Download citation
Download citation
link to html
The mol­ecule of the title compound, C27H24N4O5, exists in the keto–enamine tautomeric form, stabilized by an intra­molecular N—H...O hydrogen bond. An intra­molecular C—H...·O hydrogen bond also occurs. In the crystal, C—H...O hydrogen bonds link the mol­ecules into chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536812010343/yk2041sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536812010343/yk2041Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S1600536812010343/yk2041Isup3.cml
Supplementary material

CCDC reference: 877230

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.040
  • wR factor = 0.106
  • Data-to-parameter ratio = 7.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax .LT. 18) ..... 7.08 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C4 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C6 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds ............... 0.0057 Ang PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 1 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.595 3
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.03 From the CIF: _reflns_number_total 2315 Count of symmetry unique reflns 2319 Completeness (_total/calc) 99.83% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ? PLAT007_ALERT_5_G Note: Number of Unrefined D-H Atoms ............ 1 PLAT791_ALERT_4_G Note: The Model has Chirality at C18 (Verify) S PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 46 Perc. PLAT981_ALERT_1_G No non-zero f" Anomalous Scattering Values Found ?
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 6 ALERT level C = Check. Ensure it is not caused by an omission or oversight 6 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

In recent years, Schiff bases play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, and molecular architectures (Wu et al., 1993; Harrop et al., 2003; Habibi et al., 2007). In recent years, the Schiff bases derived from 4–acyl–5–pyrazolone and their metal complexes have been studied widely for their high antibacterial activity (Li et al., 1997, 2004). Both 1–phenyl–3–methyl–4–(p–nitro–benzyl)–5–pyrazolone and its metal complexes are widely used and well known for their analgetic activity (Remya et al., 2005). Amino acid esters also demonstrate high antibacterial and biological activity (Xiong et al., 1993). Structure of Schiff base derived from 4–acyl–5–pyrazolone and amino acid ester, closely related to the title compound, has been reported (Zhang et al., 2005).

The molecular structure of the title compound is presented in Fig. 1, and the numerical results are given in tables below. Atoms O1, C9, C8, C11 and N4 form a plane, the largest deviation being 0.021 (4) Å for atom C11. The dihedral angle between this mean plane and the pyrazolone ring is 1.2 (1)°, indicating that they are essentially coplanar, as seen in 4–{[3,4–dihydro–5–methyl–3–oxo–2–phenyl–2H–pyrazol–4–ylidene]–(phenyl)methyl]amino}–1,5–dimethyl–2–phenyl–1H–pyrazol–3(2H)–one [3.56 (3)°; Wang et al., 2003]. The bond lengths within central part of the molecule lie between typical single- and double- bond lengths, indicating extensive conjugation. A strong intramolecular N—H···O hydrogen bond is observed, stabilizing the enamine-keto tautomeric form. In the crystal structure, intermolecular C1—H1···O4 hydrogen bonds link the molecules into chains, shown in Fig. 2.

Related literature top

For general background to Schiff bases in coordination chemistry, see: Wu et al. (1993); Harrop et al. (2003); Habibi et al. (2007). For antibacterial properties of Schiff bases derived from 4-acyl-5-pyrazolone and their metal complexes, see: Li et al. (1997, 2004). For the antibacterial and biological activity of amino acid esters, see: Xiong et al. (1993). For related structures, see: Wang et al. (2003); Zhang et al. (2005). For synthetic details, see: Remya et al. (2005). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was synthesized by refluxing a mixture of 1–phenyl–3—methyl–4–(p–nitro–benzyl)–5–pyrazolone (15 mmol) (Remya et al., 2005) and phenylalanine methyl ester (15 mmol) in ethanol (100 ml) for about 5 h. The product was recrystallized from ethanol, affording pale yellow crystals suitable for X–ray analysis.

Refinement top

All H atoms were positioned geometrically with N—H = 0.86 Å and C—H = 0.93–0.98 Å, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for other H atoms.

