13)O2i—K2—O3xiv109.51 (14)
O1iii—Yb1—K2i52.03 (14)O2xii—K2—O3xiv109.51 (14)
O1i—Yb1—K2i52.03 (13)O3i—K2—O3xiv123.3 (2)
O1—Yb1—K2i127.97 (13)O3xiii—K2—O3xiv113.4 (5)
O2i—Yb1—K254.5 (3)O1—K2—Yb1xii138.37 (12)
O2—Yb1—K2125.5 (3)O1x—K2—Yb1xii39.60 (10)
O1ii—Yb1—K252.03 (13)O1xi—K2—Yb1xii39.60 (10)
O1iii—Yb1—K2127.97 (14)O1ii—K2—Yb1xii138.37 (12)
O1i—Yb1—K2127.97 (13)O2i—K2—Yb1xii144.5 (2)
O1—Yb1—K252.03 (13)O2xii—K2—Yb1xii39.42 (17)
K2i—Yb1—K2180.0O3i—K2—Yb1xii91.94 (7)
O2i—Yb1—K1iv124.9 (2)O3xiii—K2—Yb1xii88.93 (4)
O2—Yb1—K1iv55.1 (2)O3xiv—K2—Yb1xii88.93 (4)
O1ii—Yb1—K1iv55.2 (2)O1—K2—Yb139.60 (10)
O1iii—Yb1—K1iv124.8 (2)O1x—K2—Yb1138.37 (12)
O1i—Yb1—K1iv124.8 (2)O1xi—K2—Yb1138.37 (12)
O1—Yb1—K1iv55.2 (2)O1ii—K2—Yb139.60 (10)
K2i—Yb1—K1iv109.53 (8)O2i—K2—Yb139.42 (17)
K2—Yb1—K1iv70.47 (8)O2xii—K2—Yb1144.5 (2)
O2i—Yb1—K1v55.1 (2)O3i—K2—Yb191.94 (7)
O2—Yb1—K1v124.9 (2)O3xiii—K2—Yb188.93 (4)
O1ii—Yb1—K1v124.8 (2)O3xiv—K2—Yb188.93 (4)
O1iii—Yb1—K1v55.2 (2)Yb1xii—K2—Yb1176.11 (14)
O1i—Yb1—K1v55.2 (2)O1—K2—Si1i87.59 (13)
O1—Yb1—K1v124.8 (2)O1x—K2—Si1i130.29 (19)
K2i—Yb1—K1v70.47 (8)O1xi—K2—Si1i130.29 (19)
K2—Yb1—K1v109.53 (8)O1ii—K2—Si1i87.59 (13)
K1iv—Yb1—K1v180.00 (5)O2i—K2—Si1i25.56 (18)
O2i—Yb1—K1i126.55 (4)O2xii—K2—Si1i79.5 (2)
O2—Yb1—K1i53.45 (4)O3i—K2—Si1i26.96 (6)
O1ii—Yb1—K1i60.03 (13)O3xiii—K2—Si1i119.3 (2)
O1iii—Yb1—K1i119.97 (13)O3xiv—K2—Si1i119.3 (2)
O1i—Yb1—K1i52.9 (2)Yb1xii—K2—Si1i118.90 (12)
O1—Yb1—K1i127.1 (2)Yb1—K2—Si1i64.98 (5)
K2i—Yb1—K1i67.94 (5)O2—Si1—O1xv110.6 (3)
K2—Yb1—K1i112.06 (5)O2—Si1—O1xiv110.6 (3)
K1iv—Yb1—K1i71.87 (5)O1xv—Si1—O1xiv110.9 (6)
K1v—Yb1—K1i108.13 (5)O2—Si1—O3107.4 (8)
O2i—Yb1—K153.45 (4)O1xv—Si1—O3108.6 (4)
O2—Yb1—K1126.55 (4)O1xiv—Si1—O3108.6 (4)
O1ii—Yb1—K1119.97 (13)O2—Si1—K1iv66.1 (3)
O1iii—Yb1—K160.03 (13)O1xv—Si1—K1iv74.69 (18)
O1i—Yb1—K1127.1 (2)O1xiv—Si1—K1iv74.69 (18)
O1—Yb1—K152.9 (2)O3—Si1—K1iv173.5 (6)
K2i—Yb1—K1112.06 (5)O2—Si1—K1vii58.82 (10)
K2—Yb1—K167.94 (5)O1xv—Si1—K1vii154.24 (19)
K1iv—Yb1—K1108.13 (5)O1xiv—Si1—K1vii59.5 (3)
K1v—Yb1—K171.87 (5)O3—Si1—K1vii97.1 (3)
K1i—Yb1—K1180.00 (11)K1iv—Si1—K1vii79.60 (5)
O1—K1—O1vi56.0 (2)O2—Si1—K1i58.82 (10)
O1—K1—O2vii121.0 (3)O1xv—Si1—K1i59.5 (3)
O1vi—K1—O2vii65.08 (15)O1xiv—Si1—K1i154.24 (19)
O1—K1—O2i65.08 (15)O3—Si1—K1i97.1 (3)
O1vi—K1—O2i121.0 (3)K1iv—Si1—K1i79.60 (5)
O2vii—K1—O2i173.6 (4)K1vii—Si1—K1i117.51 (19)
O1—K1—O2viii117.9 (2)O2—Si1—K1xiv147.9 (3)
O1vi—K1—O2viii117.9 (2)O1xv—Si1—K1xiv57.7 (3)
O2vii—K1—O2viii87.56 (18)O1xiv—Si1—K1xiv57.7 (3)
O2i—K1—O2viii87.56 (19)O3—Si1—K1xiv104.7 (6)
O1—K1—O1viii174.0 (2)K1iv—Si1—K1xiv81.84 (9)
O1vi—K1—O1viii119.87 (2)K1vii—Si1—K1xiv117.12 (10)
O2vii—K1—O1viii55.11 (15)K1i—Si1—K1xiv117.12 (10)
O2i—K1—O1viii119.0 (3)O2—Si1—K2i49.4 (3)
O2viii—K1—O1viii67.58 (14)O1xv—Si1—K2i124.5 (3)
O1—K1—O1ix119.87 (2)O1xiv—Si1—K2i124.5 (3)
O1vi—K1—O1ix174.0 (2)O3—Si1—K2i58.0 (6)
O2vii—K1—O1ix119.0 (3)K1iv—Si1—K2i115.49 (12)
O2i—K1—O1ix55.11 (15)K1vii—Si1—K2i68.82 (11)
O2viii—K1—O1ix67.58 (14)K1i—Si1—K2i68.82 (11)
O1viii—K1—O1ix63.9 (2)K1xiv—Si1—K2i162.67 (9)
O1—K1—O1vii89.16 (19)O2—Si1—K2xiii126.75 (12)
O1vi—K1—O1vii65.40 (15)O1xv—Si1—K2xiii42.15 (17)
O2vii—K1—O1vii64.6 (2)O1xiv—Si1—K2xiii121.6 (3)
O2i—K1—O1vii115.2 (2)O3—Si1—K2xiii66.6 (3)
O2viii—K1—O1vii52.46 (13)K1iv—Si1—K2xiii116.84 (6)
O1viii—K1—O1vii92.70 (14)K1vii—Si1—K2xiii163.53 (6)
O1ix—K1—O1vii120.00 (10)K1i—Si1—K2xiii69.26 (7)
O1—K1—O1iii65.40 (15)K1xiv—Si1—K2xiii67.32 (10)
O1vi—K1—O1iii89.16 (19)K2i—Si1—K2xiii102.46 (6)
O2vii—K1—O1iii115.2 (2)O2—Si1—K2xiv126.75 (12)
O2i—K1—O1iii64.6 (2)O1xv—Si1—K2xiv121.6 (3)
O2viii—K1—O1iii52.46 (13)O1xiv—Si1—K2xiv42.15 (17)
O1viii—K1—O1iii120.00 (10)O3—Si1—K2xiv66.6 (3)
O1ix—K1—O1iii92.70 (14)K1iv—Si1—K2xiv116.84 (6)
O1vii—K1—O1iii50.7 (3)K1vii—Si1—K2xiv69.26 (7)
O1—K1—Si1viii90.99 (12)K1i—Si1—K2xiv163.53 (6)
O1vi—K1—Si1viii90.99 (12)K1xiv—Si1—K2xiv67.32 (10)
O2vii—K1—Si1viii88.98 (19)K2i—Si1—K2xiv102.46 (6)
O2i—K1—Si1viii88.98 (19)K2xiii—Si1—K2xiv100.35 (12)
O2viii—K1—Si1viii30.83 (18)Si1xiv—O1—Yb1157.0 (3)
O1viii—K1—Si1viii93.49 (12)Si1xiv—O1—K2114.5 (2)
O1ix—K1—Si1viii93.49 (12)Yb1—O1—K288.37 (17)
O1vii—K1—Si1viii30.09 (10)Si1xiv—O1—K193.5 (4)
O1iii—K1—Si1viii30.09 (10)Yb1—O1—K188.51 (19)
O1—K1—Si1vii145.84 (16)K2—O1—K189.52 (18)
O1vi—K1—Si1vii91.44 (13)Si1xiv—O1—K1iv91.5 (3)
O2vii—K1—Si1vii28.81 (18)Yb1—O1—K1iv85.6 (2)
O2i—K1—Si1vii146.2 (2)K2—O1—K1iv91.4 (2)
O2viii—K1—Si1vii84.59 (12)K1—O1—K1iv174.0 (2)
O1viii—K1—Si1vii28.97 (12)Si1xiv—O1—K1vii75.22 (19)
O1ix—K1—Si1vii91.70 (17)Yb1—O1—K1vii81.86 (14)
O1vii—K1—Si1vii85.24 (15)K2—O1—K1vii170.2 (2)
O1iii—K1—Si1vii130.46 (11)K1—O1—K1vii90.84 (19)
Si1viii—K1—Si1vii100.39 (5)K1iv—O1—K1vii87.29 (14)
O1—K1—Si1i91.44 (13)Si1—O2—Yb1168.9 (6)
O1vi—K1—Si1i145.84 (16)Si1—O2—K2i105.0 (4)
O2vii—K1—Si1i146.2 (2)Yb1—O2—K2i86.1 (3)
O2i—K1—Si1i28.81 (18)Si1—O2—K1vii92.36 (19)
O2viii—K1—Si1i84.59 (12)Yb1—O2—K1vii88.10 (19)
O1viii—K1—Si1i91.70 (16)K2i—O2—K1vii87.30 (18)
O1ix—K1—Si1i28.97 (12)Si1—O2—K1i92.36 (19)
O1vii—K1—Si1i130.46 (11)Yb1—O2—K1i88.10 (19)
O1iii—K1—Si1i85.24 (15)K2i—O2—K1i87.30 (18)
Si1viii—K1—Si1i100.39 (5)K1vii—O2—K1i173.6 (4)
Si1vii—K1—Si1i117.51 (19)Si1—O2—K1iv83.1 (4)
O1—K2—O1x140.3 (3)Yb1—O2—K1iv85.8 (3)
O1—K2—O1xi98.8 (2)K2i—O2—K1iv171.9 (3)
O1x—K2—O1xi67.4 (3)K1vii—O2—K1iv92.43 (18)
O1—K2—O1ii67.5 (3)K1i—O2—K1iv92.43 (18)
O1x—K2—O1ii98.8 (2)Si1—O3—Si1xvi169.9 (12)
O1xi—K2—O1ii140.3 (3)Si1—O3—K2i95.0 (6)
O1—K2—O2i66.65 (14)Si1xvi—O3—K2i95.0 (6)
O1x—K2—O2i144.00 (17)Si1—O3—K2xiii87.2 (3)
O1xi—K2—O2i144.00 (17)Si1xvi—O3—K2xiii87.2 (3)
O1ii—K2—O2i66.65 (14)K2i—O3—K2xiii123.3 (2)
O1—K2—O2xii144.00 (17)Si1—O3—K2xiv87.2 (3)
O1x—K2—O2xii66.65 (14)Si1xvi—O3—K2xiv87.2 (3)
O1xi—K2—O2xii66.65 (14)K2i—O3—K2xiv123.3 (2)
O1ii—K2—O2xii144.00 (17)K2xiii—O3—K2xiv113.4 (5)
O2i—K2—O2xii105.0 (4)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z; (iii) x, y, z+1; (iv) x1/2, y1/2, z; (v) x+1/2, y+1/2, z+1; (vi) x+1, y, z; (vii) x+1, y, z+1; (viii) x+1/2, y+1/2, z; (ix) x+1/2, y+1/2, z; (x) x, y, z+1/2; (xi) x, y, z+1/2; (xii) x, y, z1/2; (xiii) x1/2, y1/2, z+1; (xiv) x+1/2, y1/2, z+1; (xv) x1/2, y1/2, z+1; (xvi) x, y, z+3/2.
(193_K) top
Crystal data top
K3O7Si2YbDx = 3.857 Mg m3
Mr = 458.52Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmcmCell parameters from 1180 reflections
a = 5.7205 (7) Åθ = 5.8–29.4°
b = 9.9117 (11) ŵ = 13.73 mm1
c = 13.9253 (15) ÅT = 193 K
V = 789.56 (15) Å3Prismatic, colourless
Z = 40.13 × 0.11 × 0.09 mm
F(000) = 844
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
462 reflections with I > 2σ(I)
ω scansRint = 0.040
Absorption correction: analytical
CrysAlisPro 1.171.40.81a (Rigaku Oxford Diffraction, 2020) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 27.4°, θmin = 2.9°
Tmin = 0.304, Tmax = 0.398h = 77
2693 measured reflectionsk = 1210
539 independent reflectionsl = 1816
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0064P)2 + 2.6726P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.019(Δ/σ)max < 0.001
wR(F2) = 0.038Δρmax = 0.83 e Å3
S = 1.06Δρmin = 0.73 e Å3
539 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
30 parametersExtinction coefficient: 0.00350 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 3-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.0000000.0000000.5000000.00290 (14)
K10.5000000.1706 (4)0.40806 (11)0.0083 (3)
K20.0000000.0110 (5)0.2500000.0111 (5)
Si10.0000000.3362 (5)0.63224 (13)0.0032 (3)
O10.2675 (13)0.0831 (7)0.4001 (4)0.0079 (13)
O20.0000000.1845 (9)0.5885 (7)0.006 (2)
O30.0000000.3221 (18)0.7500000.0139 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.00250 (16)0.00250 (16)0.0037 (2)0.0000.0000.000
K10.0069 (4)0.0069 (4)0.0111 (6)0.0000.0000.000
K20.0142 (7)0.0142 (7)0.0050 (8)0.0000.0000.000
Si10.0038 (5)0.0038 (5)0.0020 (7)0.0000.0000.000
O10.0065 (16)0.0065 (16)0.011 (2)0.0000.0000.000
O20.007 (3)0.003 (3)0.007 (3)0.0000.0000.000
O30.020 (8)0.018 (8)0.004 (3)0.0000.0000.000
Geometric parameters (Å, º) top
Yb1—O22.206 (9)K1—O1vi3.107 (6)
Yb1—O2i2.206 (9)K1—O1iii3.107 (6)
Yb1—O12.226 (5)K1—Si1viii3.122 (3)
Yb1—O1ii2.226 (5)K1—Si1vi3.346 (4)
Yb1—O1iii2.226 (5)K1—Si1i3.346 (4)
Yb1—O1i2.226 (5)K2—O1x2.754 (5)
Yb1—K23.4830 (4)K2—O1xi2.754 (5)
Yb1—K2i3.4830 (4)K2—O1ii2.754 (5)
Yb1—K1iv3.507 (4)K2—O12.754 (5)
Yb1—K1v3.507 (4)K2—O2i2.831 (11)
Yb1—K1i3.561 (2)K2—O2xii2.831 (11)
Yb1—K1vi3.561 (2)K2—O3i3.084 (19)
K1—O1vii2.846 (10)K2—O3xiii3.418 (11)
K1—O12.846 (10)K2—O3xiv3.418 (11)
K1—O2vi2.8640 (6)K2—Si1i3.617 (7)
K1—O2i2.8640 (6)Si1—O1xv1.616 (6)
K1—O1viii2.884 (10)Si1—O1xiv1.616 (6)
K1—O1ix2.884 (10)Si1—O21.622 (10)
K1—O2viii2.895 (10)Si1—O31.646 (3)
O2—Yb1—O2i180.0O1x—K2—O3i109.79 (17)
O2—Yb1—O192.4 (2)O1xi—K2—O3i109.79 (17)
O2i—Yb1—O187.6 (2)O1ii—K2—O3i109.79 (17)
O2—Yb1—O1ii92.4 (2)O1—K2—O3i109.79 (17)
O2i—Yb1—O1ii87.6 (2)O2i—K2—O3i52.58 (19)
O1—Yb1—O1ii86.9 (4)O2xii—K2—O3i52.58 (19)
O2—Yb1—O1iii87.6 (2)O1x—K2—O3xiii49.42 (10)
O2i—Yb1—O1iii92.4 (2)O1xi—K2—O3xiii106.2 (3)
O1—Yb1—O1iii93.1 (4)O1ii—K2—O3xiii49.42 (10)
O1ii—Yb1—O1iii180.0O1—K2—O3xiii106.2 (3)
O2—Yb1—O1i87.6 (2)O2i—K2—O3xiii109.43 (15)
O2i—Yb1—O1i92.4 (2)O2xii—K2—O3xiii109.43 (15)
O1—Yb1—O1i180.0 (3)O3i—K2—O3xiii123.2 (3)
O1ii—Yb1—O1i93.1 (4)O1x—K2—O3xiv106.2 (3)
O1iii—Yb1—O1i86.9 (4)O1xi—K2—O3xiv49.42 (10)
O2—Yb1—K2125.8 (3)O1ii—K2—O3xiv106.2 (3)
O2i—Yb1—K254.2 (3)O1—K2—O3xiv49.42 (10)
O1—Yb1—K252.20 (14)O2i—K2—O3xiv109.43 (15)
O1ii—Yb1—K252.20 (14)O2xii—K2—O3xiv109.43 (15)
O1iii—Yb1—K2127.80 (14)O3i—K2—O3xiv123.2 (3)
O1i—Yb1—K2127.80 (14)O3xiii—K2—O3xiv113.6 (5)
O2—Yb1—K2i54.2 (3)O1x—K2—Yb1xii39.69 (11)
O2i—Yb1—K2i125.8 (3)O1xi—K2—Yb1xii39.69 (11)
O1—Yb1—K2i127.80 (14)O1ii—K2—Yb1xii138.45 (12)
O1ii—Yb1—K2i127.80 (14)O1—K2—Yb1xii138.45 (12)
O1iii—Yb1—K2i52.20 (14)O2i—K2—Yb1xii144.4 (2)
O1i—Yb1—K2i52.20 (14)O2xii—K2—Yb1xii39.20 (19)
K2—Yb1—K2i180.0O3i—K2—Yb1xii91.79 (8)
O2—Yb1—K1iv55.4 (2)O3xiii—K2—Yb1xii89.02 (5)
O2i—Yb1—K1iv124.6 (2)O3xiv—K2—Yb1xii89.02 (5)
O1—Yb1—K1iv55.1 (2)O1x—K2—Yb1138.45 (12)
O1ii—Yb1—K1iv55.1 (2)O1xi—K2—Yb1138.45 (12)
O1iii—Yb1—K1iv124.9 (2)O1ii—K2—Yb139.69 (11)
O1i—Yb1—K1iv124.9 (2)O1—K2—Yb139.69 (11)
K2—Yb1—K1iv70.38 (9)O2i—K2—Yb139.20 (19)
K2i—Yb1—K1iv109.62 (9)O2xii—K2—Yb1144.4 (2)
O2—Yb1—K1v124.6 (2)O3i—K2—Yb191.79 (8)
O2i—Yb1—K1v55.4 (2)O3xiii—K2—Yb189.02 (5)
O1—Yb1—K1v124.9 (2)O3xiv—K2—Yb189.02 (5)
O1ii—Yb1—K1v124.9 (2)Yb1xii—K2—Yb1176.42 (15)
O1iii—Yb1—K1v55.1 (2)O1x—K2—Si1i130.2 (2)
O1i—Yb1—K1v55.1 (2)O1xi—K2—Si1i130.2 (2)
K2—Yb1—K1v109.62 (9)O1ii—K2—Si1i87.57 (14)
K2i—Yb1—K1v70.38 (9)O1—K2—Si1i87.57 (14)
K1iv—Yb1—K1v180.0O2i—K2—Si1i25.62 (19)
O2—Yb1—K1i53.51 (5)O2xii—K2—Si1i79.5 (2)
O2i—Yb1—K1i126.49 (5)O3i—K2—Si1i26.96 (6)
O1—Yb1—K1i127.0 (2)O3xiii—K2—Si1i119.2 (2)
O1ii—Yb1—K1i59.78 (14)O3xiv—K2—Si1i119.2 (2)
O1iii—Yb1—K1i120.22 (14)Yb1xii—K2—Si1i118.75 (13)
O1i—Yb1—K1i53.0 (2)Yb1—K2—Si1i64.83 (5)
K2—Yb1—K1i111.97 (5)O1xv—Si1—O1xiv110.8 (6)
K2i—Yb1—K1i68.03 (5)O1xv—Si1—O2110.7 (3)
K1iv—Yb1—K1i71.89 (5)O1xiv—Si1—O2110.7 (3)
K1v—Yb1—K1i108.11 (5)O1xv—Si1—O3108.7 (4)
O2—Yb1—K1vi53.51 (5)O1xiv—Si1—O3108.7 (4)
O2i—Yb1—K1vi126.49 (5)O2—Si1—O3107.2 (9)
O1—Yb1—K1vi59.78 (13)O1xv—Si1—K1iv74.44 (19)
O1ii—Yb1—K1vi127.0 (2)O1xiv—Si1—K1iv74.44 (19)
O1iii—Yb1—K1vi53.0 (2)O2—Si1—K1iv66.7 (4)
O1i—Yb1—K1vi120.22 (13)O3—Si1—K1iv173.9 (7)
K2—Yb1—K1vi111.97 (5)O1xv—Si1—K1vi154.12 (19)
K2i—Yb1—K1vi68.03 (5)O1xiv—Si1—K1vi59.5 (3)
K1iv—Yb1—K1vi71.89 (5)O2—Si1—K1vi58.81 (12)
K1v—Yb1—K1vi108.11 (5)O3—Si1—K1vi97.2 (4)
K1i—Yb1—K1vi106.89 (9)K1iv—Si1—K1vi79.73 (5)
O1vii—K1—O155.7 (2)O1xv—Si1—K1i59.5 (3)
O1vii—K1—O2vi64.95 (15)O1xiv—Si1—K1i154.12 (19)
O1—K1—O2vi120.7 (3)O2—Si1—K1i58.81 (11)
O1vii—K1—O2i120.7 (3)O3—Si1—K1i97.2 (4)
O1—K1—O2i64.95 (15)K1iv—Si1—K1i79.73 (5)
O2vi—K1—O2i174.2 (4)K1vi—Si1—K1i117.5 (2)
O1vii—K1—O1viii119.90 (2)O1xv—Si1—K1xiv57.7 (3)
O1—K1—O1viii173.9 (2)O1xiv—Si1—K1xiv57.7 (3)
O2vi—K1—O1viii55.24 (15)O2—Si1—K1xiv148.4 (4)
O2i—K1—O1viii119.3 (3)O3—Si1—K1xiv104.5 (7)
O1vii—K1—O1ix173.9 (2)K1iv—Si1—K1xiv81.62 (9)
O1—K1—O1ix119.90 (2)K1vi—Si1—K1xiv117.13 (12)
O2vi—K1—O1ix119.3 (3)K1i—Si1—K1xiv117.13 (12)
O2i—K1—O1ix55.24 (15)O1xv—Si1—K2i124.6 (3)
O1viii—K1—O1ix64.1 (2)O1xiv—Si1—K2i124.6 (3)
O1vii—K1—O2viii118.2 (2)O2—Si1—K2i49.0 (4)
O1—K1—O2viii118.2 (2)O3—Si1—K2i58.2 (7)
O2vi—K1—O2viii87.8 (2)K1iv—Si1—K2i115.72 (13)
O2i—K1—O2viii87.8 (2)K1vi—Si1—K2i68.81 (12)
O1viii—K1—O2viii67.23 (14)K1i—Si1—K2i68.81 (12)
O1ix—K1—O2viii67.23 (14)K1xiv—Si1—K2i162.65 (9)
O1vii—K1—O1vi65.60 (16)O1xv—Si1—K2xiii42.33 (19)
O1—K1—O1vi89.2 (2)O1xiv—Si1—K2xiii121.7 (4)
O2vi—K1—O1vi64.6 (2)O2—Si1—K2xiii126.60 (14)
O2i—K1—O1vi115.3 (3)O3—Si1—K2xiii66.5 (4)
O1viii—K1—O1vi92.40 (16)K1iv—Si1—K2xiii116.76 (7)
O1ix—K1—O1vi119.75 (11)K1vi—Si1—K2xiii163.48 (6)
O2viii—K1—O1vi52.57 (14)K1i—Si1—K2xiii69.24 (8)
O1vii—K1—O1iii89.2 (2)K1xiv—Si1—K2xiii67.36 (11)
O1—K1—O1iii65.60 (16)K2i—Si1—K2xiii102.41 (7)
O2vi—K1—O1iii115.3 (3)O1xv—Si1—K2xiv121.7 (4)
O2i—K1—O1iii64.6 (2)O1xiv—Si1—K2xiv42.33 (19)
O1viii—K1—O1iii119.75 (11)O2—Si1—K2xiv126.60 (14)
O1ix—K1—O1iii92.40 (16)O3—Si1—K2xiv66.5 (4)
O2viii—K1—O1iii52.57 (14)K1iv—Si1—K2xiv116.76 (7)
O1vi—K1—O1iii50.7 (3)K1vi—Si1—K2xiv69.24 (8)
O1vii—K1—Si1viii91.13 (13)K1i—Si1—K2xiv163.48 (6)
O1—K1—Si1viii91.13 (13)K1xiv—Si1—K2xiv67.36 (11)
O2vi—K1—Si1viii89.1 (2)K2i—Si1—K2xiv102.41 (7)
O2i—K1—Si1viii89.1 (2)K2xiii—Si1—K2xiv100.35 (13)
O1viii—K1—Si1viii93.24 (13)Si1xiv—O1—Yb1157.4 (3)
O1ix—K1—Si1viii93.24 (13)Si1xiv—O1—K2114.4 (2)
O2viii—K1—Si1viii31.0 (2)Yb1—O1—K288.11 (17)
O1vi—K1—Si1viii30.07 (11)Si1xiv—O1—K193.6 (4)
O1iii—K1—Si1viii30.07 (11)Yb1—O1—K188.3 (2)
O1vii—K1—Si1vi91.58 (14)K2—O1—K189.4 (2)
O1—K1—Si1vi145.74 (19)Si1xiv—O1—K1iv91.6 (3)
O2vi—K1—Si1vi28.99 (19)Yb1—O1—K1iv85.7 (3)
O2i—K1—Si1vi146.4 (3)K2—O1—K1iv91.2 (2)
O1viii—K1—Si1vi28.87 (13)K1—O1—K1iv173.9 (2)
O1ix—K1—Si1vi91.81 (19)Si1xiv—O1—K1vi75.5 (2)
O2viii—K1—Si1vi84.38 (13)Yb1—O1—K1vi81.98 (15)
O1vi—K1—Si1vi85.14 (16)K2—O1—K1vi170.1 (2)
O1iii—K1—Si1vi130.32 (11)K1—O1—K1vi90.8 (2)
Si1viii—K1—Si1vi100.27 (5)K1iv—O1—K1vi87.60 (16)
O1vii—K1—Si1i145.74 (19)Si1—O2—Yb1168.0 (6)
O1—K1—Si1i91.58 (14)Si1—O2—K2i105.4 (5)
O2vi—K1—Si1i146.4 (3)Yb1—O2—K2i86.6 (3)
O2i—K1—Si1i28.99 (19)Si1—O2—K1vi92.2 (2)
O1viii—K1—Si1i91.81 (19)Yb1—O2—K1vi88.2 (2)
O1ix—K1—Si1i28.87 (13)K2i—O2—K1vi87.6 (2)
O2viii—K1—Si1i84.38 (13)Si1—O2—K1i92.2 (2)
O1vi—K1—Si1i130.32 (11)Yb1—O2—K1i88.2 (2)
O1iii—K1—Si1i85.14 (16)K2i—O2—K1i87.6 (2)
Si1viii—K1—Si1i100.27 (5)K1vi—O2—K1i174.2 (4)
Si1vi—K1—Si1i117.5 (2)Si1—O2—K1iv82.3 (4)
O1x—K2—O1xi67.5 (3)Yb1—O2—K1iv85.8 (3)
O1x—K2—O1ii98.8 (2)K2i—O2—K1iv172.3 (4)
O1xi—K2—O1ii140.4 (3)K1vi—O2—K1iv92.2 (2)
O1x—K2—O1140.4 (3)K1i—O2—K1iv92.2 (2)
O1xi—K2—O198.8 (2)Si1xvi—O3—Si1170.3 (13)
O1ii—K2—O167.5 (3)Si1xvi—O3—K2i94.9 (7)
O1x—K2—O2i143.98 (18)Si1—O3—K2i94.9 (7)
O1xi—K2—O2i143.98 (18)Si1xvi—O3—K2xiii87.3 (4)
O1ii—K2—O2i66.59 (15)Si1—O3—K2xiii87.3 (4)
O1—K2—O2i66.59 (15)K2i—O3—K2xiii123.2 (3)
O1x—K2—O2xii66.59 (15)Si1xvi—O3—K2xiv87.3 (4)
O1xi—K2—O2xii66.59 (15)Si1—O3—K2xiv87.3 (4)
O1ii—K2—O2xii143.98 (18)K2i—O3—K2xiv123.2 (3)
O1—K2—O2xii143.98 (18)K2xiii—O3—K2xiv113.6 (5)
O2i—K2—O2xii105.2 (4)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z; (iii) x, y, z+1; (iv) x1/2, y1/2, z; (v) x+1/2, y+1/2, z+1; (vi) x+1, y, z+1; (vii) x+1, y, z; (viii) x+1/2, y+1/2, z; (ix) x+1/2, y+1/2, z; (x) x, y, z+1/2; (xi) x, y, z+1/2; (xii) x, y, z1/2; (xiii) x1/2, y1/2, z+1; (xiv) x+1/2, y1/2, z+1; (xv) x1/2, y1/2, z+1; (xvi) x, y, z+3/2.
(203_K) top
Crystal data top
K3O7Si2YbDx = 3.857 Mg m3
Mr = 458.52Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmcmCell parameters from 1177 reflections
a = 5.7202 (7) Åθ = 7.1–29.2°
b = 9.9055 (11) ŵ = 13.73 mm1
c = 13.9343 (15) ÅT = 203 K
V = 789.54 (15) Å3Prismatic, colourless
Z = 40.13 × 0.11 × 0.09 mm
F(000) = 844
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
442 reflections with I > 2σ(I)
ω scansRint = 0.038
Absorption correction: analytical
CrysAlisPro 1.171.40.77a (Rigaku Oxford Diffraction, 2020) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 27.5°, θmin = 2.9°
Tmin = 0.306, Tmax = 0.399h = 77
2693 measured reflectionsk = 1012
540 independent reflectionsl = 1816
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0098P)2 + 0.1039P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.017(Δ/σ)max < 0.001
wR(F2) = 0.037Δρmax = 0.83 e Å3
S = 1.09Δρmin = 0.78 e Å3
540 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
32 parametersExtinction coefficient: 0.00309 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 3-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.0000000.0000000.5000000.00316 (14)
K10.5000000.1686 (5)0.40849 (10)0.0088 (3)
K20.0000000.0081 (6)0.2500000.0115 (5)
Si10.0000000.3350 (6)0.63226 (12)0.0034 (3)
O10.2682 (16)0.0848 (8)0.4015 (5)0.0090 (18)
O20.0000000.1831 (12)0.5916 (10)0.008 (3)
O30.0000000.329 (3)0.7500000.0187 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.00279 (15)0.00279 (15)0.00389 (19)0.0000.0000.000
K10.0075 (4)0.0075 (4)0.0114 (6)0.0000.0000.000
K20.0142 (7)0.0142 (7)0.0063 (8)0.0000.0000.000
Si10.0039 (5)0.0039 (5)0.0025 (6)0.0000.0000.000
O10.007 (6)0.004 (5)0.016 (4)0.0000.0000.000
O20.013 (7)0.006 (6)0.005 (7)0.0000.0000.000
O30.026 (14)0.023 (13)0.007 (3)0.0000.0000.000
Geometric parameters (Å, º) top
Yb1—O22.218 (13)K1—O1vii3.076 (8)
Yb1—O2i2.218 (13)K1—O1iii3.076 (8)
Yb1—O12.224 (7)K1—Si1viii3.118 (2)
Yb1—O1ii2.224 (7)K1—Si1vii3.349 (5)
Yb1—O1iii2.224 (7)K1—Si1i3.349 (5)
Yb1—O1i2.224 (7)K2—O12.767 (8)
Yb1—K23.4845 (4)K2—O1x2.767 (8)
Yb1—K2i3.4845 (4)K2—O1xi2.767 (8)
Yb1—K1iv3.521 (5)K2—O1ii2.767 (8)
Yb1—K1v3.521 (5)K2—O2i2.806 (16)
Yb1—K13.549 (3)K2—O2xii2.806 (16)
Yb1—K1i3.549 (3)K2—O3i3.17 (3)
K1—O12.840 (12)K2—O3xiii3.368 (15)
K1—O1vi2.840 (12)K2—O3xiv3.368 (15)
K1—O2vii2.8637 (8)K2—Si1i3.630 (8)
K1—O2i2.8637 (8)Si1—O21.608 (14)
K1—O1viii2.886 (12)Si1—O1xv1.616 (7)
K1—O1ix2.886 (12)Si1—O1xiv1.616 (7)
K1—O2viii2.944 (14)Si1—O31.642 (2)
O2—Yb1—O2i180.0O1—K2—O3i109.4 (2)
O2—Yb1—O192.7 (3)O1x—K2—O3i109.4 (2)
O2i—Yb1—O187.3 (3)O1xi—K2—O3i109.4 (2)
O2—Yb1—O1ii92.7 (3)O1ii—K2—O3i109.4 (2)
O2i—Yb1—O1ii87.3 (3)O2i—K2—O3i51.9 (3)
O1—Yb1—O1ii87.3 (5)O2xii—K2—O3i51.9 (3)
O2—Yb1—O1iii87.3 (3)O1—K2—O3xiii107.2 (4)
O2i—Yb1—O1iii92.7 (3)O1x—K2—O3xiii49.72 (14)
O1—Yb1—O1iii92.7 (5)O1xi—K2—O3xiii107.2 (4)
O1ii—Yb1—O1iii180.0O1ii—K2—O3xiii49.72 (14)
O2—Yb1—O1i87.3 (3)O2i—K2—O3xiii109.0 (2)
O2i—Yb1—O1i92.7 (3)O2xii—K2—O3xiii109.0 (2)
O1—Yb1—O1i180.0O3i—K2—O3xiii121.9 (4)
O1ii—Yb1—O1i92.7 (5)O1—K2—O3xiv49.72 (14)
O1iii—Yb1—O1i87.3 (5)O1x—K2—O3xiv107.2 (4)
O2—Yb1—K2126.5 (4)O1xi—K2—O3xiv49.72 (14)
O2i—Yb1—K253.5 (4)O1ii—K2—O3xiv107.2 (4)
O1—Yb1—K252.5 (2)O2i—K2—O3xiv109.0 (2)
O1ii—Yb1—K252.5 (2)O2xii—K2—O3xiv109.0 (2)
O1iii—Yb1—K2127.5 (2)O3i—K2—O3xiv121.9 (4)
O1i—Yb1—K2127.5 (2)O3xiii—K2—O3xiv116.3 (8)
O2—Yb1—K2i53.5 (4)O1—K2—Yb1xii139.02 (17)
O2i—Yb1—K2i126.5 (4)O1x—K2—Yb1xii39.62 (14)
O1—Yb1—K2i127.5 (2)O1xi—K2—Yb1xii39.62 (14)
O1ii—Yb1—K2i127.5 (2)O1ii—K2—Yb1xii139.02 (17)
O1iii—Yb1—K2i52.5 (2)O2i—K2—Yb1xii143.2 (3)
O1i—Yb1—K2i52.5 (2)O2xii—K2—Yb1xii39.5 (3)
K2—Yb1—K2i180.0 (2)O3i—K2—Yb1xii91.32 (10)
O2—Yb1—K1iv56.4 (4)O3xiii—K2—Yb1xii89.30 (6)
O2i—Yb1—K1iv123.6 (4)O3xiv—K2—Yb1xii89.30 (6)
O1—Yb1—K1iv54.9 (3)O1—K2—Yb139.62 (14)
O1ii—Yb1—K1iv54.9 (3)O1x—K2—Yb1139.02 (17)
O1iii—Yb1—K1iv125.1 (3)O1xi—K2—Yb1139.02 (17)
O1i—Yb1—K1iv125.1 (3)O1ii—K2—Yb139.62 (14)
K2—Yb1—K1iv70.09 (11)O2i—K2—Yb139.5 (3)
K2i—Yb1—K1iv109.91 (11)O2xii—K2—Yb1143.2 (3)
O2—Yb1—K1v123.6 (4)O3i—K2—Yb191.32 (10)
O2i—Yb1—K1v56.4 (4)O3xiii—K2—Yb189.30 (6)
O1—Yb1—K1v125.1 (3)O3xiv—K2—Yb189.30 (6)
O1ii—Yb1—K1v125.1 (3)Yb1xii—K2—Yb1177.4 (2)
O1iii—Yb1—K1v54.9 (3)O1—K2—Si1i87.24 (19)
O1i—Yb1—K1v54.9 (3)O1x—K2—Si1i129.9 (3)
K2—Yb1—K1v109.91 (11)O1xi—K2—Si1i129.9 (3)
K2i—Yb1—K1v70.09 (11)O1ii—K2—Si1i87.24 (19)
K1iv—Yb1—K1v180.00 (4)O2i—K2—Si1i25.0 (3)
O2—Yb1—K1126.27 (6)O2xii—K2—Si1i78.7 (3)
O2i—Yb1—K153.73 (6)O3i—K2—Si1i26.87 (7)
O1—Yb1—K153.1 (3)O3xiii—K2—Si1i118.1 (3)
O1ii—Yb1—K1120.79 (18)O3xiv—K2—Si1i118.1 (3)
O1iii—Yb1—K159.21 (18)Yb1xii—K2—Si1i118.19 (16)
O1i—Yb1—K1126.9 (3)Yb1—K2—Si1i64.45 (7)
K2—Yb1—K168.28 (6)O2—Si1—O1xv111.0 (4)
K2i—Yb1—K1111.72 (6)O2—Si1—O1xiv111.0 (4)
K1iv—Yb1—K1107.97 (6)O1xv—Si1—O1xiv110.3 (8)
K1v—Yb1—K172.03 (6)O2—Si1—O3108.4 (12)
O2—Yb1—K1i53.73 (6)O1xv—Si1—O3108.0 (6)
O2i—Yb1—K1i126.27 (6)O1xiv—Si1—O3108.0 (6)
O1—Yb1—K1i126.9 (3)O2—Si1—K1iv68.7 (5)
O1ii—Yb1—K1i59.21 (18)O1xv—Si1—K1iv73.4 (3)
O1iii—Yb1—K1i120.79 (18)O1xiv—Si1—K1iv73.4 (3)
O1i—Yb1—K1i53.1 (3)O3—Si1—K1iv177.1 (10)
K2—Yb1—K1i111.72 (6)O2—Si1—K1vii58.65 (14)
K2i—Yb1—K1i68.28 (6)O1xv—Si1—K1vii153.3 (3)
K1iv—Yb1—K1i72.03 (6)O1xiv—Si1—K1vii59.5 (4)
K1v—Yb1—K1i107.97 (6)O3—Si1—K1vii98.7 (5)
K1—Yb1—K1i180.00 (15)K1iv—Si1—K1vii79.91 (6)
O1—K1—O1vi55.7 (3)O2—Si1—K1i58.65 (14)
O1—K1—O2vii120.7 (4)O1xv—Si1—K1i59.5 (4)
O1vi—K1—O2vii65.04 (17)O1xiv—Si1—K1i153.3 (3)
O1—K1—O2i65.04 (17)O3—Si1—K1i98.7 (5)
O1vi—K1—O2i120.7 (4)K1iv—Si1—K1i79.91 (6)
O2vii—K1—O2i174.3 (5)K1vii—Si1—K1i117.3 (3)
O1—K1—O1viii174.2 (3)O2—Si1—K1xiv149.6 (5)
O1vi—K1—O1viii119.91 (3)O1xv—Si1—K1xiv57.7 (4)
O2vii—K1—O1viii55.02 (17)O1xiv—Si1—K1xiv57.7 (4)
O2i—K1—O1viii119.2 (4)O3—Si1—K1xiv102.0 (9)
O1—K1—O1ix119.91 (3)K1iv—Si1—K1xiv80.91 (12)
O1vi—K1—O1ix174.2 (3)K1vii—Si1—K1xiv117.14 (14)
O2vii—K1—O1ix119.2 (4)K1i—Si1—K1xiv117.14 (14)
O2i—K1—O1ix55.02 (17)O2—Si1—K2i47.5 (5)
O1viii—K1—O1ix64.2 (3)O1xv—Si1—K2i124.8 (4)
O1—K1—O2viii118.1 (3)O1xiv—Si1—K2i124.8 (4)
O1vi—K1—O2viii118.1 (3)O3—Si1—K2i60.9 (9)
O2vii—K1—O2viii88.6 (3)K1iv—Si1—K2i116.21 (16)
O2i—K1—O2viii88.6 (3)K1vii—Si1—K2i68.76 (15)
O1viii—K1—O2viii66.87 (18)K1i—Si1—K2i68.76 (15)
O1ix—K1—O2viii66.87 (18)K1xiv—Si1—K2i162.88 (10)
O1—K1—O1vii89.6 (3)O2—Si1—K2xiii125.97 (19)
O1vi—K1—O1vii65.8 (2)O1xv—Si1—K2xiii43.1 (3)
O2vii—K1—O1vii65.4 (3)O1xiv—Si1—K2xiii122.2 (5)
O2i—K1—O1vii116.4 (4)O3—Si1—K2xiii65.0 (5)
O1viii—K1—O1vii91.6 (2)K1iv—Si1—K2xiii116.53 (8)
O1ix—K1—O1vii119.14 (15)K1vii—Si1—K2xiii163.54 (6)
O2viii—K1—O1vii52.31 (19)K1i—Si1—K2xiii69.19 (10)
O1—K1—O1iii65.8 (2)K1xiv—Si1—K2xiii67.67 (14)
O1vi—K1—O1iii89.6 (3)K2i—Si1—K2xiii102.24 (8)
O2vii—K1—O1iii116.4 (4)O2—Si1—K2xiv125.97 (19)
O2i—K1—O1iii65.4 (3)O1xv—Si1—K2xiv122.2 (5)
O1viii—K1—O1iii119.14 (15)O1xiv—Si1—K2xiv43.1 (3)
O1ix—K1—O1iii91.6 (2)O3—Si1—K2xiv65.0 (5)
O2viii—K1—O1iii52.31 (19)K1iv—Si1—K2xiv116.53 (8)
O1vii—K1—O1iii51.1 (4)K1vii—Si1—K2xiv69.19 (10)
O1—K1—Si1viii91.39 (17)K1i—Si1—K2xiv163.54 (6)
O1vi—K1—Si1viii91.39 (17)K1xiv—Si1—K2xiv67.67 (14)
O2vii—K1—Si1viii90.1 (3)K2i—Si1—K2xiv102.24 (8)
O2i—K1—Si1viii90.1 (3)K2xiii—Si1—K2xiv100.63 (16)
O1viii—K1—Si1viii92.50 (19)Si1xiv—O1—Yb1158.7 (4)
O1ix—K1—Si1viii92.50 (19)Si1xiv—O1—K2113.4 (4)
O2viii—K1—Si1viii30.6 (3)Yb1—O1—K287.9 (2)
O1vii—K1—Si1viii30.23 (14)Si1xiv—O1—K193.5 (5)
O1iii—K1—Si1viii30.23 (14)Yb1—O1—K188.1 (3)
O1—K1—Si1vii145.9 (2)K2—O1—K189.5 (3)
O1vi—K1—Si1vii91.74 (17)Si1xiv—O1—K1iv91.7 (4)
O2vii—K1—Si1vii28.7 (3)Yb1—O1—K1iv86.1 (3)
O2i—K1—Si1vii145.9 (3)K2—O1—K1iv90.7 (3)
O1viii—K1—Si1vii28.83 (16)K1—O1—K1iv174.2 (3)
O1ix—K1—Si1vii91.8 (2)Si1xiv—O1—K1vii76.3 (2)
O2viii—K1—Si1vii84.35 (17)Yb1—O1—K1vii82.4 (2)
O1vii—K1—Si1vii84.9 (2)K2—O1—K1vii170.3 (3)
O1iii—K1—Si1vii130.31 (14)K1—O1—K1vii90.4 (3)
Si1viii—K1—Si1vii100.09 (6)K1iv—O1—K1vii88.4 (2)
O1—K1—Si1i91.74 (17)Si1—O2—Yb1165.5 (9)
O1vi—K1—Si1i145.8 (2)Si1—O2—K2i107.5 (7)
O2vii—K1—Si1i145.9 (3)Yb1—O2—K2i87.0 (4)
O2i—K1—Si1i28.7 (3)Si1—O2—K1vii92.7 (3)
O1viii—K1—Si1i91.8 (2)Yb1—O2—K1vii87.6 (3)
O1ix—K1—Si1i28.83 (16)K2i—O2—K1vii88.3 (3)
O2viii—K1—Si1i84.35 (17)Si1—O2—K1i92.7 (3)
O1vii—K1—Si1i130.31 (14)Yb1—O2—K1i87.6 (3)
O1iii—K1—Si1i84.9 (2)K2i—O2—K1i88.3 (3)
Si1viii—K1—Si1i100.09 (6)K1vii—O2—K1i174.3 (5)
Si1vii—K1—Si1i117.3 (3)Si1—O2—K1iv80.7 (5)
O1—K2—O1x141.2 (5)Yb1—O2—K1iv84.8 (4)
O1—K2—O1xi99.4 (3)K2i—O2—K1iv171.8 (5)
O1x—K2—O1xi67.4 (4)K1vii—O2—K1iv91.4 (3)
O1—K2—O1ii67.4 (4)K1i—O2—K1iv91.4 (3)
O1x—K2—O1ii99.4 (3)Si1xvi—O3—Si1175.6 (19)
O1xi—K2—O1ii141.2 (5)Si1xvi—O3—K2i92.2 (9)
O1—K2—O2i66.8 (2)Si1—O3—K2i92.2 (9)
O1x—K2—O2i143.6 (2)Si1xvi—O3—K2xiii88.8 (5)
O1xi—K2—O2i143.6 (2)Si1—O3—K2xiii88.8 (5)
O1ii—K2—O2i66.8 (2)K2i—O3—K2xiii121.9 (4)
O1—K2—O2xii143.6 (2)Si1xvi—O3—K2xiv88.8 (5)
O1x—K2—O2xii66.8 (2)Si1—O3—K2xiv88.8 (5)
O1xi—K2—O2xii66.8 (2)K2i—O3—K2xiv121.9 (4)
O1ii—K2—O2xii143.6 (2)K2xiii—O3—K2xiv116.3 (8)
O2i—K2—O2xii103.7 (6)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z; (iii) x, y, z+1; (iv) x1/2, y1/2, z; (v) x+1/2, y+1/2, z+1; (vi) x+1, y, z; (vii) x+1, y, z+1; (viii) x+1/2, y+1/2, z; (ix) x+1/2, y+1/2, z; (x) x, y, z+1/2; (xi) x, y, z+1/2; (xii) x, y, z1/2; (xiii) x1/2, y1/2, z+1; (xiv) x+1/2, y1/2, z+1; (xv) x1/2, y1/2, z+1; (xvi) x, y, z+3/2.
(213_K) top
Crystal data top
K3O7Si2YbDx = 3.864 Mg m3
Mr = 458.52Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mmcCell parameters from 1167 reflections
a = 5.7173 (5) Åθ = 7.1–29.4°
c = 13.9228 (12) ŵ = 13.75 mm1
V = 394.13 (8) Å3T = 213 K
Z = 2Prismatic, colourless
F(000) = 4220.13 × 0.11 × 0.09 mm
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
189 reflections with I > 2σ(I)
ω scansRint = 0.045
Absorption correction: analytical
CrysAlisPro 1.171.40.81a (Rigaku Oxford Diffraction, 2020) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 27.5°, θmin = 2.9°
Tmin = 0.305, Tmax = 0.398h = 77
2483 measured reflectionsk = 76
209 independent reflectionsl = 1816
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0064P)2 + 1.3339P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.015(Δ/σ)max < 0.001
wR(F2) = 0.035Δρmax = 0.50 e Å3
S = 1.20Δρmin = 0.52 e Å3
209 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
20 parametersExtinction coefficient: 0.0138 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.3333330.6666670.09125 (13)0.0094 (4)
K20.0000000.0000000.2500000.0125 (5)
Yb10.0000000.0000000.0000000.0033 (2)
Si10.6666670.3333330.13235 (15)0.0030 (4)
O10.3564 (7)0.1782 (3)0.0959 (2)0.0093 (7)
O20.6666670.3333330.2500000.019 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0086 (5)0.0086 (5)0.0109 (8)0.0043 (3)0.0000.000
K20.0160 (8)0.0160 (8)0.0053 (11)0.0080 (4)0.0000.000
Yb10.0030 (2)0.0030 (2)0.0037 (3)0.00152 (11)0.0000.000
Si10.0032 (6)0.0032 (6)0.0026 (9)0.0016 (3)0.0000.000
O10.0070 (16)0.0091 (12)0.0110 (15)0.0035 (8)0.0037 (15)0.0018 (7)
O20.026 (3)0.026 (3)0.005 (4)0.0129 (16)0.0000.000
Geometric parameters (Å, º) top
K1—O1i2.8616 (3)K2—O1xiii2.778 (3)
K1—O1ii2.8616 (3)K2—O2xiv3.3009 (3)
K1—O1iii2.8616 (3)K2—O23.3009 (3)
K1—O1iv2.8616 (3)K2—O2ix3.3009 (3)
K1—O12.8616 (3)K2—Yb13.4807 (3)
K1—O1v2.8616 (3)K2—Yb1xv3.4807 (3)
K1—O1vi3.025 (3)K2—Si13.6850 (10)
K1—O1vii3.025 (3)Yb1—O12.213 (3)
K1—O1viii3.025 (3)Yb1—O1xvi2.213 (3)
K1—Si1viii3.113 (3)Yb1—O1xvii2.213 (3)
K1—Si1ii3.3501 (5)Yb1—O1iv2.213 (3)
K1—Si1ix3.3501 (5)Yb1—O1vii2.213 (3)
K2—O12.778 (3)Yb1—O1x2.213 (3)
K2—O1x2.778 (3)Si1—O1xviii1.618 (3)
K2—O1xi2.778 (3)Si1—O1v1.618 (3)
K2—O1xii2.778 (3)Si1—O11.618 (3)
K2—O1iv2.778 (3)Si1—O21.638 (2)
O1i—K1—O1ii64.55 (13)O1xvi—Yb1—O1vii87.36 (12)
O1i—K1—O1iii119.950 (6)O1xvii—Yb1—O1vii87.36 (12)
O1ii—K1—O1iii55.42 (13)O1iv—Yb1—O1vii92.64 (12)
O1i—K1—O1iv55.42 (13)O1—Yb1—O1x87.36 (12)
O1ii—K1—O1iv119.950 (6)O1xvi—Yb1—O1x92.64 (12)
O1iii—K1—O1iv174.75 (13)O1xvii—Yb1—O1x92.64 (12)
O1i—K1—O1119.949 (6)O1iv—Yb1—O1x87.36 (12)
O1ii—K1—O1174.75 (13)O1vii—Yb1—O1x180.00 (19)
O1iii—K1—O1119.950 (6)O1—Yb1—K252.89 (8)
O1iv—K1—O164.55 (13)O1xvi—Yb1—K2127.11 (8)
O1i—K1—O1v174.75 (13)O1xvii—Yb1—K2127.11 (8)
O1ii—K1—O1v119.950 (6)O1iv—Yb1—K252.89 (8)
O1iii—K1—O1v64.55 (13)O1vii—Yb1—K2127.11 (8)
O1iv—K1—O1v119.950 (6)O1x—Yb1—K252.89 (8)
O1—K1—O1v55.42 (13)O1—Yb1—K2xvi127.11 (8)
O1i—K1—O1vi65.80 (10)O1xvi—Yb1—K2xvi52.89 (8)
O1ii—K1—O1vi65.80 (10)O1xvii—Yb1—K2xvi52.89 (8)
O1iii—K1—O1vi89.95 (7)O1iv—Yb1—K2xvi127.11 (8)
O1iv—K1—O1vi89.95 (7)O1vii—Yb1—K2xvi52.89 (8)
O1—K1—O1vi117.97 (7)O1x—Yb1—K2xvi127.11 (8)
O1v—K1—O1vi117.97 (7)K2—Yb1—K2xvi180.0
O1i—K1—O1vii89.95 (7)O1—Yb1—K1xvi126.076 (14)
O1ii—K1—O1vii117.97 (7)O1xvi—Yb1—K1xvi53.924 (14)
O1iii—K1—O1vii117.97 (7)O1xvii—Yb1—K1xvi53.925 (14)
O1iv—K1—O1vii65.80 (10)O1iv—Yb1—K1xvi126.075 (14)
O1—K1—O1vii65.80 (10)O1vii—Yb1—K1xvi121.84 (8)
O1v—K1—O1vii89.95 (7)O1x—Yb1—K1xvi58.16 (8)
O1vi—K1—O1vii52.20 (10)K2—Yb1—K1xvi111.05 (3)
O1i—K1—O1viii117.97 (7)K2xvi—Yb1—K1xvi68.95 (3)
O1ii—K1—O1viii89.95 (7)O1—Yb1—K1viii58.16 (8)
O1iii—K1—O1viii65.80 (11)O1xvi—Yb1—K1viii121.84 (8)
O1iv—K1—O1viii117.97 (7)O1xvii—Yb1—K1viii53.925 (14)
O1—K1—O1viii89.95 (7)O1iv—Yb1—K1viii126.075 (14)
O1v—K1—O1viii65.80 (10)O1vii—Yb1—K1viii53.924 (14)
O1vi—K1—O1viii52.20 (10)O1x—Yb1—K1viii126.075 (15)
O1vii—K1—O1viii52.20 (10)K2—Yb1—K1viii111.05 (3)
O1i—K1—Si1viii91.29 (7)K2xvi—Yb1—K1viii68.95 (3)
O1ii—K1—Si1viii91.29 (7)K1xvi—Yb1—K1viii107.85 (3)
O1iii—K1—Si1viii91.29 (7)O1—Yb1—K1xiv121.84 (8)
O1iv—K1—Si1viii91.29 (7)O1xvi—Yb1—K1xiv58.16 (8)
O1—K1—Si1viii91.29 (7)O1xvii—Yb1—K1xiv126.075 (14)
O1v—K1—Si1viii91.29 (7)O1iv—Yb1—K1xiv53.925 (14)
O1vi—K1—Si1viii30.53 (6)O1vii—Yb1—K1xiv126.075 (15)
O1vii—K1—Si1viii30.53 (6)O1x—Yb1—K1xiv53.924 (14)
O1viii—K1—Si1viii30.53 (6)K2—Yb1—K1xiv68.95 (3)
O1i—K1—Si1ii92.03 (7)K2xvi—Yb1—K1xiv111.05 (3)
O1ii—K1—Si1ii28.85 (7)K1xvi—Yb1—K1xiv72.15 (3)
O1iii—K1—Si1ii28.85 (7)K1viii—Yb1—K1xiv180.0
O1iv—K1—Si1ii145.99 (7)O1—Yb1—K153.924 (14)
O1—K1—Si1ii145.99 (7)O1xvi—Yb1—K1126.076 (14)
O1v—K1—Si1ii92.03 (7)O1xvii—Yb1—K1126.075 (14)
O1vi—K1—Si1ii84.08 (5)O1iv—Yb1—K153.925 (14)
O1vii—K1—Si1ii130.36 (8)O1vii—Yb1—K158.16 (8)
O1viii—K1—Si1ii84.08 (5)O1x—Yb1—K1121.84 (8)
Si1viii—K1—Si1ii99.83 (4)K2—Yb1—K168.95 (3)
O1i—K1—Si1ix28.85 (6)K2xvi—Yb1—K1111.05 (3)
O1ii—K1—Si1ix92.03 (7)K1xvi—Yb1—K1180.0
O1iii—K1—Si1ix145.99 (7)K1viii—Yb1—K172.15 (3)
O1iv—K1—Si1ix28.85 (6)K1xiv—Yb1—K1107.85 (3)
O1—K1—Si1ix92.03 (7)O1xviii—Si1—O1v110.63 (13)
O1v—K1—Si1ix145.99 (7)O1xviii—Si1—O1110.63 (13)
O1vi—K1—Si1ix84.08 (5)O1v—Si1—O1110.63 (13)
O1vii—K1—Si1ix84.08 (5)O1xviii—Si1—O2108.28 (14)
O1viii—K1—Si1ix130.36 (8)O1v—Si1—O2108.28 (14)
Si1viii—K1—Si1ix99.83 (4)O1—Si1—O2108.28 (14)
Si1ii—K1—Si1ix117.14 (3)O1xviii—Si1—K1viii71.72 (14)
O1—K2—O1x66.74 (10)O1v—Si1—K1viii71.71 (14)
O1—K2—O1xi101.14 (13)O1—Si1—K1viii71.72 (14)
O1x—K2—O1xi142.97 (5)O2—Si1—K1viii180.0
O1—K2—O1xii142.97 (5)O1xviii—Si1—K1151.88 (16)
O1x—K2—O1xii142.97 (5)O1v—Si1—K158.576 (12)
O1xi—K2—O1xii66.74 (10)O1—Si1—K158.576 (12)
O1—K2—O1iv66.74 (10)O2—Si1—K199.83 (4)
O1x—K2—O1iv66.74 (10)K1viii—Si1—K180.16 (4)
O1xi—K2—O1iv142.97 (5)O1xviii—Si1—K1xix58.576 (12)
O1xii—K2—O1iv101.14 (13)O1v—Si1—K1xix151.88 (16)
O1—K2—O1xiii142.97 (5)O1—Si1—K1xix58.576 (12)
O1x—K2—O1xiii101.14 (13)O2—Si1—K1xix99.84 (4)
O1xi—K2—O1xiii66.74 (10)K1viii—Si1—K1xix80.16 (4)
O1xii—K2—O1xiii66.74 (10)K1—Si1—K1xix117.14 (3)
O1iv—K2—O1xiii142.97 (5)O1xviii—Si1—K1xx58.576 (12)
O1—K2—O2xiv108.52 (3)O1v—Si1—K1xx58.576 (12)
O1x—K2—O2xiv50.57 (6)O1—Si1—K1xx151.88 (16)
O1xi—K2—O2xiv108.52 (3)O2—Si1—K1xx99.84 (4)
O1xii—K2—O2xiv108.52 (3)K1viii—Si1—K1xx80.16 (4)
O1iv—K2—O2xiv108.52 (3)K1—Si1—K1xx117.14 (3)
O1xiii—K2—O2xiv50.57 (6)K1xix—Si1—K1xx117.14 (3)
O1—K2—O250.57 (6)O1xviii—Si1—K2xx44.68 (12)
O1x—K2—O2108.52 (3)O1v—Si1—K2xx124.38 (5)
O1xi—K2—O250.57 (6)O1—Si1—K2xx124.38 (5)
O1xii—K2—O2108.52 (3)O2—Si1—K2xx63.61 (3)
O1iv—K2—O2108.52 (3)K1viii—Si1—K2xx116.39 (3)
O1xiii—K2—O2108.52 (3)K1—Si1—K2xx163.44 (7)
O2xiv—K2—O2120.0K1xix—Si1—K2xx68.569 (18)
O1—K2—O2ix108.52 (3)K1xx—Si1—K2xx68.569 (18)
O1x—K2—O2ix108.52 (3)O1xviii—Si1—K2xxi124.38 (5)
O1xi—K2—O2ix108.52 (3)O1v—Si1—K2xxi44.68 (12)
O1xii—K2—O2ix50.57 (6)O1—Si1—K2xxi124.38 (5)
O1iv—K2—O2ix50.57 (6)O2—Si1—K2xxi63.61 (3)
O1xiii—K2—O2ix108.52 (3)K1viii—Si1—K2xxi116.39 (3)
O2xiv—K2—O2ix120.0K1—Si1—K2xxi68.569 (18)
O2—K2—O2ix120.0K1xix—Si1—K2xxi163.44 (7)
O1—K2—Yb139.43 (6)K1xx—Si1—K2xxi68.570 (18)
O1x—K2—Yb139.43 (6)K2xx—Si1—K2xxi101.75 (4)
O1xi—K2—Yb1140.57 (7)O1xviii—Si1—K2124.38 (4)
O1xii—K2—Yb1140.57 (6)O1v—Si1—K2124.38 (5)
O1iv—K2—Yb139.43 (6)O1—Si1—K244.68 (12)
O1xiii—K2—Yb1140.57 (6)O2—Si1—K263.61 (3)
O2xiv—K2—Yb190.0K1viii—Si1—K2116.39 (3)
O2—K2—Yb190.0K1—Si1—K268.569 (18)
O2ix—K2—Yb190.0K1xix—Si1—K268.570 (18)
O1—K2—Yb1xv140.57 (6)K1xx—Si1—K2163.44 (7)
O1x—K2—Yb1xv140.57 (6)K2xx—Si1—K2101.75 (4)
O1xi—K2—Yb1xv39.43 (7)K2xxi—Si1—K2101.75 (4)
O1xii—K2—Yb1xv39.43 (6)Si1—O1—Yb1161.2 (2)
O1iv—K2—Yb1xv140.57 (6)Si1—O1—K2111.15 (16)
O1xiii—K2—Yb1xv39.43 (7)Yb1—O1—K287.68 (11)
O2xiv—K2—Yb1xv90.0Si1—O1—K192.57 (7)
O2—K2—Yb1xv90.0Yb1—O1—K187.40 (7)
O2ix—K2—Yb1xv90.0K2—O1—K189.55 (7)
Yb1—K2—Yb1xv180.0Si1—O1—K1xix92.57 (7)
O1—K2—Si124.18 (7)Yb1—O1—K1xix87.40 (7)
O1x—K2—Si186.63 (5)K2—O1—K1xix89.55 (7)
O1xi—K2—Si176.96 (7)K1—O1—K1xix174.75 (13)
O1xii—K2—Si1128.89 (2)Si1—O1—K1viii77.76 (15)
O1iv—K2—Si186.63 (5)Yb1—O1—K1viii83.42 (9)
O1xiii—K2—Si1128.89 (2)K2—O1—K1viii171.10 (12)
O2xiv—K2—Si1116.609 (7)K1—O1—K1viii90.05 (7)
O2—K2—Si126.39 (3)K1xix—O1—K1viii90.05 (7)
O2ix—K2—Si1116.608 (7)Si1—O2—Si1xi180.0
Yb1—K2—Si163.61 (3)Si1—O2—K2xx90.0
Yb1xv—K2—Si1116.39 (3)Si1xi—O2—K2xx90.0
O1—Yb1—O1xvi180.0Si1—O2—K290.0
O1—Yb1—O1xvii92.64 (12)Si1xi—O2—K290.0
O1xvi—Yb1—O1xvii87.36 (12)K2xx—O2—K2120.0
O1—Yb1—O1iv87.36 (12)Si1—O2—K2xxi90.0
O1xvi—Yb1—O1iv92.64 (12)Si1xi—O2—K2xxi90.0
O1xvii—Yb1—O1iv180.00 (13)K2xx—O2—K2xxi120.0
O1—Yb1—O1vii92.64 (12)K2—O2—K2xxi120.0
Symmetry codes: (i) x+y, x+1, z; (ii) x, y+1, z; (iii) y+1, xy+1, z; (iv) y, xy, z; (v) x+y+1, x+1, z; (vi) y, x+y+1, z; (vii) xy, x, z; (viii) x+1, y+1, z; (ix) x1, y, z; (x) x+y, x, z; (xi) x, y, z+1/2; (xii) y, xy, z+1/2; (xiii) x+y, x, z+1/2; (xiv) x1, y1, z; (xv) x, y, z+1/2; (xvi) x, y, z; (xvii) y, x+y, z; (xviii) y+1, xy, z; (xix) x, y1, z; (xx) x+1, y, z; (xxi) x+1, y+1, z.
(223_K) top
Crystal data top
K3O7Si2YbDx = 3.865 Mg m3
Mr = 458.52Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mmcCell parameters from 1160 reflections
a = 5.7156 (5) Åθ = 7.1–29.4°
c = 13.9269 (12) ŵ = 13.76 mm1
V = 394.01 (8) Å3T = 223 K
Z = 2Prismatic, colourless
F(000) = 4220.13 × 0.11 × 0.09 mm
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
187 reflections with I > 2σ(I)
ω scansRint = 0.045
Absorption correction: analytical
CrysAlisPro 1.171.40.81a (Rigaku Oxford Diffraction, 2020) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 27.5°, θmin = 2.9°
Tmin = 0.306, Tmax = 0.399h = 67
2481 measured reflectionsk = 77
209 independent reflectionsl = 1618
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0087P)2 + 0.3221P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.014(Δ/σ)max < 0.001
wR(F2) = 0.032Δρmax = 0.46 e Å3
S = 1.23Δρmin = 0.46 e Å3
209 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
20 parametersExtinction coefficient: 0.0140 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.3333330.6666670.09129 (12)0.0097 (3)
K20.0000000.0000000.2500000.0131 (5)
Yb10.0000000.0000000.0000000.00340 (19)
Si10.6666670.3333330.13222 (14)0.0034 (4)
O10.3569 (6)0.1784 (3)0.09582 (19)0.0093 (6)
O20.6666670.3333330.2500000.0174 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0085 (5)0.0085 (5)0.0120 (8)0.0043 (2)0.0000.000
K20.0171 (8)0.0171 (8)0.0052 (10)0.0085 (4)0.0000.000
Yb10.0032 (2)0.0032 (2)0.0038 (3)0.00159 (10)0.0000.000
Si10.0034 (6)0.0034 (6)0.0034 (8)0.0017 (3)0.0000.000
O10.0061 (15)0.0091 (11)0.0117 (14)0.0030 (7)0.0024 (13)0.0012 (7)
O20.024 (3)0.024 (3)0.005 (4)0.0119 (14)0.0000.000
Geometric parameters (Å, º) top
K1—O1i2.8609 (3)K2—O1xii2.780 (3)
K1—O1ii2.8609 (3)K2—O2xiii3.2999 (3)
K1—O1iii2.8609 (3)K2—O23.2999 (3)
K1—O1iv2.8609 (3)K2—O2xiv3.2999 (3)
K1—O12.8609 (3)K2—Yb13.4817 (3)
K1—O1v2.8609 (3)K2—Yb1xv3.4817 (3)
K1—O1vi3.024 (3)K2—Si1x3.6851 (9)
K1—O1vii3.024 (3)Yb1—O12.214 (3)
K1—O1viii3.024 (3)Yb1—O1xvi2.214 (3)
K1—Si1viii3.113 (3)Yb1—O1xvii2.214 (3)
K1—Si13.3488 (5)Yb1—O1iv2.214 (3)
K1—Si1i3.3488 (5)Yb1—O1vii2.214 (3)
K2—O1ix2.780 (3)Yb1—O1ix2.214 (3)
K2—O1x2.780 (3)Si1—O1xviii1.615 (3)
K2—O1xi2.780 (3)Si1—O1v1.615 (3)
K2—O1iv2.780 (3)Si1—O11.615 (3)
K2—O12.780 (3)Si1—O21.640 (2)
O1i—K1—O1ii64.65 (11)O1xvi—Yb1—O1vii87.42 (11)
O1i—K1—O1iii55.32 (11)O1xvii—Yb1—O1vii87.42 (11)
O1ii—K1—O1iii119.952 (5)O1iv—Yb1—O1vii92.58 (11)
O1i—K1—O1iv119.952 (5)O1—Yb1—O1ix87.42 (10)
O1ii—K1—O1iv55.32 (11)O1xvi—Yb1—O1ix92.58 (11)
O1iii—K1—O1iv174.69 (12)O1xvii—Yb1—O1ix92.58 (11)
O1i—K1—O1174.69 (12)O1iv—Yb1—O1ix87.42 (11)
O1ii—K1—O1119.951 (5)O1vii—Yb1—O1ix180.00 (16)
O1iii—K1—O1119.952 (5)O1—Yb1—K252.93 (7)
O1iv—K1—O164.65 (11)O1xvi—Yb1—K2127.07 (7)
O1i—K1—O1v119.952 (6)O1xvii—Yb1—K2127.07 (7)
O1ii—K1—O1v174.69 (12)O1iv—Yb1—K252.93 (7)
O1iii—K1—O1v64.65 (12)O1vii—Yb1—K2127.07 (7)
O1iv—K1—O1v119.952 (5)O1ix—Yb1—K252.93 (7)
O1—K1—O1v55.32 (11)O1—Yb1—K2xvi127.07 (7)
O1i—K1—O1vi65.83 (9)O1xvi—Yb1—K2xvi52.93 (7)
O1ii—K1—O1vi65.83 (9)O1xvii—Yb1—K2xvi52.93 (7)
O1iii—K1—O1vi89.91 (7)O1iv—Yb1—K2xvi127.07 (7)
O1iv—K1—O1vi89.91 (7)O1vii—Yb1—K2xvi52.93 (7)
O1—K1—O1vi117.91 (6)O1ix—Yb1—K2xvi127.07 (7)
O1v—K1—O1vi117.91 (6)K2—Yb1—K2xvi180.0
O1i—K1—O1vii117.91 (6)O1—Yb1—K1xvi126.086 (13)
O1ii—K1—O1vii89.91 (7)O1xvi—Yb1—K1xvi53.914 (13)
O1iii—K1—O1vii117.91 (6)O1xvii—Yb1—K1xvi53.915 (13)
O1iv—K1—O1vii65.83 (9)O1iv—Yb1—K1xvi126.086 (13)
O1—K1—O1vii65.83 (9)O1vii—Yb1—K1xvi121.86 (7)
O1v—K1—O1vii89.91 (7)O1ix—Yb1—K1xvi58.14 (7)
O1vi—K1—O1vii52.11 (9)K2—Yb1—K1xvi111.07 (3)
O1i—K1—O1viii89.91 (7)K2xvi—Yb1—K1xvi68.93 (3)
O1ii—K1—O1viii117.91 (6)O1—Yb1—K1viii58.14 (7)
O1iii—K1—O1viii65.83 (9)O1xvi—Yb1—K1viii121.86 (7)
O1iv—K1—O1viii117.91 (6)O1xvii—Yb1—K1viii53.915 (13)
O1—K1—O1viii89.91 (7)O1iv—Yb1—K1viii126.085 (13)
O1v—K1—O1viii65.83 (9)O1vii—Yb1—K1viii53.914 (13)
O1vi—K1—O1viii52.11 (9)O1ix—Yb1—K1viii126.086 (13)
O1vii—K1—O1viii52.11 (9)K2—Yb1—K1viii111.07 (3)
O1i—K1—Si1viii91.26 (7)K2xvi—Yb1—K1viii68.93 (3)
O1ii—K1—Si1viii91.26 (7)K1xvi—Yb1—K1viii107.83 (3)
O1iii—K1—Si1viii91.26 (7)O1—Yb1—K1xiii121.86 (7)
O1iv—K1—Si1viii91.26 (7)O1xvi—Yb1—K1xiii58.14 (7)
O1—K1—Si1viii91.26 (7)O1xvii—Yb1—K1xiii126.085 (13)
O1v—K1—Si1viii91.26 (7)O1iv—Yb1—K1xiii53.915 (13)
O1vi—K1—Si1viii30.47 (6)O1vii—Yb1—K1xiii126.086 (13)
O1vii—K1—Si1viii30.47 (6)O1ix—Yb1—K1xiii53.914 (13)
O1viii—K1—Si1viii30.47 (6)K2—Yb1—K1xiii68.93 (3)
O1i—K1—Si1145.96 (6)K2xvi—Yb1—K1xiii111.07 (3)
O1ii—K1—Si1145.96 (6)K1xvi—Yb1—K1xiii72.17 (3)
O1iii—K1—Si192.08 (6)K1viii—Yb1—K1xiii180.0
O1iv—K1—Si192.08 (6)O1—Yb1—K153.914 (13)
O1—K1—Si128.80 (6)O1xvi—Yb1—K1126.086 (13)
O1v—K1—Si128.80 (6)O1xvii—Yb1—K1126.086 (13)
O1vi—K1—Si1130.27 (7)O1iv—Yb1—K153.914 (13)
O1vii—K1—Si184.08 (4)O1vii—Yb1—K158.14 (7)
O1viii—K1—Si184.08 (4)O1ix—Yb1—K1121.86 (7)
Si1viii—K1—Si199.80 (4)K2—Yb1—K168.93 (3)
O1i—K1—Si1i28.80 (6)K2xvi—Yb1—K1111.07 (3)
O1ii—K1—Si1i92.08 (6)K1xvi—Yb1—K1180.0
O1iii—K1—Si1i28.80 (6)K1viii—Yb1—K172.17 (3)
O1iv—K1—Si1i145.96 (6)K1xiii—Yb1—K1107.83 (3)
O1—K1—Si1i145.96 (6)O1xviii—Si1—O1v110.63 (12)
O1v—K1—Si1i92.09 (6)O1xviii—Si1—O1110.63 (12)
O1vi—K1—Si1i84.08 (4)O1v—Si1—O1110.63 (12)
O1vii—K1—Si1i130.27 (7)O1xviii—Si1—O2108.29 (12)
O1viii—K1—Si1i84.08 (4)O1v—Si1—O2108.29 (12)
Si1viii—K1—Si1i99.80 (4)O1—Si1—O2108.29 (12)
Si1—K1—Si1i117.16 (2)O1xviii—Si1—K1viii71.71 (12)
O1ix—K2—O1x142.96 (5)O1v—Si1—K1viii71.71 (12)
O1ix—K2—O1xi142.96 (5)O1—Si1—K1viii71.71 (12)
O1x—K2—O1xi66.76 (9)O2—Si1—K1viii180.0
O1ix—K2—O1iv66.76 (9)O1xviii—Si1—K1151.91 (14)
O1x—K2—O1iv142.96 (5)O1v—Si1—K158.585 (11)
O1xi—K2—O1iv101.11 (11)O1—Si1—K158.585 (11)
O1ix—K2—O166.76 (9)O2—Si1—K199.80 (4)
O1x—K2—O1101.11 (11)K1viii—Si1—K180.20 (4)
O1xi—K2—O1142.96 (5)O1xviii—Si1—K1xix58.585 (11)
O1iv—K2—O166.76 (9)O1v—Si1—K1xix151.91 (14)
O1ix—K2—O1xii101.11 (11)O1—Si1—K1xix58.586 (11)
O1x—K2—O1xii66.76 (9)O2—Si1—K1xix99.80 (4)
O1xi—K2—O1xii66.76 (9)K1viii—Si1—K1xix80.20 (4)
O1iv—K2—O1xii142.96 (5)K1—Si1—K1xix117.16 (2)
O1—K2—O1xii142.96 (5)O1xviii—Si1—K1xx58.585 (11)
O1ix—K2—O2xiii50.56 (6)O1v—Si1—K1xx58.586 (11)
O1x—K2—O2xiii108.52 (2)O1—Si1—K1xx151.91 (14)
O1xi—K2—O2xiii108.52 (2)O2—Si1—K1xx99.80 (4)
O1iv—K2—O2xiii108.52 (2)K1viii—Si1—K1xx80.20 (4)
O1—K2—O2xiii108.52 (2)K1—Si1—K1xx117.16 (2)
O1xii—K2—O2xiii50.56 (6)K1xix—Si1—K1xx117.16 (2)
O1ix—K2—O2108.52 (2)O1xviii—Si1—K2xx44.72 (11)
O1x—K2—O250.56 (6)O1v—Si1—K2xx124.39 (4)
O1xi—K2—O2108.52 (2)O1—Si1—K2xx124.39 (4)
O1iv—K2—O2108.52 (2)O2—Si1—K2xx63.57 (3)
O1—K2—O250.56 (6)K1viii—Si1—K2xx116.43 (3)
O1xii—K2—O2108.52 (2)K1—Si1—K2xx163.37 (6)
O2xiii—K2—O2120.0K1xix—Si1—K2xx68.565 (17)
O1ix—K2—O2xiv108.52 (2)K1xx—Si1—K2xx68.565 (17)
O1x—K2—O2xiv108.52 (2)O1xviii—Si1—K2xxi124.39 (4)
O1xi—K2—O2xiv50.56 (6)O1v—Si1—K2xxi44.72 (11)
O1iv—K2—O2xiv50.56 (6)O1—Si1—K2xxi124.39 (4)
O1—K2—O2xiv108.52 (2)O2—Si1—K2xxi63.57 (3)
O1xii—K2—O2xiv108.52 (2)K1viii—Si1—K2xxi116.43 (3)
O2xiii—K2—O2xiv120.0K1—Si1—K2xxi68.565 (17)
O2—K2—O2xiv120.0K1xix—Si1—K2xxi163.37 (6)
O1ix—K2—Yb139.44 (6)K1xx—Si1—K2xxi68.566 (17)
O1x—K2—Yb1140.56 (6)K2xx—Si1—K2xxi101.70 (3)
O1xi—K2—Yb1140.56 (6)O1xviii—Si1—K2124.39 (4)
O1iv—K2—Yb139.44 (6)O1v—Si1—K2124.39 (4)
O1—K2—Yb139.44 (6)O1—Si1—K244.72 (11)
O1xii—K2—Yb1140.56 (6)O2—Si1—K263.57 (3)
O2xiii—K2—Yb190.0K1viii—Si1—K2116.43 (3)
O2—K2—Yb190.0K1—Si1—K268.565 (17)
O2xiv—K2—Yb190.0K1xix—Si1—K268.566 (17)
O1ix—K2—Yb1xv140.56 (6)K1xx—Si1—K2163.37 (6)
O1x—K2—Yb1xv39.44 (6)K2xx—Si1—K2101.70 (3)
O1xi—K2—Yb1xv39.44 (6)K2xxi—Si1—K2101.70 (3)
O1iv—K2—Yb1xv140.56 (6)Si1—O1—Yb1161.22 (19)
O1—K2—Yb1xv140.56 (6)Si1—O1—K2111.15 (15)
O1xii—K2—Yb1xv39.44 (6)Yb1—O1—K287.63 (9)
O2xiii—K2—Yb1xv90.0Si1—O1—K192.61 (6)
O2—K2—Yb1xv90.0Yb1—O1—K187.38 (6)
O2xiv—K2—Yb1xv90.0K2—O1—K189.49 (6)
Yb1—K2—Yb1xv180.0Si1—O1—K1xix92.61 (6)
O1ix—K2—Si1x128.92 (2)Yb1—O1—K1xix87.38 (6)
O1x—K2—Si1x24.12 (6)K2—O1—K1xix89.49 (6)
O1xi—K2—Si1x86.60 (4)K1—O1—K1xix174.69 (12)
O1iv—K2—Si1x128.92 (2)Si1—O1—K1viii77.82 (13)
O1—K2—Si1x76.99 (6)Yb1—O1—K1viii83.40 (8)
O1xii—K2—Si1x86.60 (4)K2—O1—K1viii171.03 (11)
O2xiii—K2—Si1x116.599 (7)K1—O1—K1viii90.09 (7)
O2—K2—Si1x26.43 (3)K1xix—O1—K1viii90.09 (7)
O2xiv—K2—Si1x116.598 (7)Si1—O2—Si1x180.0
Yb1—K2—Si1x116.43 (3)Si1—O2—K2xx90.0
Yb1xv—K2—Si1x63.57 (3)Si1x—O2—K2xx90.0
O1—Yb1—O1xvi180.00 (16)Si1—O2—K290.0
O1—Yb1—O1xvii92.58 (11)Si1x—O2—K290.0
O1xvi—Yb1—O1xvii87.42 (11)K2xx—O2—K2120.0
O1—Yb1—O1iv87.42 (11)Si1—O2—K2xxi90.0
O1xvi—Yb1—O1iv92.58 (11)Si1x—O2—K2xxi90.0
O1xvii—Yb1—O1iv180.00 (11)K2xx—O2—K2xxi120.0
O1—Yb1—O1vii92.58 (10)K2—O2—K2xxi120.0
Symmetry codes: (i) x, y+1, z; (ii) x+y, x+1, z; (iii) y+1, xy+1, z; (iv) y, xy, z; (v) x+y+1, x+1, z; (vi) y, x+y+1, z; (vii) xy, x, z; (viii) x+1, y+1, z; (ix) x+y, x, z; (x) x, y, z+1/2; (xi) y, xy, z+1/2; (xii) x+y, x, z+1/2; (xiii) x1, y1, z; (xiv) x1, y, z; (xv) x, y, z+1/2; (xvi) x, y, z; (xvii) y, x+y, z; (xviii) y+1, xy, z; (xix) x, y1, z; (xx) x+1, y, z; (xxi) x+1, y+1, z.
(233_K) top
Crystal data top
K3O7Si2YbDx = 3.852 Mg m3
Mr = 458.52Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mmcCell parameters from 1155 reflections
a = 5.7207 (6) Åθ = 4.3–29.4°
c = 13.9476 (16) ŵ = 13.71 mm1
V = 395.30 (9) Å3T = 233 K
Z = 2Prismatic, colourless
F(000) = 4220.13 × 0.11 × 0.09 mm
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
191 reflections with I > 2σ(I)
ω scansRint = 0.046
Absorption correction: analytical
CrysAlisPro 1.171.40.81a (Rigaku Oxford Diffraction, 2020) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
θmax = 27.5°, θmin = 2.9°
Tmin = 0.306, Tmax = 0.399h = 67
2496 measured reflectionsk = 75
211 independent reflectionsl = 1816
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0107P)2 + 0.7839P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.014(Δ/σ)max < 0.001
wR(F2) = 0.034Δρmax = 0.46 e Å3
S = 1.17Δρmin = 0.49 e Å3
211 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
20 parametersExtinction coefficient: 0.0143 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.3333330.6666670.09132 (12)0.0102 (3)
K20.0000000.0000000.2500000.0132 (5)
Yb10.0000000.0000000.0000000.00361 (19)
Si10.6666670.3333330.13215 (14)0.0036 (4)
O10.3571 (6)0.1786 (3)0.09585 (19)0.0097 (6)
O20.6666670.3333330.2500000.0186 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0091 (5)0.0091 (5)0.0123 (7)0.0045 (2)0.0000.000
K20.0165 (8)0.0165 (8)0.0066 (10)0.0082 (4)0.0000.000
Yb10.0033 (2)0.0033 (2)0.0042 (3)0.00165 (10)0.0000.000
Si10.0038 (6)0.0038 (6)0.0031 (8)0.0019 (3)0.0000.000
O10.0077 (15)0.0090 (11)0.0120 (13)0.0039 (8)0.0038 (14)0.0019 (7)
O20.026 (3)0.026 (3)0.004 (3)0.0129 (14)0.0000.000
Geometric parameters (Å, º) top
K1—O1i2.8635 (3)K2—O12.785 (3)
K1—O1ii2.8635 (3)K2—O2xiii3.3028 (4)
K1—O1iii2.8635 (3)K2—O23.3028 (4)
K1—O1iv2.8635 (3)K2—O2xiv3.3029 (4)
K1—O12.8635 (3)K2—Yb13.4869 (4)
K1—O1v2.8635 (3)K2—Yb1xv3.4869 (4)
K1—O1vi3.028 (3)K2—Si1ix3.6893 (9)
K1—O1vii3.028 (3)Yb1—O12.218 (3)
K1—O1viii3.028 (3)Yb1—O1xvi2.218 (3)
K1—Si1viii3.117 (3)Yb1—O1xvii2.218 (3)
K1—Si13.3516 (5)Yb1—O1iv2.218 (3)
K1—Si1ii3.3516 (5)Yb1—O1vii2.218 (3)
K2—O1ix2.785 (3)Yb1—O1x2.218 (3)
K2—O1x2.785 (3)Si1—O1xviii1.615 (3)
K2—O1xi2.785 (3)Si1—O1v1.615 (3)
K2—O1iv2.785 (3)Si1—O11.615 (3)
K2—O1xii2.785 (3)Si1—O21.6438 (19)
O1i—K1—O1ii64.71 (12)O1xvi—Yb1—O1vii87.42 (11)
O1i—K1—O1iii119.952 (5)O1xvii—Yb1—O1vii87.42 (11)
O1ii—K1—O1iii55.26 (12)O1iv—Yb1—O1vii92.58 (11)
O1i—K1—O1iv55.26 (12)O1—Yb1—O1x87.42 (11)
O1ii—K1—O1iv119.952 (5)O1xvi—Yb1—O1x92.58 (11)
O1iii—K1—O1iv174.64 (12)O1xvii—Yb1—O1x92.58 (11)
O1i—K1—O1119.952 (5)O1iv—Yb1—O1x87.42 (11)
O1ii—K1—O1174.64 (12)O1vii—Yb1—O1x180.00 (17)
O1iii—K1—O1119.952 (5)O1—Yb1—K252.93 (7)
O1iv—K1—O164.71 (12)O1xvi—Yb1—K2127.07 (7)
O1i—K1—O1v174.64 (12)O1xvii—Yb1—K2127.07 (7)
O1ii—K1—O1v119.952 (6)O1iv—Yb1—K252.93 (7)
O1iii—K1—O1v64.71 (12)O1vii—Yb1—K2127.07 (7)
O1iv—K1—O1v119.952 (5)O1x—Yb1—K252.93 (7)
O1—K1—O1v55.26 (12)O1—Yb1—K2xvi127.07 (7)
O1i—K1—O1vi65.88 (9)O1xvi—Yb1—K2xvi52.93 (7)
O1ii—K1—O1vi65.88 (9)O1xvii—Yb1—K2xvi52.93 (7)
O1iii—K1—O1vi89.90 (7)O1iv—Yb1—K2xvi127.07 (7)
O1iv—K1—O1vi89.90 (7)O1vii—Yb1—K2xvi52.93 (7)
O1—K1—O1vi117.88 (7)O1x—Yb1—K2xvi127.07 (7)
O1v—K1—O1vi117.88 (7)K2—Yb1—K2xvi180.0
O1i—K1—O1vii89.90 (7)O1—Yb1—K1xvi126.095 (13)
O1ii—K1—O1vii117.88 (7)O1xvi—Yb1—K1xvi53.905 (13)
O1iii—K1—O1vii117.88 (7)O1xvii—Yb1—K1xvi53.906 (13)
O1iv—K1—O1vii65.88 (9)O1iv—Yb1—K1xvi126.094 (13)
O1—K1—O1vii65.88 (9)O1vii—Yb1—K1xvi121.84 (8)
O1v—K1—O1vii89.90 (7)O1x—Yb1—K1xvi58.16 (8)
O1vi—K1—O1vii52.03 (9)K2—Yb1—K1xvi111.09 (3)
O1i—K1—O1viii117.88 (7)K2xvi—Yb1—K1xvi68.91 (3)
O1ii—K1—O1viii89.90 (7)O1—Yb1—K1viii58.16 (8)
O1iii—K1—O1viii65.88 (9)O1xvi—Yb1—K1viii121.84 (8)
O1iv—K1—O1viii117.88 (7)O1xvii—Yb1—K1viii53.906 (13)
O1—K1—O1viii89.89 (7)O1iv—Yb1—K1viii126.094 (13)
O1v—K1—O1viii65.88 (9)O1vii—Yb1—K1viii53.905 (13)
O1vi—K1—O1viii52.03 (9)O1x—Yb1—K1viii126.095 (13)
O1vii—K1—O1viii52.03 (9)K2—Yb1—K1viii111.09 (3)
O1i—K1—Si1viii91.27 (7)K2xvi—Yb1—K1viii68.91 (3)
O1ii—K1—Si1viii91.27 (7)K1xvi—Yb1—K1viii107.81 (3)
O1iii—K1—Si1viii91.27 (7)O1—Yb1—K1xiii121.84 (8)
O1iv—K1—Si1viii91.27 (7)O1xvi—Yb1—K1xiii58.16 (8)
O1—K1—Si1viii91.26 (7)O1xvii—Yb1—K1xiii126.094 (13)
O1v—K1—Si1viii91.26 (7)O1iv—Yb1—K1xiii53.906 (13)
O1vi—K1—Si1viii30.43 (6)O1vii—Yb1—K1xiii126.095 (13)
O1vii—K1—Si1viii30.43 (6)O1x—Yb1—K1xiii53.905 (13)
O1viii—K1—Si1viii30.43 (6)K2—Yb1—K1xiii68.91 (3)
O1i—K1—Si1145.94 (6)K2xvi—Yb1—K1xiii111.09 (3)
O1ii—K1—Si1145.94 (6)K1xvi—Yb1—K1xiii72.19 (3)
O1iii—K1—Si192.11 (6)K1viii—Yb1—K1xiii180.00 (5)
O1iv—K1—Si192.11 (6)O1—Yb1—K153.906 (13)
O1—K1—Si128.77 (6)O1xviR