Crystals of the title compounds were grown from their hydrous melts or solutions. The crystal structure of iron(III) trinitrate hexahydrate {hexaaquairon(III) trinitrate, [Fe(H2O)6](NO3)3} is built up from [Fe(H2O)6]2+ octahedra and nitrate anions connected via hydrogen bonds. In iron(III) trinitrate pentahydrate {pentaaquanitratoiron(III) dinitrate, [Fe(NO3)(H2O)5](NO3)2}, one water molecule in the coordination octahedron of the FeIII atom is substituted by an O atom of a nitrate group. Iron(III) trinitrate tetrahydrate {triaquadinitratoiron(III) nitrate monohydrate, [Fe(NO3)2(H2O)3]NO3·H2O} represents the first example of a simple iron(III) nitrate with pentagonal-bipyramidal coordination geometry, where two bidentate nitrate anions and one water molecule form a pentagonal plane.
Supporting information
Iron(III) nitrate hexahydrate, (I), was prepared by recrystallizing
Fe(NO3)3·5H2O (2 g) in pure nitric acid (1 ml of 96.2% HNO3) and
concentrating the liquid by evaporation at reduced pressure. Colourless cubic
crystals of 2–4 mm size were obtained after 14 d. The selected crystal was
cut and embedded in perfluorinated ether for single-crystal diffraction
experiments.
Iron(III) nitrate pentahydrate, (II), was prepared according to the method of
Addison & Chapman (1965). Fe(NO3)3·9H2O (10 g) reacted under
vigorous stirring in an excess of liquid N2O4 (30 ml) for 3–5 d at room
temperature to form a pale-yellow powder of the pentahydrate. To gain bigger
crystals the N2O4 was removed under vacuum and the remaining mixture was
recrystallized in sealed glass tubes by warming up and subsequent cooling to
room temperature. A piece of the 1 mm-sized crystal was cut and embedded in
perfluorether to prevent contact with the air humidity before being mounted on
the single-crystal diffractometer.
Iron(III) nitrate tetrahydrate, (III), was prepared using a method analogous to
that used for the hexahydrate using Fe(NO3)3·5H2O (2 g) in pure
nitric acid (1 ml of 96.2% HNO3). Brown, needle-shaped crystals with a size
of approximately 5 × 0.2 mm were obtained after 14 d. One piece of a
crystal was cut and embedded in perfluorether before being mounted on the
single-crystal diffractometer.
All water H atoms were initially located in difference Fourier maps and then
their positions were refined with O—H and H···H distance restraints of
0.820 (5) and 1.30 (2) Å.
For all compounds, data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
(I) hexaaquairon(III) trinitrate
top
Crystal data top
[Fe(H2O)6](NO3)3 | Melting point: 317.68 K |
Mr = 349.98 | Mo Kα radiation, λ = 0.71073 Å |
Cubic, Ia3 | Cell parameters from 692 reflections |
Hall symbol: -I 2b 2c 3 | θ = 1.8–27.5° |
a = 13.7962 (2) Å | µ = 1.23 mm−1 |
V = 2625.90 (7) Å3 | T = 190 K |
Z = 8 | Cuboid, colourless |
F(000) = 1432 | 0.43 × 0.35 × 0.29 mm |
Dx = 1.771 Mg m−3 | |
Data collection top
Bruker X8 Kappa APEXII diffractometer | 505 independent reflections |
Radiation source: fine-focus sealed tube | 432 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ω and ϕ scans | θmax = 27.4°, θmin = 3.0° |
Absorption correction: numerical (APEX2; Bruker, 2005) | h = −17→17 |
Tmin = 0.623, Tmax = 0.715 | k = −17→17 |
9913 measured reflections | l = −17→17 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.081 | All H-atom parameters refined |
S = 1.09 | w = 1/[σ2(Fo2) + (0.042P)2 + 3.9345P] where P = (Fo2 + 2Fc2)/3 |
505 reflections | (Δ/σ)max < 0.001 |
39 parameters | Δρmax = 0.58 e Å−3 |
3 restraints | Δρmin = −0.38 e Å−3 |
Crystal data top
[Fe(H2O)6](NO3)3 | Z = 8 |
Mr = 349.98 | Mo Kα radiation |
Cubic, Ia3 | µ = 1.23 mm−1 |
a = 13.7962 (2) Å | T = 190 K |
V = 2625.90 (7) Å3 | 0.43 × 0.35 × 0.29 mm |
Data collection top
Bruker X8 Kappa APEXII diffractometer | 505 independent reflections |
Absorption correction: numerical (APEX2; Bruker, 2005) | 432 reflections with I > 2σ(I) |
Tmin = 0.623, Tmax = 0.715 | Rint = 0.027 |
9913 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.028 | 3 restraints |
wR(F2) = 0.081 | All H-atom parameters refined |
S = 1.09 | Δρmax = 0.58 e Å−3 |
505 reflections | Δρmin = −0.38 e Å−3 |
39 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Fe1 | 0.5000 | 0.5000 | 0.5000 | 0.0153 (2) | |
N1 | 0.71342 (19) | 0.5000 | 0.2500 | 0.0328 (6) | |
O1 | 0.62559 (9) | 0.56088 (9) | 0.46368 (9) | 0.0219 (3) | |
O2 | 0.62608 (19) | 0.5000 | 0.2500 | 0.0756 (11) | |
O3 | 0.75797 (11) | 0.51865 (15) | 0.32635 (12) | 0.0472 (5) | |
H1 | 0.6352 (19) | 0.6180 (6) | 0.4750 (18) | 0.050 (8)* | |
H2 | 0.6602 (16) | 0.5431 (18) | 0.4193 (14) | 0.055 (9)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Fe1 | 0.0153 (2) | 0.0153 (2) | 0.0153 (2) | −0.00036 (11) | −0.00036 (11) | −0.00036 (11) |
N1 | 0.0236 (13) | 0.0520 (16) | 0.0228 (12) | 0.000 | 0.000 | −0.0045 (10) |
O1 | 0.0201 (6) | 0.0200 (6) | 0.0256 (7) | −0.0039 (5) | 0.0063 (5) | −0.0039 (5) |
O2 | 0.0237 (12) | 0.167 (4) | 0.0363 (14) | 0.000 | 0.000 | −0.0196 (17) |
O3 | 0.0278 (8) | 0.0827 (14) | 0.0311 (9) | 0.0146 (7) | −0.0091 (6) | −0.0213 (8) |
Geometric parameters (Å, º) top
Fe1—O1i | 1.9896 (12) | Fe1—O1v | 1.9896 (12) |
Fe1—O1 | 1.9896 (12) | N1—O2 | 1.205 (4) |
Fe1—O1ii | 1.9896 (12) | N1—O3 | 1.246 (2) |
Fe1—O1iii | 1.9896 (12) | N1—O3vi | 1.246 (2) |
Fe1—O1iv | 1.9896 (12) | | |
| | | |
O1i—Fe1—O1 | 87.60 (5) | O1iii—Fe1—O1iv | 180.00 (6) |
O1i—Fe1—O1ii | 180.0 | O1i—Fe1—O1v | 92.40 (5) |
O1—Fe1—O1ii | 92.40 (5) | O1—Fe1—O1v | 180.00 (6) |
O1i—Fe1—O1iii | 87.60 (5) | O1ii—Fe1—O1v | 87.60 (5) |
O1—Fe1—O1iii | 87.60 (5) | O1iii—Fe1—O1v | 92.40 (5) |
O1ii—Fe1—O1iii | 92.40 (5) | O1iv—Fe1—O1v | 87.60 (5) |
O1i—Fe1—O1iv | 92.40 (5) | O2—N1—O3 | 119.55 (13) |
O1—Fe1—O1iv | 92.40 (5) | O2—N1—O3vi | 119.55 (13) |
O1ii—Fe1—O1iv | 87.60 (5) | O3—N1—O3vi | 120.9 (3) |
Symmetry codes: (i) y, z, x; (ii) −y+1, −z+1, −x+1; (iii) z, x, y; (iv) −z+1, −x+1, −y+1; (v) −x+1, −y+1, −z+1; (vi) x, −y+1, −z+1/2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H2···O3 | 0.82 (1) | 1.89 (1) | 2.695 (2) | 169 (3) |
O1—H1···O3vii | 0.82 (1) | 1.89 (1) | 2.6946 (19) | 169 (3) |
Symmetry code: (vii) −z+1, −x+3/2, y. |
(II) pentaaquanitratoiron dinitrate
top
Crystal data top
[Fe(NO3)(H2O)5](NO3)2 | Z = 2 |
Mr = 331.96 | F(000) = 338 |
Triclinic, P1 | Dx = 2.125 Mg m−3 |
Hall symbol: -P 1 | Melting point: 321.34 K |
a = 6.7693 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.0692 (4) Å | Cell parameters from 756 reflections |
c = 11.6734 (6) Å | θ = 1.8–27.5° |
α = 85.568 (2)° | µ = 1.55 mm−1 |
β = 80.655 (1)° | T = 100 K |
γ = 70.279 (2)° | Parallelepiped, yellow |
V = 518.72 (5) Å3 | 0.47 × 0.35 × 0.23 mm |
Data collection top
Bruker X8 Kappa APEXII diffractometer | 2373 independent reflections |
Radiation source: fine-focus sealed tube | 2293 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
ω and ϕ scans | θmax = 27.5°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | h = −8→8 |
Tmin = 0.528, Tmax = 0.716 | k = −9→9 |
9108 measured reflections | l = −15→15 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.059 | All H-atom parameters refined |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0403P)2 + 0.2256P] where P = (Fo2 + 2Fc2)/3 |
2373 reflections | (Δ/σ)max = 0.001 |
203 parameters | Δρmax = 0.46 e Å−3 |
14 restraints | Δρmin = −0.30 e Å−3 |
Crystal data top
[Fe(NO3)(H2O)5](NO3)2 | γ = 70.279 (2)° |
Mr = 331.96 | V = 518.72 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.7693 (4) Å | Mo Kα radiation |
b = 7.0692 (4) Å | µ = 1.55 mm−1 |
c = 11.6734 (6) Å | T = 100 K |
α = 85.568 (2)° | 0.47 × 0.35 × 0.23 mm |
β = 80.655 (1)° | |
Data collection top
Bruker X8 Kappa APEXII diffractometer | 2373 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 2293 reflections with I > 2σ(I) |
Tmin = 0.528, Tmax = 0.716 | Rint = 0.017 |
9108 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.019 | 14 restraints |
wR(F2) = 0.059 | All H-atom parameters refined |
S = 1.02 | Δρmax = 0.46 e Å−3 |
2373 reflections | Δρmin = −0.30 e Å−3 |
203 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. Short inter D···A contact of 2.82 Angstroem for O7 and O9:
Nitrate oxygen atoms O7 and O9 are not directly connected via hydrogen
bond, but via water hydrogen atoms. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Fe1 | 0.27910 (3) | 0.72465 (2) | 0.252494 (14) | 0.00802 (7) | |
N1 | 0.64486 (17) | 0.34386 (16) | 0.22605 (9) | 0.0095 (2) | |
N2 | 0.21421 (17) | 0.28547 (16) | 0.03571 (9) | 0.0110 (2) | |
N3 | 0.26584 (18) | 0.22095 (16) | 0.46374 (9) | 0.0104 (2) | |
O1 | 0.21908 (16) | 0.79284 (14) | 0.08948 (8) | 0.01410 (19) | |
O2 | 0.06635 (16) | 0.58186 (15) | 0.28405 (9) | 0.0159 (2) | |
O3 | 0.04208 (15) | 0.97229 (13) | 0.30303 (8) | 0.01167 (18) | |
O4 | 0.50110 (15) | 0.85616 (14) | 0.22573 (8) | 0.01217 (19) | |
O5 | 0.33240 (15) | 0.69201 (15) | 0.41828 (8) | 0.01303 (19) | |
O6 | 0.46892 (14) | 0.45797 (13) | 0.19217 (8) | 0.01159 (18) | |
O7 | 0.71829 (15) | 0.39903 (14) | 0.30153 (8) | 0.01362 (19) | |
O8 | 0.73077 (15) | 0.17968 (14) | 0.17749 (8) | 0.01314 (19) | |
O9 | 0.28024 (15) | 0.31797 (15) | 0.54734 (8) | 0.0148 (2) | |
O10 | 0.08770 (15) | 0.21098 (15) | 0.45452 (8) | 0.0151 (2) | |
O11 | 0.42580 (16) | 0.14084 (15) | 0.39382 (8) | 0.0147 (2) | |
O12 | 0.23681 (16) | 0.44044 (14) | −0.01346 (8) | 0.0150 (2) | |
O13 | 0.14044 (16) | 0.27776 (14) | 0.14008 (8) | 0.0151 (2) | |
O14 | 0.26678 (16) | 0.12656 (14) | −0.02350 (8) | 0.0154 (2) | |
H1 | −0.0471 (18) | 0.615 (3) | 0.3272 (15) | 0.030 (5)* | |
H2 | 0.070 (3) | 0.497 (3) | 0.2443 (17) | 0.033 (6)* | |
H3 | 0.240 (3) | 0.8862 (19) | 0.0494 (14) | 0.028 (5)* | |
H4 | 0.230 (4) | 0.704 (2) | 0.0456 (14) | 0.037 (6)* | |
H5 | −0.037 (2) | 1.038 (2) | 0.2578 (13) | 0.025 (5)* | |
H6 | 0.055 (4) | 1.052 (3) | 0.3462 (15) | 0.042 (6)* | |
H7 | 0.579 (3) | 0.858 (3) | 0.1647 (10) | 0.030 (5)* | |
H8 | 0.487 (3) | 0.9567 (19) | 0.2603 (15) | 0.031 (5)* | |
H9 | 0.4433 (17) | 0.688 (3) | 0.4387 (16) | 0.032 (5)* | |
H10 | 0.248 (3) | 0.674 (3) | 0.4724 (12) | 0.033 (6)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Fe1 | 0.00843 (11) | 0.00710 (11) | 0.00873 (11) | −0.00283 (8) | −0.00120 (7) | −0.00029 (7) |
N1 | 0.0088 (5) | 0.0093 (5) | 0.0101 (5) | −0.0032 (4) | 0.0000 (4) | −0.0005 (4) |
N2 | 0.0100 (5) | 0.0113 (5) | 0.0122 (5) | −0.0040 (4) | −0.0017 (4) | −0.0011 (4) |
N3 | 0.0134 (5) | 0.0086 (5) | 0.0096 (5) | −0.0040 (4) | −0.0018 (4) | 0.0003 (4) |
O1 | 0.0216 (5) | 0.0107 (4) | 0.0107 (4) | −0.0053 (4) | −0.0046 (4) | −0.0002 (3) |
O2 | 0.0139 (5) | 0.0143 (5) | 0.0208 (5) | −0.0084 (4) | 0.0056 (4) | −0.0080 (4) |
O3 | 0.0129 (4) | 0.0095 (4) | 0.0115 (4) | −0.0010 (3) | −0.0041 (3) | −0.0013 (3) |
O4 | 0.0150 (5) | 0.0126 (4) | 0.0108 (4) | −0.0083 (4) | 0.0019 (4) | −0.0031 (3) |
O5 | 0.0099 (4) | 0.0184 (5) | 0.0100 (4) | −0.0042 (4) | −0.0006 (3) | 0.0014 (4) |
O6 | 0.0093 (4) | 0.0100 (4) | 0.0142 (4) | −0.0005 (3) | −0.0034 (3) | −0.0015 (3) |
O7 | 0.0134 (5) | 0.0143 (4) | 0.0145 (5) | −0.0045 (4) | −0.0041 (4) | −0.0048 (4) |
O8 | 0.0131 (4) | 0.0093 (4) | 0.0152 (5) | −0.0004 (3) | −0.0022 (4) | −0.0048 (3) |
O9 | 0.0151 (5) | 0.0190 (5) | 0.0118 (4) | −0.0067 (4) | −0.0006 (4) | −0.0074 (4) |
O10 | 0.0124 (4) | 0.0185 (5) | 0.0158 (5) | −0.0060 (4) | −0.0018 (4) | −0.0052 (4) |
O11 | 0.0150 (5) | 0.0164 (5) | 0.0121 (4) | −0.0061 (4) | 0.0037 (4) | −0.0051 (4) |
O12 | 0.0208 (5) | 0.0118 (4) | 0.0142 (5) | −0.0087 (4) | −0.0015 (4) | 0.0014 (3) |
O13 | 0.0200 (5) | 0.0161 (5) | 0.0103 (4) | −0.0091 (4) | 0.0028 (4) | −0.0024 (4) |
O14 | 0.0224 (5) | 0.0116 (4) | 0.0126 (5) | −0.0077 (4) | 0.0028 (4) | −0.0041 (3) |
Geometric parameters (Å, º) top
Fe1—O3 | 1.9859 (9) | N1—O6 | 1.2965 (14) |
Fe1—O4 | 1.9914 (9) | N2—O12 | 1.2411 (14) |
Fe1—O6 | 1.9944 (9) | N2—O13 | 1.2439 (14) |
Fe1—O2 | 1.9950 (9) | N2—O14 | 1.2793 (14) |
Fe1—O1 | 1.9989 (9) | N3—O11 | 1.2369 (14) |
Fe1—O5 | 2.0076 (9) | N3—O10 | 1.2536 (14) |
N1—O7 | 1.2255 (14) | N3—O9 | 1.2695 (14) |
N1—O8 | 1.2432 (14) | | |
| | | |
O3—Fe1—O4 | 95.20 (4) | O2—Fe1—O5 | 92.48 (4) |
O3—Fe1—O6 | 167.88 (4) | O1—Fe1—O5 | 173.03 (4) |
O4—Fe1—O6 | 95.73 (4) | O7—N1—O8 | 123.45 (11) |
O3—Fe1—O2 | 86.72 (4) | O7—N1—O6 | 120.51 (10) |
O4—Fe1—O2 | 177.06 (4) | O8—N1—O6 | 116.04 (10) |
O6—Fe1—O2 | 82.57 (4) | O12—N2—O13 | 122.98 (11) |
O3—Fe1—O1 | 88.65 (4) | O12—N2—O14 | 118.80 (10) |
O4—Fe1—O1 | 90.62 (4) | O13—N2—O14 | 118.21 (10) |
O6—Fe1—O1 | 86.01 (4) | O11—N3—O10 | 122.07 (10) |
O2—Fe1—O1 | 91.66 (4) | O11—N3—O9 | 119.57 (11) |
O3—Fe1—O5 | 85.99 (4) | O10—N3—O9 | 118.37 (10) |
O4—Fe1—O5 | 85.44 (4) | N1—O6—Fe1 | 128.16 (8) |
O6—Fe1—O5 | 100.08 (4) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1···O9i | 0.82 (1) | 1.93 (1) | 2.7339 (14) | 169 (2) |
O2—H2···O13 | 0.78 (2) | 1.93 (2) | 2.6933 (14) | 169 (2) |
O1—H3···O14ii | 0.82 (1) | 1.89 (1) | 2.7027 (13) | 171 (2) |
O1—H4···O12 | 0.82 (1) | 2.02 (1) | 2.8069 (13) | 161 (2) |
O3—H5···O8iii | 0.82 (1) | 1.90 (1) | 2.7062 (13) | 168 (2) |
O3—H5···N1iii | 0.82 (1) | 2.54 (1) | 3.2543 (14) | 147 (2) |
O3—H5···O7iii | 0.82 (1) | 2.57 (2) | 3.0736 (13) | 121 (2) |
O3—H6···O10ii | 0.82 (1) | 1.84 (1) | 2.6571 (13) | 174 (2) |
O4—H7···O14iv | 0.82 (1) | 1.82 (1) | 2.6338 (13) | 175 (2) |
O4—H8···O11ii | 0.82 (1) | 2.01 (1) | 2.7844 (13) | 159 (2) |
O5—H9···O9v | 0.82 (1) | 1.89 (1) | 2.6934 (14) | 168 (2) |
O5—H10···O10i | 0.82 (1) | 2.19 (1) | 2.8691 (13) | 142 (2) |
O5—H10···O9 | 0.82 (1) | 2.55 (2) | 3.0377 (14) | 120 (2) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y+1, z; (iii) x−1, y+1, z; (iv) −x+1, −y+1, −z; (v) −x+1, −y+1, −z+1. |
(III) triaquadinitratoiron(III) nitrate monohydrate
top
Crystal data top
[Fe(NO3)2(H2O)3]NO3·H2O | F(000) = 636 |
Mr = 313.94 | Dx = 2.073 Mg m−3 |
Monoclinic, P21/n | Melting point: 335.39 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0696 (7) Å | Cell parameters from 1424 reflections |
b = 15.1917 (16) Å | θ = 1.8–27.5° |
c = 9.4264 (7) Å | µ = 1.58 mm−1 |
β = 96.508 (3)° | T = 100 K |
V = 1005.86 (16) Å3 | Prism, brown |
Z = 4 | 0.5 × 0.4 × 0.3 mm |
Data collection top
Bruker X8 Kappa APEXII diffractometer | 2303 independent reflections |
Radiation source: fine-focus sealed tube | 1985 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ω and ϕ scans | θmax = 27.5°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | h = −9→9 |
Tmin = 0.451, Tmax = 0.602 | k = −19→19 |
11328 measured reflections | l = −12→12 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.055 | All H-atom parameters refined |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0258P)2 + 0.2256P] where P = (Fo2 + 2Fc2)/3 |
2303 reflections | (Δ/σ)max = 0.001 |
186 parameters | Δρmax = 0.26 e Å−3 |
12 restraints | Δρmin = −0.26 e Å−3 |
Crystal data top
[Fe(NO3)2(H2O)3]NO3·H2O | V = 1005.86 (16) Å3 |
Mr = 313.94 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.0696 (7) Å | µ = 1.58 mm−1 |
b = 15.1917 (16) Å | T = 100 K |
c = 9.4264 (7) Å | 0.5 × 0.4 × 0.3 mm |
β = 96.508 (3)° | |
Data collection top
Bruker X8 Kappa APEXII diffractometer | 2303 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 1985 reflections with I > 2σ(I) |
Tmin = 0.451, Tmax = 0.602 | Rint = 0.031 |
11328 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.022 | 12 restraints |
wR(F2) = 0.055 | All H-atom parameters refined |
S = 1.07 | Δρmax = 0.26 e Å−3 |
2303 reflections | Δρmin = −0.26 e Å−3 |
186 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. Short inter D···A contact of 2.82 Angstroem for O5 and O11:
Nitrate oxygen atoms O5 and O11 are not directly connected via hydrogen
bond, but via water hydrogen atoms. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Fe1 | 0.32508 (3) | 0.404152 (14) | 0.21984 (2) | 0.01392 (7) | |
N1 | 0.01759 (19) | 0.38468 (9) | 0.32872 (15) | 0.0208 (3) | |
N2 | 0.87740 (18) | 0.61678 (9) | 0.24763 (15) | 0.0190 (3) | |
N3 | 0.49724 (19) | 0.34257 (9) | 0.01723 (14) | 0.0194 (3) | |
O1 | 0.43710 (17) | 0.30869 (7) | 0.34377 (13) | 0.0209 (2) | |
O2 | 0.49853 (16) | 0.49024 (7) | 0.33518 (13) | 0.0200 (2) | |
O3 | 0.20267 (17) | 0.49726 (8) | 0.08999 (13) | 0.0217 (2) | |
O4 | 0.39942 (17) | 0.65649 (8) | 0.39764 (13) | 0.0218 (3) | |
O5 | 0.56613 (16) | 0.40451 (7) | 0.09934 (12) | 0.0225 (3) | |
O6 | 0.33141 (15) | 0.31698 (7) | 0.04514 (12) | 0.0208 (2) | |
O7 | 0.57804 (18) | 0.31173 (8) | −0.07625 (13) | 0.0295 (3) | |
O8 | 0.14734 (16) | 0.44070 (8) | 0.37318 (12) | 0.0224 (3) | |
O9 | 0.05611 (16) | 0.34221 (8) | 0.21746 (12) | 0.0223 (3) | |
O10 | −0.12433 (17) | 0.37336 (9) | 0.38499 (15) | 0.0327 (3) | |
O11 | 0.80194 (16) | 0.54484 (8) | 0.20639 (13) | 0.0247 (3) | |
O12 | 1.04023 (15) | 0.63524 (7) | 0.20676 (13) | 0.0228 (3) | |
O13 | 0.80185 (18) | 0.66812 (9) | 0.32247 (14) | 0.0326 (3) | |
H1 | 0.443 (3) | 0.2564 (5) | 0.326 (2) | 0.048 (7)* | |
H2 | 0.496 (3) | 0.3181 (13) | 0.4217 (11) | 0.037 (6)* | |
H3 | 0.210 (3) | 0.4992 (14) | 0.0045 (7) | 0.047 (7)* | |
H4 | 0.153 (3) | 0.5409 (8) | 0.1197 (19) | 0.035 (6)* | |
H5 | 0.454 (3) | 0.5354 (8) | 0.365 (2) | 0.038 (6)* | |
H6 | 0.5966 (19) | 0.5046 (14) | 0.303 (2) | 0.054 (8)* | |
H7 | 0.452 (3) | 0.6857 (13) | 0.3409 (19) | 0.046 (7)* | |
H8 | 0.2855 (10) | 0.6669 (16) | 0.382 (3) | 0.069 (9)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Fe1 | 0.01516 (12) | 0.01231 (11) | 0.01506 (12) | −0.00097 (8) | 0.00511 (8) | −0.00068 (8) |
N1 | 0.0182 (6) | 0.0203 (7) | 0.0253 (8) | 0.0029 (5) | 0.0087 (6) | 0.0070 (6) |
N2 | 0.0169 (6) | 0.0183 (7) | 0.0221 (7) | −0.0016 (5) | 0.0029 (5) | 0.0024 (6) |
N3 | 0.0229 (7) | 0.0176 (7) | 0.0188 (7) | −0.0007 (5) | 0.0069 (6) | −0.0012 (6) |
O1 | 0.0285 (6) | 0.0136 (6) | 0.0195 (6) | 0.0014 (5) | −0.0018 (5) | −0.0015 (5) |
O2 | 0.0199 (6) | 0.0176 (6) | 0.0236 (6) | −0.0030 (5) | 0.0076 (5) | −0.0070 (5) |
O3 | 0.0277 (6) | 0.0195 (6) | 0.0188 (6) | 0.0055 (5) | 0.0068 (5) | 0.0044 (5) |
O4 | 0.0217 (6) | 0.0219 (6) | 0.0219 (6) | 0.0024 (5) | 0.0036 (5) | 0.0024 (5) |
O5 | 0.0222 (6) | 0.0221 (6) | 0.0247 (6) | −0.0076 (5) | 0.0090 (5) | −0.0096 (5) |
O6 | 0.0207 (6) | 0.0196 (6) | 0.0235 (6) | −0.0052 (5) | 0.0078 (5) | −0.0041 (5) |
O7 | 0.0350 (7) | 0.0308 (7) | 0.0257 (7) | −0.0019 (6) | 0.0166 (5) | −0.0109 (5) |
O8 | 0.0230 (6) | 0.0206 (6) | 0.0254 (6) | −0.0008 (5) | 0.0107 (5) | −0.0027 (5) |
O9 | 0.0209 (6) | 0.0230 (6) | 0.0237 (6) | −0.0032 (5) | 0.0063 (5) | 0.0001 (5) |
O10 | 0.0228 (6) | 0.0366 (7) | 0.0421 (8) | 0.0013 (5) | 0.0188 (6) | 0.0102 (6) |
O11 | 0.0246 (6) | 0.0203 (6) | 0.0303 (7) | −0.0088 (5) | 0.0074 (5) | −0.0039 (5) |
O12 | 0.0167 (5) | 0.0165 (6) | 0.0362 (7) | −0.0025 (4) | 0.0077 (5) | 0.0013 (5) |
O13 | 0.0316 (7) | 0.0305 (7) | 0.0381 (8) | −0.0020 (5) | 0.0148 (6) | −0.0122 (6) |
Geometric parameters (Å, º) top
Fe1—O1 | 1.9711 (12) | N1—O8 | 1.2862 (18) |
Fe1—O3 | 2.0019 (12) | N1—O9 | 1.2865 (17) |
Fe1—O2 | 2.0233 (11) | N2—O13 | 1.2153 (18) |
Fe1—O8 | 2.0949 (11) | N2—O11 | 1.2582 (18) |
Fe1—O6 | 2.1176 (11) | N2—O12 | 1.2855 (17) |
Fe1—O9 | 2.1194 (11) | N3—O7 | 1.1986 (17) |
Fe1—O5 | 2.1524 (11) | N3—O5 | 1.2791 (17) |
N1—O10 | 1.1992 (17) | N3—O6 | 1.2902 (17) |
| | | |
O1—Fe1—O3 | 177.43 (5) | O2—Fe1—O5 | 79.29 (4) |
O1—Fe1—O2 | 88.79 (5) | O8—Fe1—O5 | 159.42 (4) |
O3—Fe1—O2 | 93.75 (5) | O6—Fe1—O5 | 60.23 (4) |
O1—Fe1—O8 | 91.04 (5) | O9—Fe1—O5 | 139.34 (4) |
O3—Fe1—O8 | 89.03 (5) | O10—N1—O8 | 123.52 (14) |
O2—Fe1—O8 | 80.35 (5) | O10—N1—O9 | 123.62 (15) |
O1—Fe1—O6 | 87.61 (5) | O8—N1—O9 | 112.85 (12) |
O3—Fe1—O6 | 90.70 (5) | O13—N2—O11 | 122.54 (13) |
O2—Fe1—O6 | 139.22 (4) | O13—N2—O12 | 120.09 (13) |
O8—Fe1—O6 | 140.31 (4) | O11—N2—O12 | 117.36 (13) |
O1—Fe1—O9 | 88.81 (5) | O7—N3—O5 | 123.50 (14) |
O3—Fe1—O9 | 88.97 (5) | O7—N3—O6 | 123.49 (14) |
O2—Fe1—O9 | 141.35 (5) | O5—N3—O6 | 113.00 (12) |
O8—Fe1—O9 | 61.14 (4) | N3—O5—Fe1 | 92.72 (8) |
O6—Fe1—O9 | 79.17 (4) | N3—O6—Fe1 | 94.00 (8) |
O1—Fe1—O5 | 91.47 (5) | N1—O8—Fe1 | 93.51 (8) |
O3—Fe1—O5 | 89.36 (5) | N1—O9—Fe1 | 92.37 (9) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O12i | 0.82 (1) | 1.87 (1) | 2.6858 (16) | 177 (2) |
O1—H2···O4ii | 0.81 (1) | 1.82 (1) | 2.6304 (17) | 173 (2) |
O3—H3···O11iii | 0.81 (1) | 2.09 (1) | 2.8627 (17) | 158 (2) |
O3—H3···O5iii | 0.81 (1) | 2.44 (2) | 2.9572 (16) | 122 (2) |
O3—H4···O12iv | 0.82 (1) | 1.87 (1) | 2.6852 (17) | 174 (2) |
O2—H5···O4 | 0.82 (1) | 1.91 (1) | 2.7036 (16) | 163 (2) |
O2—H6···O11 | 0.82 (1) | 1.90 (1) | 2.7117 (16) | 172 (2) |
O4—H7···O9v | 0.82 (1) | 2.44 (2) | 3.0518 (17) | 133 (2) |
O4—H7···O7iii | 0.82 (1) | 2.48 (2) | 3.0896 (17) | 132 (2) |
O4—H7···O13 | 0.82 (1) | 2.51 (2) | 3.0140 (17) | 121 (2) |
O4—H8···O12iv | 0.82 (1) | 2.31 (2) | 2.9587 (17) | 137 (2) |
O4—H8···O6v | 0.82 (1) | 2.55 (2) | 3.0163 (16) | 118 (2) |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+1, −z; (iv) x−1, y, z; (v) −x+1/2, y+1/2, −z+1/2. |
Experimental details
| (I) | (II) | (III) |
Crystal data |
Chemical formula | [Fe(H2O)6](NO3)3 | [Fe(NO3)(H2O)5](NO3)2 | [Fe(NO3)2(H2O)3]NO3·H2O |
Mr | 349.98 | 331.96 | 313.94 |
Crystal system, space group | Cubic, Ia3 | Triclinic, P1 | Monoclinic, P21/n |
Temperature (K) | 190 | 100 | 100 |
a, b, c (Å) | 13.7962 (2), 13.7962 (2), 13.7962 (2) | 6.7693 (4), 7.0692 (4), 11.6734 (6) | 7.0696 (7), 15.1917 (16), 9.4264 (7) |
α, β, γ (°) | 90, 90, 90 | 85.568 (2), 80.655 (1), 70.279 (2) | 90, 96.508 (3), 90 |
V (Å3) | 2625.90 (7) | 518.72 (5) | 1005.86 (16) |
Z | 8 | 2 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 1.23 | 1.55 | 1.58 |
Crystal size (mm) | 0.43 × 0.35 × 0.29 | 0.47 × 0.35 × 0.23 | 0.5 × 0.4 × 0.3 |
|
Data collection |
Diffractometer | Bruker X8 Kappa APEXII diffractometer | Bruker X8 Kappa APEXII diffractometer | Bruker X8 Kappa APEXII diffractometer |
Absorption correction | Numerical (APEX2; Bruker, 2005) | Multi-scan (SADABS; Bruker, 2006) | Multi-scan (SADABS; Bruker, 2006) |
Tmin, Tmax | 0.623, 0.715 | 0.528, 0.716 | 0.451, 0.602 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9913, 505, 432 | 9108, 2373, 2293 | 11328, 2303, 1985 |
Rint | 0.027 | 0.017 | 0.031 |
(sin θ/λ)max (Å−1) | 0.648 | 0.649 | 0.649 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.081, 1.09 | 0.019, 0.059, 1.02 | 0.022, 0.055, 1.07 |
No. of reflections | 505 | 2373 | 2303 |
No. of parameters | 39 | 203 | 186 |
No. of restraints | 3 | 14 | 12 |
H-atom treatment | All H-atom parameters refined | All H-atom parameters refined | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.58, −0.38 | 0.46, −0.30 | 0.26, −0.26 |
Hydrogen-bond geometry (Å, º) for (I) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H2···O3 | 0.815 (5) | 1.891 (8) | 2.695 (2) | 169 (3) |
O1—H1···O3i | 0.815 (5) | 1.889 (7) | 2.6946 (19) | 169 (3) |
Symmetry code: (i) −z+1, −x+3/2, y. |
Hydrogen-bond geometry (Å, º) for (II) top
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1···O9i | 0.818 (5) | 1.927 (7) | 2.7339 (14) | 169 (2) |
O2—H2···O13 | 0.777 (18) | 1.927 (18) | 2.6933 (14) | 169 (2) |
O1—H3···O14ii | 0.818 (5) | 1.891 (6) | 2.7027 (13) | 171.2 (19) |
O1—H4···O12 | 0.817 (5) | 2.021 (8) | 2.8069 (13) | 161.4 (19) |
O3—H5···O8iii | 0.818 (5) | 1.902 (7) | 2.7062 (13) | 167.5 (19) |
O3—H5···N1iii | 0.818 (5) | 2.538 (11) | 3.2543 (14) | 146.9 (17) |
O3—H5···O7iii | 0.818 (5) | 2.569 (16) | 3.0736 (13) | 121.2 (15) |
O3—H6···O10ii | 0.819 (5) | 1.841 (6) | 2.6571 (13) | 174 (2) |
O4—H7···O14iv | 0.817 (5) | 1.819 (6) | 2.6338 (13) | 175 (2) |
O4—H8···O11ii | 0.815 (5) | 2.009 (8) | 2.7844 (13) | 158.9 (19) |
O5—H9···O9v | 0.816 (5) | 1.890 (6) | 2.6934 (14) | 168.1 (19) |
O5—H10···O10i | 0.815 (5) | 2.186 (14) | 2.8691 (13) | 142 (2) |
O5—H10···O9 | 0.815 (5) | 2.547 (19) | 3.0377 (14) | 120.1 (18) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y+1, z; (iii) x−1, y+1, z; (iv) −x+1, −y+1, −z; (v) −x+1, −y+1, −z+1. |
Hydrogen-bond geometry (Å, º) for (III) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O12i | 0.815 (5) | 1.872 (6) | 2.6858 (16) | 177 (2) |
O1—H2···O4ii | 0.814 (5) | 1.820 (6) | 2.6304 (17) | 173 (2) |
O3—H3···O11iii | 0.814 (5) | 2.090 (9) | 2.8627 (17) | 158 (2) |
O3—H3···O5iii | 0.814 (5) | 2.44 (2) | 2.9572 (16) | 122 (2) |
O3—H4···O12iv | 0.815 (5) | 1.873 (6) | 2.6852 (17) | 173.9 (19) |
O2—H5···O4 | 0.817 (5) | 1.912 (8) | 2.7036 (16) | 162.9 (19) |
O2—H6···O11 | 0.817 (5) | 1.900 (6) | 2.7117 (16) | 172 (2) |
O4—H7···O9v | 0.815 (5) | 2.440 (17) | 3.0518 (17) | 132.7 (19) |
O4—H7···O7iii | 0.815 (5) | 2.480 (17) | 3.0896 (17) | 132 (2) |
O4—H7···O13 | 0.815 (5) | 2.514 (18) | 3.0140 (17) | 120.8 (17) |
O4—H8···O12iv | 0.817 (5) | 2.308 (19) | 2.9587 (17) | 137 (2) |
O4—H8···O6v | 0.817 (5) | 2.55 (2) | 3.0163 (16) | 118 (2) |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+1, −z; (iv) x−1, y, z; (v) −x+1/2, y+1/2, −z+1/2. |
From aqueous solutions of iron(III) nitrate crystallizes the nonahydrate Fe(NO3)3·9H2O. Its crystal structure was reported by Hair & Beattie (1977). Because of the strong hygroscopicity and the tendency of iron(III) nitrate to hydrolyze and precipitate basic salts, neutral hydrates containing less than 9 mol water per mol salt do not crystallize from simple aqueous solutions. To prevent hydrolysis lower hydrates can be crystallized only in the presence of high concentrations of nitric acid. Reports on the existence and stability of lower hydrates are contradictory. According to Cameron & Robinson (1909) the hexahydrate crystallizes from a solution of nonahydrate in nitric acid. Malquori (1929a,b) proposed addition of N2O5. Hathaway & Underhill (1960) declared to have synthesized a dihydrate by means of a reaction of anhydrous iron(III) chloride in pure nitric acid. Rodenko & Panov (1994) performed solubility determinations at temperatures in the range 283–313 K in the system Fe(NO3)3–HNO3–H2O. Graphically presented solubility isotherms were interpreted as branches from hexa- and tetrahydrate at nitric acid concentrations of 56–77% HNO3 and 77–85% HNO3, respectively. El Goundali & Kaddami (2006, 2007, 2008) claimed the formation of an iron(III) nitrate hexahydrate within the system Fe(NO3)3–Co(NO3)2–HNO3 at 303 K. Addison (1980) and Addison & Chapman (1965) thoroughly investigated reactions of liquid N2O4 with hydrated nitrates and metals. Addison stated that iron(III) nitrate nonahydrate reacted with N2O4 to yield a yellow–brown pentahydrate (Addison & Chapman, 1965). The same authors supposed that the reaction product of metallic iron with an N2O4/HNO3 mixture was a dihydrate after 2 weeks' evacuation. For all these phases, no X-ray pattern was recorded. The chemical formulas were derived from chemical analyses of the wet solid residues.
Crystals of the title compounds were grown from their hydrous melts or solutions in highly concentrated nitric acid. Iron(III) nitrate pentahydrate, (II), was prepared through the reaction of liquid N2O4 with iron(III) nitrate nonahydrate. The hexa-, (I), and tetrahydrate, (III), were obtained by dissolving the pentahydrate in highly concentrated nitric acid and subsequent evaporation at reduced pressure. With the successful preparation of single crystals and their structure determination in this work, the existence and stoichiometry of at least three lower hydrates could [can] be confirmed unequivocally.
As expected, the crystal structure of the hexahydrate consists of Fe(H2O)6 octahedra (see Fig. 1a). The Fe(H2O)6 octahedra are connected via hydrogen bonds to nitrate ions, where every H atom of a water molecule is in contact with another nitrate group at distances of 1.89 Å, thus arranging 12 NO3- anions around an octahedron unit (Fig. 1b). The result is a complex but highly symmetric hydrogen-bond network, as shown in Fig. 2.
With a further decrease of the water content, nitrate ions enter the coordination sphere of iron. In Fe(NO3)3·5H2O, the FeIII atom is still coordinated by six ligands (see Fig. 3) completing the coordination sphere with a monodentate bound nitrate ligand. One of the other O atoms of the coordinated nitrate ion forms a hydrogen bond to a water molecule of an adjacent octahedron unit (Fig. 4). This yields two NO3- octahedral chains approximately in the [110] direction (Fig. 4). These chains are connected by the noncoordinated nitrate ions via hydrogen bonds, as shown in Fig. 5. Thereby two O atoms (O10, O11, O12 and O13) are connected with an edge of an octahedron and the third O atom (O9 and O14)e/newcifs combines to different chains. The result is a three-dimensional network (Fig. 6).
Surprisingly, in Fe(NO3)3·4H2O, the coordination number of iron(III) is enhanced to seven in the form of a pentagonal bipyramid (Fig. 7). Two bidentate coordinating nitrate ions and one water molecule (O2) are arranged nearly exactly in a pentagonal plane. The other two coordinated water molecules in axial positions are nearly perpendicular to this plane. The noncoordinated water molecule is hydrogen bonded to an axial water molecule of one complex and to the equatorial water of another complex, thus forming binary complex units with the equatorial water molecules directed to each other (Fig. 8). These double units are interconnected via hydrogen bonds by the noncoordinated nitrate ions. As illustrated in Fig. 9, every water molecule of the complex unit is connected to a nitrate ion. Thereby one O atom of the nitrate (O12) ion connects two complex units through their axial water molecules approximately in the direction of the b axis. The second O atom (O11) is connected with the equatorial water molecule of the complex. Altogether, a hydrogen-bond network arises with dominating bonds along the b and a axes, as shown in Fig. 10. The third O atom of the nitrate ions is not involved in hydrogen bonds, because its bond distance to the nearest H atom is greater than 2.3 Å.
There are examples in the literature of salts with tetranitratoferrate anions, [Fe(NO3)4]-, where the nitrate groups coordinate in a bidentate fashion, resulting in a coordination number of eight for FeIII (Addison & Chapman, 1965; Tikhomirov et al., 2002; Blackwell et al., 1975; Fedorova et al., 2002). However, the pentagonal–bipyramidal coordination of FeIII has only been observed before for metal–organic FeIII complexes (Andjelkovica et al., 2002; Bonardi et al., 1991). The reported structure for the iron(III) nitrate tetrahydrate represents the first simple iron(III) salt with such a coordination geometry.