Structure description top

In recent years, Schiff bases play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, and molecular architectures (Wu et al., 1993; Harrop et al., 2003; Habibi et al., 2007). In recent years, the Schiff bases derived from 4–acyl–5–pyrazolone and their metal complexes have been studied widely for their high antibacterial activity (Li et al., 1997, 2004). Both 1–phenyl–3–methyl–4–(p–nitro–benzyl)–5–pyrazolone and its metal complexes are widely used and well known for their analgetic activity (Remya et al., 2005). Amino acid esters also demonstrate high antibacterial and biological activity (Xiong et al., 1993). Structure of Schiff base derived from 4–acyl–5–pyrazolone and amino acid ester, closely related to the title compound, has been reported (Zhang et al., 2005).

The molecular structure of the title compound is presented in Fig. 1, and the numerical results are given in tables below. Atoms O1, C9, C8, C11 and N4 form a plane, the largest deviation being 0.021 (4) Å for atom C11. The dihedral angle between this mean plane and the pyrazolone ring is 1.2 (1)°, indicating that they are essentially coplanar, as seen in 4–{[3,4–dihydro–5–methyl–3–oxo–2–phenyl–2H–pyrazol–4–ylidene]–(phenyl)methyl]amino}–1,5–dimethyl–2–phenyl–1H–pyrazol–3(2H)–one [3.56 (3)°; Wang et al., 2003]. The bond lengths within central part of the molecule lie between typical single- and double- bond lengths, indicating extensive conjugation. A strong intramolecular N—H···O hydrogen bond is observed, stabilizing the enamine-keto tautomeric form. In the crystal structure, intermolecular C1—H1···O4 hydrogen bonds link the molecules into chains, shown in Fig. 2.

For general background to Schiff bases in coordination chemistry, see: Wu et al. (1993); Harrop et al. (2003); Habibi et al. (2007). For antibacterial properties of Schiff bases derived from 4-acyl-5-pyrazolone and their metal complexes, see: Li et al. (1997, 2004). For the antibacterial and biological activity of amino acid esters, see: Xiong et al. (1993). For related structures, see: Wang et al. (2003); Zhang et al. (2005). For synthetic details, see: Remya et al. (2005). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The chain formed by the intermolecular C—H···O hydrogen bonds (shown by dashed lines).
Methyl 2-{[(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4- ylidene)(4-nitrophenyl)methyl]amino}-3-phenylpropanoate top
Crystal data top
C27H24N4O5F(000) = 508
Mr = 484.50Dx = 1.312 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2125 reflections
a = 6.7713 (16) Åθ = 2.5–22.4°
b = 8.917 (2) ŵ = 0.09 mm1
c = 20.339 (5) ÅT = 296 K
β = 92.489 (4)°Block, colourless
V = 1226.9 (5) Å30.20 × 0.16 × 0.12 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2315 independent reflections
Radiation source: fine-focus sealed tube1855 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scanθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 87
Tmin = 0.980, Tmax = 0.989k = 1010
6305 measured reflectionsl = 2416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.0914P]
where P = (Fo2 + 2Fc2)/3
2315 reflections(Δ/σ)max < 0.001
327 parametersΔρmax = 0.26 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C27H24N4O5V = 1226.9 (5) Å3
Mr = 484.50Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.7713 (16) ŵ = 0.09 mm1
b = 8.917 (2) ÅT = 296 K
c = 20.339 (5) Å0.20 × 0.16 × 0.12 mm
β = 92.489 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
2315 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1855 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.989Rint = 0.021
6305 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.106H-atom parameters constrained
S = 1.07Δρmax = 0.26 e Å3
2315 reflectionsΔρmin = 0.15 e Å3
327 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2384 (4)0.1136 (2)0.34497 (13)0.0631 (7)
O20.7694 (4)0.4350 (4)0.12919 (15)0.0803 (9)
O30.5325 (5)0.4977 (5)0.06804 (18)0.1058 (12)
O40.3079 (4)0.3075 (3)0.31388 (15)0.0683 (7)
O50.4842 (5)0.3580 (4)0.22187 (18)0.1000 (11)
N10.3237 (4)0.1290 (3)0.38007 (13)0.0506 (7)
N20.2558 (4)0.2758 (3)0.36907 (15)0.0579 (7)
N30.5986 (4)0.4262 (4)0.11306 (16)0.0645 (8)
N40.0863 (4)0.0999 (3)0.26012 (15)0.0551 (7)
H40.00860.15100.28610.066*
C10.6183 (5)0.0145 (5)0.4130 (2)0.0709 (11)
H10.57850.09090.38420.085*
C20.7941 (6)0.0259 (6)0.4492 (2)0.0879 (14)
H20.87270.11040.44440.105*
C30.8550 (7)0.0833 (8)0.4916 (3)0.1011 (17)
H30.97440.07470.51560.121*
C40.7377 (8)0.2064 (9)0.4983 (3)0.118 (2)
H4A0.77760.28030.52830.142*
C50.5612 (7)0.2250 (6)0.4621 (2)0.0901 (15)
H50.48520.31120.46610.108*
C60.5025 (5)0.1097 (4)0.41960 (16)0.0534 (8)
C70.1051 (5)0.2653 (4)0.32700 (17)0.0508 (8)
C80.0671 (4)0.1120 (3)0.30814 (15)0.0437 (7)
C90.2132 (4)0.0246 (4)0.34512 (16)0.0474 (8)
C100.0044 (6)0.4069 (4)0.3050 (3)0.0824 (13)
H10A0.05560.48930.33100.124*
H10B0.13520.39790.31060.124*
H10C0.02810.42450.25950.124*
C110.0733 (4)0.0480 (4)0.26523 (15)0.0449 (8)
C120.2120 (4)0.1434 (3)0.22373 (15)0.0423 (7)
C130.1507 (5)0.2096 (4)0.16670 (17)0.0514 (8)
H130.02360.19150.15300.062*
C140.2753 (5)0.3019 (4)0.12978 (17)0.0545 (9)
H140.23390.34650.09140.065*
C150.4630 (4)0.3264 (4)0.15121 (17)0.0489 (8)
C160.5284 (5)0.2614 (4)0.20677 (18)0.0593 (9)
H160.65620.27910.21990.071*
C170.4023 (5)0.1686 (4)0.24343 (17)0.0564 (9)
H170.44540.12310.28140.068*
C180.2165 (5)0.1856 (4)0.21573 (19)0.0591 (9)
H180.30200.11330.19200.071*
C190.3515 (6)0.2928 (4)0.2507 (2)0.0636 (10)
C200.4402 (7)0.4046 (5)0.3506 (3)0.0948 (15)
H20A0.56920.35990.35090.142*
H20B0.38840.41590.39500.142*
H20C0.44940.50120.32990.142*
C210.0987 (6)0.2697 (4)0.1635 (2)0.0731 (11)
H21A0.00130.33390.18570.088*
H21B0.18840.33310.13750.088*
C220.0040 (6)0.1652 (4)0.1186 (2)0.0635 (10)
C230.0986 (7)0.0965 (5)0.0657 (2)0.0777 (12)
H230.23110.11940.05700.093*
C240.0046 (8)0.0060 (6)0.0261 (2)0.0874 (14)
H240.07430.05080.00910.105*
C250.1903 (8)0.0413 (6)0.0387 (3)0.0911 (14)
H250.25280.11090.01260.109*
C260.2911 (7)0.0259 (6)0.0894 (3)0.0903 (14)
H260.42380.00280.09760.108*
C270.2016 (6)0.1274 (5)0.1291 (2)0.0816 (13)
H270.27460.17170.16370.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0668 (15)0.0396 (15)0.0809 (17)0.0042 (11)0.0176 (12)0.0071 (12)
O20.0508 (15)0.087 (2)0.103 (2)0.0157 (14)0.0078 (14)0.0168 (17)
O30.086 (2)0.128 (3)0.104 (2)0.033 (2)0.0136 (17)0.062 (2)
O40.0676 (15)0.0495 (15)0.088 (2)0.0010 (13)0.0039 (14)0.0021 (14)
O50.093 (2)0.072 (2)0.132 (3)0.0315 (19)0.0316 (19)0.004 (2)
N10.0474 (14)0.0488 (16)0.0552 (16)0.0002 (13)0.0033 (12)0.0010 (14)
N20.0578 (16)0.0465 (16)0.0688 (19)0.0048 (14)0.0034 (14)0.0125 (14)
N30.0571 (18)0.064 (2)0.072 (2)0.0105 (15)0.0038 (15)0.0147 (17)
N40.0621 (17)0.0311 (15)0.0703 (19)0.0030 (13)0.0170 (14)0.0037 (13)
C10.066 (2)0.071 (3)0.074 (3)0.007 (2)0.0150 (19)0.001 (2)
C20.064 (2)0.095 (4)0.102 (3)0.009 (3)0.020 (2)0.012 (3)
C30.062 (3)0.145 (5)0.094 (4)0.008 (3)0.028 (2)0.003 (4)
C40.089 (4)0.153 (6)0.109 (4)0.005 (4)0.039 (3)0.045 (4)
C50.073 (3)0.104 (4)0.092 (3)0.004 (2)0.018 (2)0.034 (3)
C60.0458 (17)0.070 (2)0.0444 (19)0.0047 (18)0.0009 (13)0.0002 (17)
C70.0468 (18)0.0410 (17)0.065 (2)0.0064 (15)0.0035 (15)0.0057 (16)
C80.0424 (16)0.0355 (17)0.0530 (19)0.0032 (14)0.0005 (13)0.0001 (14)
C90.0440 (18)0.046 (2)0.052 (2)0.0001 (14)0.0027 (14)0.0001 (15)
C100.080 (3)0.046 (2)0.119 (4)0.016 (2)0.025 (2)0.018 (2)
C110.0440 (17)0.0440 (19)0.0469 (19)0.0036 (14)0.0046 (14)0.0020 (14)
C120.0439 (16)0.0315 (15)0.0514 (18)0.0007 (13)0.0008 (13)0.0007 (14)
C130.0421 (17)0.0472 (18)0.065 (2)0.0044 (15)0.0073 (15)0.0034 (17)
C140.0540 (19)0.053 (2)0.057 (2)0.0031 (16)0.0082 (15)0.0122 (16)
C150.0441 (16)0.0418 (18)0.060 (2)0.0067 (14)0.0031 (15)0.0012 (15)
C160.0439 (17)0.069 (2)0.065 (2)0.0101 (18)0.0069 (15)0.011 (2)
C170.0525 (18)0.060 (2)0.057 (2)0.0054 (17)0.0089 (15)0.0169 (16)
C180.067 (2)0.0341 (17)0.075 (3)0.0029 (16)0.0178 (19)0.0030 (17)
C190.064 (2)0.0346 (17)0.092 (3)0.0031 (17)0.007 (2)0.0013 (19)
C200.088 (3)0.063 (3)0.136 (4)0.007 (2)0.036 (3)0.011 (3)
C210.086 (3)0.045 (2)0.087 (3)0.0055 (19)0.007 (2)0.009 (2)
C220.072 (2)0.047 (2)0.070 (2)0.0085 (18)0.0045 (19)0.0138 (18)
C230.086 (3)0.076 (3)0.070 (3)0.012 (2)0.016 (2)0.016 (2)
C240.117 (4)0.091 (4)0.053 (2)0.014 (3)0.003 (2)0.005 (2)
C250.106 (4)0.088 (3)0.081 (3)0.011 (3)0.025 (3)0.003 (3)
C260.067 (3)0.091 (3)0.113 (4)0.007 (3)0.012 (3)0.003 (3)
C270.069 (3)0.079 (3)0.096 (3)0.017 (2)0.011 (2)0.002 (3)
Geometric parameters (Å, º) top
O1—C91.244 (4)C11—C121.500 (4)
O2—N31.218 (4)C12—C131.381 (4)
O3—N31.217 (4)C12—C171.384 (4)
O4—C191.313 (5)C13—C141.378 (5)
O4—C201.473 (5)C13—H130.9300
O5—C191.201 (4)C14—C151.379 (4)
N1—C91.374 (4)C14—H140.9300
N1—N21.403 (4)C15—C161.361 (5)
N1—C61.434 (4)C16—C171.384 (5)
N2—C71.306 (4)C16—H160.9300
N3—C151.474 (4)C17—H170.9300
N4—C111.326 (4)C18—C191.520 (6)
N4—C181.452 (4)C18—C211.550 (6)
N4—H40.8600C18—H180.9800
C1—C61.367 (6)C20—H20A0.9600
C1—C21.376 (5)C20—H20B0.9600
C1—H10.9300C20—H20C0.9600
C2—C31.352 (8)C21—C221.497 (6)
C2—H20.9300C21—H21A0.9700
C3—C41.365 (8)C21—H21B0.9700
C3—H30.9300C22—C271.387 (6)
C4—C51.386 (7)C22—C231.396 (6)
C4—H4A0.9300C23—C241.391 (7)
C5—C61.391 (6)C23—H230.9300
C5—H50.9300C24—C251.370 (7)
C7—C81.440 (5)C24—H240.9300
C7—C101.494 (5)C25—C261.352 (7)
C8—C111.385 (4)C25—H250.9300
C8—C91.445 (4)C26—C271.371 (7)
C10—H10A0.9600C26—H260.9300
C10—H10B0.9600C27—H270.9300
C10—H10C0.9600
C19—O4—C20116.1 (3)C12—C13—H13119.5
C9—N1—N2112.5 (2)C13—C14—C15118.3 (3)
C9—N1—C6129.5 (3)C13—C14—H14120.9
N2—N1—C6117.7 (3)C15—C14—H14120.9
C7—N2—N1106.2 (3)C16—C15—C14122.2 (3)
O3—N3—O2123.6 (3)C16—C15—N3118.5 (3)
O3—N3—C15118.1 (3)C14—C15—N3119.4 (3)
O2—N3—C15118.2 (3)C15—C16—C17119.1 (3)
C11—N4—C18127.5 (3)C15—C16—H16120.4
C11—N4—H4116.3C17—C16—H16120.4
C18—N4—H4116.3C16—C17—C12120.1 (3)
C6—C1—C2119.6 (4)C16—C17—H17119.9
C6—C1—H1120.2C12—C17—H17119.9
C2—C1—H1120.2N4—C18—C19113.7 (3)
C3—C2—C1121.3 (5)N4—C18—C21111.3 (3)
C3—C2—H2119.3C19—C18—C21110.8 (3)
C1—C2—H2119.3N4—C18—H18106.9
C2—C3—C4118.7 (4)C19—C18—H18106.9
C2—C3—H3120.6C21—C18—H18106.9
C4—C3—H3120.6O5—C19—O4124.1 (4)
C3—C4—C5122.3 (5)O5—C19—C18121.9 (4)
C3—C4—H4A118.8O4—C19—C18114.0 (3)
C5—C4—H4A118.8O4—C20—H20A109.5
C4—C5—C6117.3 (5)O4—C20—H20B109.5
C4—C5—H5121.4H20A—C20—H20B109.5
C6—C5—H5121.4O4—C20—H20C109.5
C1—C6—C5120.7 (3)H20A—C20—H20C109.5
C1—C6—N1121.1 (3)H20B—C20—H20C109.5
C5—C6—N1118.1 (4)C22—C21—C18112.6 (3)
N2—C7—C8111.6 (3)C22—C21—H21A109.1
N2—C7—C10117.9 (3)C18—C21—H21A109.1
C8—C7—C10130.4 (3)C22—C21—H21B109.1
C11—C8—C7132.0 (3)C18—C21—H21B109.1
C11—C8—C9122.8 (3)H21A—C21—H21B107.8
C7—C8—C9105.3 (3)C27—C22—C23117.2 (4)
O1—C9—N1126.9 (3)C27—C22—C21121.8 (4)
O1—C9—C8128.6 (3)C23—C22—C21120.9 (4)
N1—C9—C8104.4 (3)C24—C23—C22120.6 (4)
C7—C10—H10A109.5C24—C23—H23119.7
C7—C10—H10B109.5C22—C23—H23119.7
H10A—C10—H10B109.5C25—C24—C23120.3 (5)
C7—C10—H10C109.5C25—C24—H24119.9
H10A—C10—H10C109.5C23—C24—H24119.9
H10B—C10—H10C109.5C26—C25—C24119.4 (5)
N4—C11—C8120.0 (3)C26—C25—H25120.3
N4—C11—C12118.9 (3)C24—C25—H25120.3
C8—C11—C12121.1 (3)C25—C26—C27121.4 (5)
C13—C12—C17119.4 (3)C25—C26—H26119.3
C13—C12—C11120.7 (3)C27—C26—H26119.3
C17—C12—C11119.8 (3)C26—C27—C22121.2 (4)
C14—C13—C12120.9 (3)C26—C27—H27119.4
C14—C13—H13119.5C22—C27—H27119.4
C9—N1—N2—C70.7 (4)N4—C11—C12—C1781.3 (4)
C6—N1—N2—C7173.7 (3)C8—C11—C12—C1799.0 (4)
C6—C1—C2—C30.3 (7)C17—C12—C13—C141.0 (5)
C1—C2—C3—C40.3 (9)C11—C12—C13—C14177.5 (3)
C2—C3—C4—C51.7 (10)C12—C13—C14—C150.1 (5)
C3—C4—C5—C62.4 (9)C13—C14—C15—C160.7 (5)
C2—C1—C6—C50.5 (6)C13—C14—C15—N3179.3 (3)
C2—C1—C6—N1176.6 (4)O3—N3—C15—C16171.5 (4)
C4—C5—C6—C11.7 (7)O2—N3—C15—C167.0 (5)
C4—C5—C6—N1178.0 (4)O3—N3—C15—C148.5 (5)
C9—N1—C6—C118.5 (5)O2—N3—C15—C14173.0 (3)
N2—N1—C6—C1154.8 (3)C14—C15—C16—C170.6 (6)
C9—N1—C6—C5165.3 (4)N3—C15—C16—C17179.4 (3)
N2—N1—C6—C521.4 (5)C15—C16—C17—C120.3 (6)
N1—N2—C7—C80.2 (4)C13—C12—C17—C161.1 (5)
N1—N2—C7—C10178.9 (3)C11—C12—C17—C16177.4 (3)
N2—C7—C8—C11179.3 (3)C11—N4—C18—C19121.9 (4)
C10—C7—C8—C110.9 (7)C11—N4—C18—C21112.2 (4)
N2—C7—C8—C91.0 (4)C20—O4—C19—O53.5 (5)
C10—C7—C8—C9179.4 (4)C20—O4—C19—C18177.1 (3)
N2—N1—C9—O1179.9 (3)N4—C18—C19—O5170.7 (4)
C6—N1—C9—O16.3 (5)C21—C18—C19—O563.1 (5)
N2—N1—C9—C81.3 (3)N4—C18—C19—O410.0 (4)
C6—N1—C9—C8172.3 (3)C21—C18—C19—O4116.3 (4)
C11—C8—C9—O10.4 (5)N4—C18—C21—C2264.3 (4)
C7—C8—C9—O1179.9 (3)C19—C18—C21—C22168.2 (3)
C11—C8—C9—N1179.0 (3)C18—C21—C22—C2797.0 (5)
C7—C8—C9—N11.3 (3)C18—C21—C22—C2380.1 (5)
C18—N4—C11—C8176.7 (3)C27—C22—C23—C240.4 (6)
C18—N4—C11—C123.1 (5)C21—C22—C23—C24176.9 (4)
C7—C8—C11—N4174.9 (4)C22—C23—C24—C250.3 (7)
C9—C8—C11—N44.7 (5)C23—C24—C25—C260.9 (7)
C7—C8—C11—C125.3 (5)C24—C25—C26—C270.8 (7)
C9—C8—C11—C12175.1 (3)C25—C26—C27—C220.1 (7)
N4—C11—C12—C13100.2 (4)C23—C22—C27—C260.5 (6)
C8—C11—C12—C1379.5 (4)C21—C22—C27—C26176.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O10.862.042.738 (4)138
C1—H1···O10.932.413.001 (4)121
C20—H20A···O1i0.962.553.385 (5)145
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC27H24N4O5
Mr484.50
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)6.7713 (16), 8.917 (2), 20.339 (5)
β (°) 92.489 (4)
V3)1226.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.16 × 0.12
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.980, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
6305, 2315, 1855
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.07
No. of reflections2315
No. of parameters327
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.15

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O10.862.042.738 (4)138
C1—H1···O10.932.413.001 (4)121
C20—H20A···O1i0.962.553.385 (5)145.0
Symmetry code: (i) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds