Download citation
Download citation
link to html
In the title complex, [AuCl(C24H20NOP)], the ligand has N, P and O electron-donating atoms but the AuI atom is coordinated only by the `soft' P atom and an additional Cl atom in an almost linear fashion. Important geometrical parameters include Au—P = 2.2321 (13) Å, Au—Cl = 2.2820 (13) Å and P—Au—Cl = 176.49 (5)°. The furan ring is disordered over two positions in a 0.51 (2):0.49 (2) ratio.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536812050404/yk2081sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536812050404/yk2081Isup2.hkl
Contains datablock I

CCDC reference: 920193

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.009 Å
  • Disorder in main residue
  • R factor = 0.039
  • wR factor = 0.100
  • Data-to-parameter ratio = 18.5

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT973_ALERT_2_A Large Calcd. Positive Residual Density on Au2 2.08 eA-3
Author Response: This peak lies at 0.05 A from the Au2 atom and it cannot be approximated by any additional atom or by the disorder in Au2. This is apparently due to anomalous dispersion effects. The similar instance also emerged in a recent issue of Acta Cryst., E (F.Liu and F.Zhang, <i>Acta Cryst.</i>, 2011, E67, m525). The complex investigated here had a Sm atom which is significantly lighter than the Au atom.

Alert level C PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds ............... 0.0086 Ang PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 6 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 4 PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density 1.59 eA-3 PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density 1.55 eA-3 PLAT975_ALERT_2_C Positive Residual Density at 0.97A from N23 . 0.46 eA-3
Alert level G PLAT003_ALERT_2_G Number of Uiso or Uij Restrained Atom Sites .... 30 PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF ? PLAT128_ALERT_4_G Alternate Setting of Space-group P21/c ....... P21/n PLAT301_ALERT_3_G Note: Main Residue Disorder ................... 14 Perc. PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 240 PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 7 PLAT960_ALERT_3_G Number of Intensities with I .LT. - 2*sig(I) ... 3
1 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 6 ALERT level C = Check. Ensure it is not caused by an omission or oversight 7 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 6 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

There is a growing interest in the co-ordination chemistry of ligands containing both hard (N donor) and soft (P donor) Lewis bases. Such ligands have the potential to bind to soft metal centers such as those of the platinum group metals strongly via phosphorus and weakly via nitrogen, which allows for the displacement of the chelating N-moiety. This is very desirable in homogenous catalytic reactions and the catalytic application of P—N based ligands is being thoroughly investigated by our group.

Among the 'hard' donor type atoms, the co-ordination chemistry of gold(I) shows a distinct paucity in the literature. In this scenario the potentially bidentate ligand is chelated to the metal through only the phosphorus atom (Fig. 1). The gold complex showed a closely linear P— Au—Cl system (bond angle of 176.49°). Another important geometrical parameter includes the C22—N23 = 1.254 (6) Å which is consistent with C=N double bonding. The Au—P bond distance of 2.2321 (13) Å agrees with that reported by Williams et al..

Related literature top

For general background to the title compound, see: Shaw (1999); Barnard et al. (2004); Nomiya et al. (2003). For the synthesis of the starting materials, see: Mogorosi et al. (2011); Uson & Laguna (1986). For similar compounds, see: Chiririwa & Muller (2012); Williams et al. (2007). For their applications, see: Chiririwa et al. (2013).

Experimental top

To a dry CH2Cl2 (10 ml) solution of the precursor [Au(tht)Cl] (tht = tetrahydrothiophene) was added an equimolar amount of N-{(E)-[2-(diphenylphosphanyl)phenyl]methylidene}-2-furan-2-ylethanamine in CH2Cl2 (10 ml), and stirred at room temperature for 2 hrs. The solvent was reduced under reduced pressure and on addition of hexane, the product was filtered off and washed with Et2O (2 X 5 ml)and dried under vacuum for 4 hrs affording a yellow precipitate. Crystals suitable for X-ray structure determination were obtained by recrystallization from a CH2Cl2-hexane mixture at room temperature.

Refinement top

The methine and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for CH2 C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for CH. A disorder refinement model was applied to the furyl ring in the asymmetric unit. Geometrical (FLAT) restaraints were applied to keep the ring planar.Bond distance (DFIX) and distance similarity restraints (SADI) were applied to obtain reasonable geometries. Ellipsoid displacement (SIMU and DELU) restraints were also applied to the disordered moiety. Free variables were connected to the disordered component to add to unity.

Structure description top

There is a growing interest in the co-ordination chemistry of ligands containing both hard (N donor) and soft (P donor) Lewis bases. Such ligands have the potential to bind to soft metal centers such as those of the platinum group metals strongly via phosphorus and weakly via nitrogen, which allows for the displacement of the chelating N-moiety. This is very desirable in homogenous catalytic reactions and the catalytic application of P—N based ligands is being thoroughly investigated by our group.

Among the 'hard' donor type atoms, the co-ordination chemistry of gold(I) shows a distinct paucity in the literature. In this scenario the potentially bidentate ligand is chelated to the metal through only the phosphorus atom (Fig. 1). The gold complex showed a closely linear P— Au—Cl system (bond angle of 176.49°). Another important geometrical parameter includes the C22—N23 = 1.254 (6) Å which is consistent with C=N double bonding. The Au—P bond distance of 2.2321 (13) Å agrees with that reported by Williams et al..

For general background to the title compound, see: Shaw (1999); Barnard et al. (2004); Nomiya et al. (2003). For the synthesis of the starting materials, see: Mogorosi et al. (2011); Uson & Laguna (1986). For similar compounds, see: Chiririwa & Muller (2012); Williams et al. (2007). For their applications, see: Chiririwa et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of [Au(C24H20NOP)Cl] showing the atom labelling scheme and displacement ellipsoids drawn at the 40% probability level.
Chlorido{[(E)-2-(diphenylphosphanyl)benzylidene](furan-2- ylmethyl)amine-κP}gold(I) top
Crystal data top
[AuCl(C24H20NOP)]F(000) = 1160
Mr = 601.80Dx = 1.783 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5534 reflections
a = 13.4559 (4) Åθ = 3.6–28.3°
b = 10.3917 (2) ŵ = 6.77 mm1
c = 17.2641 (4) ÅT = 173 K
β = 111.751 (1)°Plate, yellow
V = 2242.16 (9) Å30.16 × 0.11 × 0.02 mm
Z = 4
Data collection top
Bruker APEXII 4K CCD
diffractometer
5536 independent reflections
Radiation source: fine-focus sealed tube4175 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
Detector resolution: 0 pixels mm-1θmax = 28.3°, θmin = 3.1°
0.5° ω scans, 20sh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
k = 1313
Tmin = 0.411, Tmax = 0.877l = 2323
74340 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0574P)2]
where P = (Fo2 + 2Fc2)/3
5536 reflections(Δ/σ)max = 0.003
299 parametersΔρmax = 2.27 e Å3
240 restraintsΔρmin = 1.52 e Å3
Crystal data top
[AuCl(C24H20NOP)]V = 2242.16 (9) Å3
Mr = 601.80Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.4559 (4) ŵ = 6.77 mm1
b = 10.3917 (2) ÅT = 173 K
c = 17.2641 (4) Å0.16 × 0.11 × 0.02 mm
β = 111.751 (1)°
Data collection top
Bruker APEXII 4K CCD
diffractometer
5536 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4175 reflections with I > 2σ(I)
Tmin = 0.411, Tmax = 0.877Rint = 0.100
74340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039240 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.07Δρmax = 2.27 e Å3
5536 reflectionsΔρmin = 1.52 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.67118 (12)0.07954 (12)0.82704 (9)0.0504 (3)
Au20.537496 (15)0.068557 (17)0.801052 (11)0.03605 (9)
P30.40775 (10)0.21597 (12)0.76820 (7)0.0330 (3)
C40.3211 (4)0.1963 (5)0.8271 (3)0.0402 (11)
C50.2133 (4)0.2276 (6)0.7948 (4)0.0525 (14)
H50.18130.25700.73890.063*
C60.1517 (6)0.2161 (7)0.8440 (5)0.0707 (19)
H60.07750.23610.82130.085*
C70.1992 (7)0.1753 (6)0.9262 (5)0.075 (2)
H70.15760.16800.96000.090*
C80.3059 (7)0.1456 (6)0.9584 (4)0.0696 (19)
H80.33840.11871.01480.084*
C90.3670 (5)0.1546 (5)0.9092 (3)0.0543 (14)
H90.44060.13200.93180.065*
C100.3191 (4)0.2085 (5)0.6596 (3)0.0342 (10)
C110.2655 (4)0.3144 (5)0.6159 (3)0.0477 (13)
H110.27230.39540.64290.057*
C120.2017 (5)0.3020 (6)0.5326 (4)0.0626 (17)
H120.16440.37500.50260.075*
C130.1913 (5)0.1858 (6)0.4923 (3)0.0588 (16)
H130.14690.17880.43500.071*
C140.2447 (5)0.0805 (6)0.5347 (4)0.0561 (16)
H140.23950.00060.50680.067*
C150.3072 (4)0.0910 (5)0.6195 (3)0.0436 (12)
H150.34180.01690.64990.052*
C160.4594 (4)0.3787 (5)0.7951 (3)0.0326 (10)
C170.4287 (4)0.4506 (4)0.8500 (3)0.0373 (11)
H170.37430.41780.86720.045*
C180.4745 (5)0.5690 (4)0.8810 (4)0.0463 (13)
H180.45170.61570.91870.056*
C190.5530 (5)0.6175 (5)0.8564 (4)0.0522 (14)
H190.58600.69740.87780.063*
C200.5835 (5)0.5500 (5)0.8009 (4)0.0499 (14)
H200.63720.58560.78390.060*
C210.5394 (4)0.4311 (4)0.7681 (3)0.0392 (11)
C220.5774 (4)0.3688 (6)0.7093 (3)0.0458 (12)
H220.63420.40750.69770.055*
N230.5382 (3)0.2656 (4)0.6732 (3)0.0441 (10)
C240.5800 (5)0.2119 (7)0.6128 (4)0.0604 (16)
H24A0.59250.11840.62250.072*
H24B0.64900.25330.61970.072*
C250.5007 (5)0.2348 (6)0.5259 (4)0.0577 (15)
C260.478 (2)0.354 (2)0.5111 (14)0.069 (4)0.51 (2)
H260.50320.42790.54550.082*0.51 (2)
C270.4039 (18)0.344 (2)0.4285 (13)0.077 (4)0.51 (2)
H270.36070.41450.39990.092*0.51 (2)
C280.399 (2)0.235 (2)0.3948 (16)0.075 (5)0.51 (2)
H280.35210.20680.34130.090*0.51 (2)
O290.4960 (14)0.151 (2)0.4681 (13)0.062 (4)0.51 (2)
C28A0.3720 (18)0.3008 (19)0.4016 (13)0.058 (4)0.49 (2)
H28A0.31580.34660.36070.070*0.49 (2)
C27A0.418 (2)0.1871 (19)0.3925 (15)0.066 (4)0.49 (2)
H27A0.41140.14720.34130.079*0.49 (2)
C26A0.466 (3)0.150 (5)0.457 (3)0.070 (5)0.49 (2)
H26A0.48230.06070.46510.084*0.49 (2)
O29A0.4309 (12)0.3359 (15)0.4912 (11)0.072 (4)0.49 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0522 (8)0.0505 (8)0.0493 (8)0.0131 (6)0.0198 (7)0.0090 (6)
Au20.03944 (13)0.03606 (13)0.02786 (12)0.00058 (8)0.00691 (8)0.00152 (8)
P30.0335 (6)0.0360 (7)0.0249 (6)0.0020 (5)0.0057 (5)0.0002 (5)
C40.054 (3)0.036 (3)0.033 (3)0.013 (2)0.019 (2)0.007 (2)
C50.048 (3)0.062 (4)0.053 (3)0.019 (3)0.025 (3)0.016 (3)
C60.074 (4)0.075 (4)0.079 (5)0.032 (4)0.047 (4)0.038 (4)
C70.108 (5)0.067 (4)0.082 (5)0.039 (4)0.073 (5)0.034 (4)
C80.128 (6)0.049 (4)0.048 (4)0.021 (4)0.051 (4)0.010 (3)
C90.081 (4)0.048 (3)0.036 (3)0.009 (3)0.024 (3)0.003 (2)
C100.032 (2)0.039 (3)0.026 (2)0.011 (2)0.0051 (19)0.001 (2)
C110.054 (3)0.044 (3)0.033 (3)0.008 (2)0.002 (2)0.001 (2)
C120.059 (4)0.064 (4)0.044 (3)0.012 (3)0.005 (3)0.011 (3)
C130.054 (3)0.080 (4)0.030 (3)0.021 (3)0.000 (3)0.002 (3)
C140.053 (4)0.066 (4)0.040 (3)0.014 (3)0.007 (3)0.017 (3)
C150.041 (3)0.045 (3)0.040 (3)0.004 (2)0.009 (2)0.007 (2)
C160.030 (2)0.036 (2)0.025 (2)0.000 (2)0.0021 (19)0.002 (2)
C170.033 (3)0.033 (3)0.041 (3)0.0011 (19)0.008 (2)0.002 (2)
C180.052 (3)0.039 (3)0.041 (3)0.004 (2)0.009 (3)0.004 (2)
C190.062 (4)0.036 (3)0.047 (3)0.011 (3)0.007 (3)0.003 (3)
C200.053 (3)0.046 (3)0.043 (3)0.007 (2)0.008 (3)0.002 (2)
C210.039 (3)0.044 (3)0.028 (2)0.004 (2)0.004 (2)0.005 (2)
C220.042 (3)0.056 (3)0.038 (3)0.010 (3)0.014 (2)0.002 (3)
N230.040 (2)0.057 (3)0.036 (2)0.007 (2)0.015 (2)0.003 (2)
C240.067 (4)0.066 (4)0.049 (3)0.013 (3)0.022 (3)0.012 (3)
C250.070 (4)0.062 (4)0.046 (3)0.017 (3)0.027 (3)0.005 (3)
C260.088 (10)0.069 (9)0.044 (8)0.000 (9)0.020 (8)0.002 (7)
C270.091 (9)0.090 (9)0.048 (9)0.006 (8)0.025 (8)0.007 (8)
C280.089 (9)0.080 (10)0.045 (7)0.008 (9)0.012 (7)0.000 (9)
O290.082 (9)0.059 (5)0.038 (7)0.008 (8)0.016 (7)0.011 (5)
C28A0.075 (8)0.061 (9)0.044 (8)0.003 (7)0.026 (6)0.003 (7)
C27A0.092 (9)0.069 (9)0.036 (6)0.011 (8)0.022 (6)0.005 (7)
C26A0.084 (11)0.064 (8)0.044 (8)0.013 (9)0.005 (8)0.004 (7)
O29A0.077 (8)0.076 (7)0.063 (8)0.008 (6)0.026 (7)0.010 (6)
Geometric parameters (Å, º) top
Cl1—Au22.2820 (13)C17—H170.9500
Au2—P32.2321 (13)C18—C191.371 (8)
P3—C101.813 (5)C18—H180.9500
P3—C41.821 (5)C19—C201.368 (8)
P3—C161.822 (5)C19—H190.9500
C4—C51.386 (7)C20—C211.397 (7)
C4—C91.389 (7)C20—H200.9500
C5—C61.394 (8)C21—C221.446 (8)
C5—H50.9500C22—N231.254 (6)
C6—C71.390 (10)C22—H220.9500
C6—H60.9500N23—C241.467 (7)
C7—C81.370 (10)C24—C251.503 (9)
C7—H70.9500C24—H24A0.9900
C8—C91.386 (8)C24—H24B0.9900
C8—H80.9500C25—C261.28 (2)
C9—H90.9500C25—O291.30 (2)
C10—C111.377 (7)C25—O29A1.388 (17)
C10—C151.384 (7)C25—C26A1.41 (4)
C11—C121.381 (7)C26—C271.41 (3)
C11—H110.9500C26—H260.9500
C12—C131.374 (8)C27—C281.27 (3)
C12—H120.9500C27—H270.9500
C13—C141.364 (8)C28—O291.68 (4)
C13—H130.9500C28—H280.9500
C14—C151.396 (7)C28A—C27A1.37 (3)
C14—H140.9500C28A—O29A1.50 (2)
C15—H150.9500C28A—H28A0.9500
C16—C171.385 (7)C27A—C26A1.13 (5)
C16—C211.430 (7)C27A—H27A0.9500
C17—C181.391 (6)C26A—H26A0.9500
P3—Au2—Cl1176.49 (5)C19—C18—H18120.4
C10—P3—C4105.1 (2)C17—C18—H18120.4
C10—P3—C16110.2 (2)C20—C19—C18119.6 (5)
C4—P3—C16103.0 (2)C20—C19—H19120.2
C10—P3—Au2112.74 (17)C18—C19—H19120.2
C4—P3—Au2112.53 (18)C19—C20—C21123.1 (6)
C16—P3—Au2112.55 (15)C19—C20—H20118.5
C5—C4—C9119.1 (5)C21—C20—H20118.5
C5—C4—P3122.7 (4)C20—C21—C16117.5 (5)
C9—C4—P3118.1 (4)C20—C21—C22118.3 (5)
C4—C5—C6120.3 (6)C16—C21—C22124.2 (4)
C4—C5—H5119.8N23—C22—C21122.6 (5)
C6—C5—H5119.8N23—C22—H22118.7
C7—C6—C5119.7 (7)C21—C22—H22118.7
C7—C6—H6120.1C22—N23—C24118.5 (5)
C5—C6—H6120.1N23—C24—C25109.4 (5)
C8—C7—C6120.0 (6)N23—C24—H24A109.8
C8—C7—H7120.0C25—C24—H24A109.8
C6—C7—H7120.0N23—C24—H24B109.8
C7—C8—C9120.4 (6)C25—C24—H24B109.8
C7—C8—H8119.8H24A—C24—H24B108.2
C9—C8—H8119.8C26—C25—O29123.5 (16)
C8—C9—C4120.4 (6)O29—C25—O29A109.9 (13)
C8—C9—H9119.8C26—C25—C26A117 (2)
C4—C9—H9119.8O29A—C25—C26A98.6 (19)
C11—C10—C15119.4 (5)C26—C25—C24112.4 (12)
C11—C10—P3122.9 (4)O29—C25—C24118.2 (11)
C15—C10—P3117.7 (4)O29A—C25—C24131.8 (9)
C10—C11—C12119.6 (5)C26A—C25—C24129.2 (18)
C10—C11—H11120.2C25—C26—C2798.9 (17)
C12—C11—H11120.2C25—C26—H26130.5
C13—C12—C11121.1 (6)C27—C26—H26130.5
C13—C12—H12119.5C28—C27—C26115 (2)
C11—C12—H12119.5C28—C27—H27122.3
C14—C13—C12119.9 (5)C26—C27—H27122.3
C14—C13—H13120.1C27—C28—O29102.9 (19)
C12—C13—H13120.1C27—C28—H28128.6
C13—C14—C15119.6 (5)O29—C28—H28128.6
C13—C14—H14120.2C25—O29—C2892.1 (17)
C15—C14—H14120.2C27A—C28A—O29A103.8 (18)
C10—C15—C14120.4 (5)C27A—C28A—H28A128.1
C10—C15—H15119.8O29A—C28A—H28A128.1
C14—C15—H15119.8C26A—C27A—C28A107 (3)
C17—C16—C21118.0 (4)C26A—C27A—H27A126.3
C17—C16—P3119.5 (4)C28A—C27A—H27A126.3
C21—C16—P3122.2 (4)C27A—C26A—C25120 (4)
C16—C17—C18122.6 (5)C27A—C26A—H26A119.8
C16—C17—H17118.7C25—C26A—H26A119.8
C18—C17—H17118.7C25—O29A—C28A106.0 (13)
C19—C18—C17119.2 (5)
C10—P3—C4—C525.0 (5)C18—C19—C20—C211.0 (9)
C16—P3—C4—C590.5 (5)C19—C20—C21—C160.6 (8)
Au2—P3—C4—C5148.1 (4)C19—C20—C21—C22179.6 (5)
C10—P3—C4—C9158.5 (4)C17—C16—C21—C201.8 (7)
C16—P3—C4—C986.0 (4)P3—C16—C21—C20171.8 (4)
Au2—P3—C4—C935.4 (4)C17—C16—C21—C22178.3 (5)
C9—C4—C5—C60.6 (8)P3—C16—C21—C228.0 (7)
P3—C4—C5—C6177.1 (4)C20—C21—C22—N23175.9 (5)
C4—C5—C6—C71.2 (9)C16—C21—C22—N234.3 (8)
C5—C6—C7—C80.5 (9)C21—C22—N23—C24178.2 (5)
C6—C7—C8—C90.8 (9)C22—N23—C24—C25105.0 (6)
C7—C8—C9—C41.3 (9)N23—C24—C25—C2656.6 (14)
C5—C4—C9—C80.6 (8)N23—C24—C25—O29149.6 (13)
P3—C4—C9—C8176.0 (4)N23—C24—C25—O29A34.5 (12)
C4—P3—C10—C1185.8 (5)N23—C24—C25—C26A136 (2)
C16—P3—C10—C1124.6 (5)O29—C25—C26—C2728 (2)
Au2—P3—C10—C11151.3 (4)O29A—C25—C26—C2738 (3)
C4—P3—C10—C1595.4 (4)C26A—C25—C26—C2712 (3)
C16—P3—C10—C15154.3 (4)C24—C25—C26—C27179.4 (11)
Au2—P3—C10—C1527.6 (4)C25—C26—C27—C2811 (3)
C15—C10—C11—C120.8 (8)C26—C27—C28—O294 (3)
P3—C10—C11—C12178.1 (4)C26—C25—O29—C2829 (2)
C10—C11—C12—C130.3 (9)O29A—C25—O29—C282.8 (17)
C11—C12—C13—C140.2 (10)C26A—C25—O29—C2842 (11)
C12—C13—C14—C151.9 (9)C24—C25—O29—C28179.6 (11)
C11—C10—C15—C142.4 (8)C27—C28—O29—C2517 (2)
P3—C10—C15—C14176.5 (4)O29A—C28A—C27A—C26A15 (3)
C13—C14—C15—C103.0 (9)C28A—C27A—C26A—C2522 (5)
C10—P3—C16—C17112.4 (4)C26—C25—C26A—C27A1 (5)
C4—P3—C16—C170.7 (4)O29—C25—C26A—C27A119 (13)
Au2—P3—C16—C17120.8 (4)O29A—C25—C26A—C27A19 (4)
C10—P3—C16—C2174.0 (4)C24—C25—C26A—C27A168 (3)
C4—P3—C16—C21174.3 (4)C26—C25—O29A—C28A130 (4)
Au2—P3—C16—C2152.8 (4)O29—C25—O29A—C28A4.6 (16)
C21—C16—C17—C181.7 (7)C26A—C25—O29A—C28A6 (2)
P3—C16—C17—C18172.1 (4)C24—C25—O29A—C28A179.3 (9)
C16—C17—C18—C190.2 (8)C27A—C28A—O29A—C253.5 (18)
C17—C18—C19—C201.2 (8)

Experimental details

Crystal data
Chemical formula[AuCl(C24H20NOP)]
Mr601.80
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)13.4559 (4), 10.3917 (2), 17.2641 (4)
β (°) 111.751 (1)
V3)2242.16 (9)
Z4
Radiation typeMo Kα
µ (mm1)6.77
Crystal size (mm)0.16 × 0.11 × 0.02
Data collection
DiffractometerBruker APEXII 4K CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.411, 0.877
No. of measured, independent and
observed [I > 2σ(I)] reflections
74340, 5536, 4175
Rint0.100
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.100, 1.07
No. of reflections5536
No. of parameters299
No. of restraints240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.27, 1.52

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SAINT and XPREP (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 2012).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds