Download citation
Download citation
link to html
A cinnamamide (3-phenyl­prop-2-enamide) core is present in many pharmacologically active compounds. We report three new crystal structures of N-sub­stituted cinnamamide derivatives which were screened for anti­convulsant activity, namely (R,S)-(2E)-N-(2-hy­droxy­prop­yl)-3-phenyl­prop-2-enamide, C12H15NO2, (1), (R,S)-(2E)-N-(1-hy­droxy­butan-2-yl)-3-phenyl­prop-2-enamide, C13H17NO2, (2), and (2E)-1-(4-hy­droxy­piperidin-1-yl)-3-phenyl­prop-2-en-1-one, C14H17NO2, (3). Compounds (1) and (2) crystallize in the Pbca space group with one mol­ecule in the asymmetric unit, whereas compound (3) crystallizes in the P21/c space group with two mol­ecules in the asymmetric unit. All the crystal structures are stabilized by inter­molecular O—H...O hydrogen bonds and additionally by N—H...O hydrogen bonds in the structures of (1) and (2). The investigated compounds possess fragments that are considered as beneficial for anti­convulsant activity. The conformations of these compounds were analyzed in comparison with the characteristic features of the proposed pharmacophore model of anti­convulsants active in the maximal electroshock test, i.e. a phenyl ring or other hydro­phobic unit, an electron-donor atom and a hydrogen-bond acceptor/donor domain. In the reported series, two calculated distances fitted the reference model, while the third did not. Structure–activity analysis suggests that anti­convulsant properties may be related to the N-atom substituent. It is beneficial to combine an electron-donor atom (e.g. an O atom) with an H atom in the substituent to ensure appropriate inter­actions with the mol­ecular target. We analyzed the inter­molecular inter­actions in order to find an appropriate spatial arrangement of the important features responsible for anti­convulsant activity.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617013845/yp3145sup1.cif
Contains datablocks global, 1, 2, 3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617013845/yp31451sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617013845/yp31452sup3.hkl
Contains datablock 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617013845/yp31453sup4.hkl
Contains datablock 3

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229617013845/yp31453sup5.cml
Supplementary material

CCDC references: 1576436; 1576435; 1576434

Computing details top

For all structures, data collection: COLLECT (Bruker, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

(R,S)-(2E)-N-(2-Hydroxypropyl)-3-phenylprop-2-enamide (1) top
Crystal data top
C12H15NO2F(000) = 880
Mr = 205.25Dx = 1.276 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6025 reflections
a = 9.2070 (2) Åθ = 1.0–27.5°
b = 8.2100 (2) ŵ = 0.09 mm1
c = 28.2700 (7) ÅT = 100 K
V = 2136.91 (9) Å3Block, colourless
Z = 80.42 × 0.25 × 0.12 mm
Data collection top
Nonius KappaCCD
diffractometer
2410 independent reflections
Horizonally mounted graphite crystal monochromator2015 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.042
CCD scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.964, Tmax = 0.999k = 910
11825 measured reflectionsl = 3336
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0404P)2 + 1.0007P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2410 reflectionsΔρmax = 0.30 e Å3
145 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.77904 (9)0.12905 (11)0.49081 (3)0.0209 (2)
C30.69803 (13)0.09672 (15)0.58725 (4)0.0175 (3)
H30.78670.05160.57610.021*
C40.66250 (13)0.06725 (15)0.63714 (4)0.0173 (3)
C90.53564 (13)0.12588 (15)0.65889 (4)0.0192 (3)
H90.4710.19350.64160.023*
C10.65893 (13)0.18039 (14)0.50514 (4)0.0174 (3)
C100.56487 (13)0.21472 (15)0.42450 (4)0.0181 (3)
H10A0.46540.21370.41120.022*
H10B0.61010.10830.41720.022*
C120.64733 (15)0.32180 (17)0.34692 (5)0.0240 (3)
H12A0.54630.32440.3360.036*
H12B0.69030.21580.33930.036*
H12C0.70250.40820.33110.036*
C70.59699 (14)0.01487 (16)0.73093 (5)0.0226 (3)
H70.57380.0440.76260.027*
C20.61930 (13)0.17998 (15)0.55588 (4)0.0186 (3)
H20.53680.23970.56620.022*
C110.65171 (13)0.34823 (15)0.39992 (4)0.0184 (3)
H110.75480.3440.4110.022*
C60.72354 (15)0.07254 (17)0.71012 (5)0.0234 (3)
H60.78760.14050.72760.028*
C50.75615 (14)0.03053 (16)0.66370 (4)0.0203 (3)
H50.84360.0690.64980.024*
C80.50409 (14)0.08590 (16)0.70529 (5)0.0214 (3)
H80.41860.12740.71980.026*
N10.55491 (12)0.23163 (13)0.47557 (4)0.0186 (2)
O20.59293 (10)0.50511 (11)0.40982 (3)0.0224 (2)
H10.4757 (19)0.272 (2)0.4873 (6)0.032 (4)*
H2O0.637 (2)0.541 (2)0.4386 (7)0.059 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0154 (4)0.0259 (5)0.0213 (5)0.0024 (4)0.0016 (3)0.0028 (4)
C30.0149 (6)0.0166 (6)0.0210 (6)0.0022 (5)0.0015 (5)0.0030 (5)
C40.0180 (6)0.0143 (6)0.0198 (6)0.0036 (5)0.0015 (5)0.0019 (4)
C90.0168 (6)0.0188 (6)0.0221 (7)0.0009 (5)0.0025 (5)0.0012 (5)
C10.0156 (6)0.0142 (6)0.0223 (7)0.0023 (5)0.0002 (5)0.0012 (5)
C100.0165 (6)0.0192 (6)0.0186 (6)0.0006 (5)0.0021 (5)0.0012 (5)
C120.0262 (7)0.0269 (7)0.0190 (7)0.0017 (6)0.0004 (5)0.0002 (5)
C70.0267 (7)0.0223 (7)0.0187 (6)0.0056 (5)0.0008 (5)0.0006 (5)
C20.0157 (6)0.0184 (6)0.0217 (7)0.0005 (5)0.0024 (5)0.0019 (5)
C110.0171 (6)0.0179 (6)0.0203 (7)0.0002 (5)0.0013 (5)0.0005 (5)
C60.0254 (7)0.0207 (7)0.0241 (7)0.0005 (5)0.0056 (5)0.0010 (5)
C50.0193 (6)0.0172 (6)0.0243 (7)0.0001 (5)0.0015 (5)0.0016 (5)
C80.0198 (6)0.0225 (7)0.0219 (7)0.0024 (5)0.0015 (5)0.0036 (5)
N10.0146 (5)0.0217 (5)0.0196 (6)0.0008 (4)0.0021 (4)0.0000 (4)
O20.0242 (5)0.0180 (5)0.0250 (5)0.0018 (4)0.0047 (4)0.0012 (4)
Geometric parameters (Å, º) top
O1—C11.2509 (15)C12—H12A0.98
C3—C21.3338 (18)C12—H12B0.98
C3—C41.4681 (17)C12—H12C0.98
C3—H30.95C7—C61.3884 (19)
C4—C51.3969 (17)C7—C81.3934 (19)
C4—C91.4049 (17)C7—H70.95
C9—C81.3831 (18)C2—H20.95
C9—H90.95C11—O21.4249 (15)
C1—N11.3390 (16)C11—H111
C1—C21.4800 (17)C6—C51.3899 (18)
C10—N11.4533 (16)C6—H60.95
C10—C111.5243 (17)C5—H50.95
C10—H10A0.99C8—H80.95
C10—H10B0.99N1—H10.867 (18)
C12—C111.5146 (17)O2—H2O0.96 (2)
C2—C3—C4127.02 (12)C6—C7—H7120.1
C2—C3—H3116.5C8—C7—H7120.1
C4—C3—H3116.5C3—C2—C1120.77 (11)
C5—C4—C9118.35 (12)C3—C2—H2119.6
C5—C4—C3118.26 (11)C1—C2—H2119.6
C9—C4—C3123.31 (11)O2—C11—C12108.29 (10)
C8—C9—C4120.55 (12)O2—C11—C10111.18 (10)
C8—C9—H9119.7C12—C11—C10109.52 (10)
C4—C9—H9119.7O2—C11—H11109.3
O1—C1—N1122.41 (12)C12—C11—H11109.3
O1—C1—C2122.08 (11)C10—C11—H11109.3
N1—C1—C2115.43 (11)C7—C6—C5119.78 (13)
N1—C10—C11114.67 (10)C7—C6—H6120.1
N1—C10—H10A108.6C5—C6—H6120.1
C11—C10—H10A108.6C6—C5—C4121.11 (12)
N1—C10—H10B108.6C6—C5—H5119.4
C11—C10—H10B108.6C4—C5—H5119.4
H10A—C10—H10B107.6C9—C8—C7120.36 (12)
C11—C12—H12A109.5C9—C8—H8119.8
C11—C12—H12B109.5C7—C8—H8119.8
H12A—C12—H12B109.5C1—N1—C10123.03 (11)
C11—C12—H12C109.5C1—N1—H1118.9 (11)
H12A—C12—H12C109.5C10—N1—H1117.9 (11)
H12B—C12—H12C109.5C11—O2—H2O106.7 (12)
C6—C7—C8119.81 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1i0.96 (2)1.81 (2)2.769 (1)175 (2)
N1—H1···O1ii0.86 (2)2.08 (2)2.943 (1)175 (2)
C2—H2···O2iii0.952.513.383 (2)154
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x1/2, y+1/2, z+1; (iii) x+1, y+1, z+1.
(R,S)-(2E)-N-(1-Hydroxybutan-2-yl)-3-phenylprop-2-enamide (2) top
Crystal data top
C13H17NO2F(000) = 944
Mr = 219.27Dx = 1.204 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2905 reflections
a = 10.6270 (4) Åθ = 1.0–27.5°
b = 9.2490 (4) ŵ = 0.08 mm1
c = 24.6230 (9) ÅT = 100 K
V = 2420.2 (2) Å3Needle, colourless
Z = 81.0 × 0.43 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
2719 independent reflections
Horizonally mounted graphite crystal monochromator2042 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.045
CCD scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 1313
Tmin = 0.909, Tmax = 0.994k = 1111
4834 measured reflectionsl = 3131
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.7184P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.137(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.30 e Å3
2719 reflectionsΔρmin = 0.21 e Å3
155 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0070 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C90.71892 (16)0.1719 (2)0.72466 (7)0.0278 (4)
H90.77970.21690.7020.033*
C80.70602 (17)0.2169 (2)0.77805 (7)0.0335 (4)
H80.75820.29210.79160.04*
C70.61743 (17)0.1529 (2)0.81182 (6)0.0309 (4)
H70.60890.18380.84840.037*
C60.54178 (16)0.0439 (2)0.79170 (7)0.0304 (4)
H60.48030.00050.81450.036*
C50.55521 (16)0.0028 (2)0.73816 (6)0.0261 (4)
H50.50360.07890.72490.031*
C40.64381 (14)0.06129 (19)0.70382 (6)0.0210 (4)
C30.65472 (14)0.00831 (19)0.64778 (6)0.0203 (4)
H30.61640.08230.64020.024*
C20.71274 (13)0.07371 (18)0.60623 (6)0.0192 (4)
H20.75330.1640.61180.023*
C10.71402 (13)0.00579 (18)0.55145 (6)0.0180 (3)
O10.67756 (10)0.12149 (12)0.54388 (4)0.0219 (3)
N10.75602 (12)0.08984 (16)0.51125 (5)0.0190 (3)
C100.75661 (15)0.04109 (19)0.45428 (6)0.0212 (4)
H100.78930.06020.45310.025*
C120.84381 (15)0.13639 (19)0.42087 (6)0.0235 (4)
H12A0.81850.23860.42570.028*
H12B0.83340.11190.3820.028*
C130.98199 (15)0.1209 (2)0.43600 (7)0.0305 (4)
H13A0.99490.15570.47320.046*
H13B1.03340.17820.41090.046*
H13C1.00660.0190.43360.046*
C110.62235 (14)0.04163 (19)0.43154 (6)0.0220 (4)
H11A0.62310.00620.39360.026*
H11B0.56870.02410.45330.026*
O20.57207 (11)0.18365 (13)0.43316 (4)0.0257 (3)
H10.7750 (16)0.178 (2)0.5181 (7)0.017 (4)*
H2O0.488 (2)0.180 (2)0.4399 (9)0.053 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C90.0288 (9)0.0323 (11)0.0223 (8)0.0047 (8)0.0017 (6)0.0020 (7)
C80.0400 (10)0.0357 (11)0.0250 (9)0.0033 (9)0.0011 (7)0.0090 (8)
C70.0392 (9)0.0353 (11)0.0182 (8)0.0101 (8)0.0001 (7)0.0033 (7)
C60.0317 (9)0.0378 (11)0.0215 (8)0.0056 (8)0.0062 (7)0.0044 (7)
C50.0276 (8)0.0292 (10)0.0215 (8)0.0013 (7)0.0005 (6)0.0027 (7)
C40.0219 (8)0.0235 (9)0.0176 (7)0.0044 (7)0.0014 (6)0.0001 (6)
C30.0199 (7)0.0213 (9)0.0198 (7)0.0021 (6)0.0011 (6)0.0002 (6)
C20.0185 (7)0.0204 (9)0.0187 (7)0.0023 (6)0.0023 (5)0.0023 (6)
C10.0159 (7)0.0193 (9)0.0188 (7)0.0022 (6)0.0001 (5)0.0008 (6)
O10.0236 (6)0.0187 (6)0.0236 (6)0.0001 (5)0.0032 (4)0.0025 (5)
N10.0225 (6)0.0185 (8)0.0160 (6)0.0029 (6)0.0001 (5)0.0034 (5)
C100.0232 (7)0.0226 (9)0.0179 (7)0.0014 (7)0.0013 (6)0.0034 (6)
C120.0252 (8)0.0235 (9)0.0216 (7)0.0011 (7)0.0030 (6)0.0015 (6)
C130.0203 (8)0.0421 (12)0.0292 (9)0.0020 (8)0.0028 (6)0.0006 (8)
C110.0221 (7)0.0250 (10)0.0190 (7)0.0013 (7)0.0007 (6)0.0029 (6)
O20.0233 (6)0.0266 (7)0.0273 (6)0.0008 (5)0.0002 (5)0.0026 (5)
Geometric parameters (Å, º) top
C9—C81.386 (2)C1—N11.335 (2)
C9—C41.395 (2)N1—C101.4733 (18)
C9—H90.95N1—H10.856 (18)
C8—C71.389 (3)C10—C121.521 (2)
C8—H80.95C10—C111.533 (2)
C7—C61.382 (3)C10—H101
C7—H70.95C12—C131.522 (2)
C6—C51.395 (2)C12—H12A0.99
C6—H60.95C12—H12B0.99
C5—C41.397 (2)C13—H13A0.98
C5—H50.95C13—H13B0.98
C4—C31.469 (2)C13—H13C0.98
C3—C21.339 (2)C11—O21.419 (2)
C3—H30.95C11—H11A0.99
C2—C11.488 (2)C11—H11B0.99
C2—H20.95O2—H2O0.91 (3)
C1—O11.253 (2)
C8—C9—C4120.83 (16)C1—N1—H1119.1 (12)
C8—C9—H9119.6C10—N1—H1118.6 (12)
C4—C9—H9119.6N1—C10—C12109.89 (13)
C9—C8—C7120.46 (17)N1—C10—C11110.05 (13)
C9—C8—H8119.8C12—C10—C11111.57 (13)
C7—C8—H8119.8N1—C10—H10108.4
C6—C7—C8119.41 (15)C12—C10—H10108.4
C6—C7—H7120.3C11—C10—H10108.4
C8—C7—H7120.3C10—C12—C13113.65 (14)
C7—C6—C5120.37 (16)C10—C12—H12A108.8
C7—C6—H6119.8C13—C12—H12A108.8
C5—C6—H6119.8C10—C12—H12B108.8
C6—C5—C4120.62 (16)C13—C12—H12B108.8
C6—C5—H5119.7H12A—C12—H12B107.7
C4—C5—H5119.7C12—C13—H13A109.5
C9—C4—C5118.30 (14)C12—C13—H13B109.5
C9—C4—C3123.01 (14)H13A—C13—H13B109.5
C5—C4—C3118.68 (15)C12—C13—H13C109.5
C2—C3—C4127.11 (16)H13A—C13—H13C109.5
C2—C3—H3116.4H13B—C13—H13C109.5
C4—C3—H3116.4O2—C11—C10110.08 (13)
C3—C2—C1120.40 (15)O2—C11—H11A109.6
C3—C2—H2119.8C10—C11—H11A109.6
C1—C2—H2119.8O2—C11—H11B109.6
O1—C1—N1122.67 (14)C10—C11—H11B109.6
O1—C1—C2121.91 (14)H11A—C11—H11B108.2
N1—C1—C2115.42 (14)C11—O2—H2O110.0 (15)
C1—N1—C10121.93 (14)
C4—C9—C8—C70.3 (3)C3—C2—C1—O110.2 (2)
C9—C8—C7—C60.1 (3)C3—C2—C1—N1169.54 (14)
C8—C7—C6—C50.8 (3)O1—C1—N1—C103.1 (2)
C7—C6—C5—C41.0 (3)C2—C1—N1—C10176.62 (13)
C8—C9—C4—C50.0 (3)C1—N1—C10—C12162.75 (14)
C8—C9—C4—C3179.23 (16)C1—N1—C10—C1174.00 (19)
C6—C5—C4—C90.6 (2)N1—C10—C12—C1366.99 (19)
C6—C5—C4—C3179.90 (15)C11—C10—C12—C13170.66 (14)
C9—C4—C3—C216.1 (3)N1—C10—C11—O260.87 (16)
C5—C4—C3—C2164.65 (16)C12—C10—C11—O261.40 (16)
C4—C3—C2—C1179.32 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1i0.91 (3)1.88 (3)2.773 (2)165 (2)
N1—H1···O1ii0.86 (2)2.03 (2)2.876 (2)173 (2)
C2—H2···O1ii0.952.703.415 (2)133
C7—H7···O2iii0.952.453.383 (2)167
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y+1/2, z; (iii) x, y+1/2, z+1/2.
(2E)-1-(4-hydroxypiperidin-1-yl)-3-phenylprop-2-en-1-one (3) top
Crystal data top
C14H17NO2F(000) = 992
Mr = 231.28Dx = 1.241 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7280 reflections
a = 14.2940 (7) Åθ = 1.0–27.5°
b = 11.4480 (6) ŵ = 0.08 mm1
c = 16.1120 (9) ÅT = 100 K
β = 110.158 (3)°Block, colourless
V = 2475.0 (2) Å30.46 × 0.25 × 0.15 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
3877 reflections with I > 2σ(I)
CCD scansRint = 0.047
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
θmax = 27.5°, θmin = 3.0°
Tmin = 0.963, Tmax = 0.988h = 1818
15206 measured reflectionsk = 1414
5525 independent reflectionsl = 1920
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.9018P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.128(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.25 e Å3
5525 reflectionsΔρmin = 0.22 e Å3
316 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0061 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O2A0.78159 (10)0.47906 (11)0.64789 (9)0.0346 (3)
C12A0.77634 (12)0.35948 (15)0.66984 (11)0.0267 (4)
H12A0.76740.35730.72870.032*
C110.87211 (12)0.29399 (15)0.67953 (11)0.0281 (4)
H11A0.88570.29820.62340.034*
H11C0.92850.3310.72630.034*
C10A0.86327 (12)0.16753 (16)0.70311 (11)0.0295 (4)
H10A0.92480.1250.70650.035*
H10C0.85550.16310.76170.035*
N1A0.77721 (10)0.11278 (12)0.63643 (9)0.0263 (3)
C14A0.68213 (12)0.17000 (15)0.62661 (12)0.0284 (4)
H14A0.6680.16280.68240.034*
H14C0.62760.13110.57910.034*
C130.68658 (12)0.29807 (15)0.60410 (11)0.0269 (4)
H13A0.62480.33740.60390.032*
H13C0.69010.30480.5440.032*
C1A0.77952 (12)0.01756 (15)0.58768 (11)0.0261 (4)
O1A0.70253 (9)0.02909 (11)0.53809 (9)0.0363 (3)
C2A0.87930 (12)0.02847 (15)0.59372 (11)0.0256 (4)
H2A0.93520.02250.60990.031*
C3A0.89076 (12)0.13971 (15)0.57677 (11)0.0255 (4)
H3A0.83430.1890.56580.031*
C4A0.98257 (12)0.19449 (15)0.57329 (11)0.0242 (4)
C9A1.06720 (12)0.12831 (16)0.57927 (11)0.0271 (4)
H9A1.06670.04610.58730.032*
C8A1.15151 (12)0.18219 (16)0.57359 (11)0.0286 (4)
H8A1.20860.13670.57790.034*
C7A1.15337 (12)0.30183 (16)0.56174 (11)0.0289 (4)
H7A1.21140.33840.55780.035*
C6A1.07010 (12)0.36791 (16)0.55560 (11)0.0299 (4)
H6A1.0710.450.54740.036*
C5A0.98508 (12)0.31437 (16)0.56139 (11)0.0279 (4)
H5A0.92830.36030.55720.033*
O2B0.89628 (9)0.13973 (13)0.26615 (9)0.0370 (3)
C12B0.81214 (12)0.20269 (15)0.27152 (12)0.0276 (4)
H12B0.76330.21460.21050.033*
C11B0.76169 (13)0.13560 (15)0.32601 (12)0.0291 (4)
H11D0.73560.06080.29620.035*
H11B0.81130.11750.38480.035*
C10B0.67627 (13)0.20561 (15)0.33779 (12)0.0293 (4)
H10D0.64830.16260.37720.035*
H10B0.62270.21580.27980.035*
N1B0.71215 (10)0.32033 (12)0.37605 (9)0.0249 (3)
C14B0.75993 (12)0.38805 (15)0.32405 (12)0.0268 (4)
H14D0.71040.40540.26510.032*
H14B0.78430.46320.35410.032*
C13B0.84699 (12)0.32056 (16)0.31314 (12)0.0276 (4)
H13D0.89950.30970.37160.033*
H13B0.87580.36560.27530.033*
C1B0.69647 (11)0.36930 (15)0.44622 (11)0.0229 (4)
O1B0.72572 (9)0.46994 (10)0.47088 (8)0.0293 (3)
C2B0.64182 (11)0.30024 (15)0.49318 (11)0.0246 (4)
H2B0.64240.21730.49120.03*
C3B0.59195 (11)0.35520 (16)0.53811 (11)0.0260 (4)
H3B0.59350.43820.53770.031*
C4B0.53510 (11)0.30052 (17)0.58809 (11)0.0279 (4)
C9B0.53074 (12)0.18025 (18)0.59829 (12)0.0330 (4)
H9B0.56660.130.57310.04*
C8B0.47418 (14)0.1332 (2)0.64507 (13)0.0421 (5)
H8B0.47110.0510.65160.051*
C7B0.42193 (13)0.2074 (2)0.68244 (13)0.0449 (6)
H7B0.38360.17540.71480.054*
C6B0.42566 (13)0.3257 (2)0.67275 (12)0.0412 (5)
H6B0.38970.37570.69810.049*
C5B0.48174 (12)0.37260 (19)0.62607 (12)0.0345 (4)
H5B0.48410.45490.61970.041*
H2AO0.7662 (16)0.4878 (18)0.5916 (16)0.046 (6)*
H2BO0.8734 (18)0.081 (2)0.2299 (17)0.063 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O2A0.0422 (7)0.0287 (7)0.0278 (7)0.0008 (6)0.0054 (6)0.0020 (6)
C12A0.0277 (9)0.0300 (10)0.0225 (9)0.0023 (7)0.0088 (7)0.0002 (7)
C110.0222 (8)0.0378 (10)0.0229 (9)0.0003 (7)0.0059 (7)0.0049 (7)
C10A0.0228 (8)0.0374 (10)0.0259 (9)0.0056 (8)0.0054 (7)0.0027 (8)
N1A0.0203 (7)0.0302 (8)0.0288 (8)0.0030 (6)0.0091 (6)0.0001 (6)
C14A0.0218 (8)0.0332 (10)0.0340 (10)0.0044 (7)0.0145 (7)0.0014 (8)
C130.0220 (8)0.0312 (10)0.0277 (9)0.0049 (7)0.0088 (7)0.0002 (7)
C1A0.0242 (8)0.0247 (9)0.0316 (9)0.0011 (7)0.0125 (7)0.0037 (7)
O1A0.0243 (6)0.0315 (7)0.0515 (9)0.0008 (5)0.0112 (6)0.0070 (6)
C2A0.0221 (8)0.0283 (9)0.0273 (9)0.0006 (7)0.0099 (7)0.0008 (7)
C3A0.0205 (8)0.0285 (10)0.0271 (9)0.0020 (7)0.0076 (7)0.0009 (7)
C4A0.0213 (8)0.0297 (10)0.0197 (8)0.0025 (7)0.0048 (7)0.0008 (7)
C9A0.0263 (8)0.0280 (9)0.0275 (9)0.0030 (7)0.0101 (7)0.0016 (7)
C8A0.0245 (8)0.0370 (11)0.0261 (9)0.0014 (7)0.0110 (7)0.0040 (7)
C7A0.0241 (8)0.0400 (11)0.0221 (9)0.0088 (8)0.0075 (7)0.0021 (7)
C6A0.0272 (9)0.0310 (10)0.0263 (9)0.0050 (7)0.0028 (7)0.0068 (7)
C5A0.0207 (8)0.0316 (10)0.0269 (9)0.0007 (7)0.0024 (7)0.0041 (7)
O2B0.0229 (6)0.0445 (9)0.0442 (8)0.0004 (6)0.0125 (6)0.0159 (7)
C12B0.0206 (8)0.0341 (10)0.0286 (9)0.0009 (7)0.0094 (7)0.0056 (7)
C11B0.0287 (9)0.0293 (10)0.0294 (9)0.0024 (7)0.0103 (7)0.0062 (7)
C10B0.0264 (9)0.0324 (10)0.0326 (10)0.0068 (7)0.0147 (8)0.0073 (8)
N1B0.0224 (7)0.0271 (8)0.0272 (8)0.0028 (6)0.0113 (6)0.0027 (6)
C14B0.0274 (9)0.0283 (9)0.0269 (9)0.0018 (7)0.0121 (7)0.0012 (7)
C13B0.0238 (8)0.0336 (10)0.0282 (9)0.0040 (7)0.0125 (7)0.0036 (7)
C1B0.0191 (7)0.0257 (9)0.0236 (8)0.0048 (7)0.0068 (7)0.0018 (7)
O1B0.0360 (7)0.0233 (7)0.0324 (7)0.0007 (5)0.0169 (6)0.0010 (5)
C2B0.0205 (8)0.0261 (9)0.0263 (9)0.0016 (7)0.0067 (7)0.0008 (7)
C3B0.0195 (8)0.0331 (10)0.0242 (9)0.0027 (7)0.0059 (7)0.0018 (7)
C4B0.0157 (8)0.0451 (11)0.0212 (9)0.0022 (7)0.0043 (7)0.0009 (7)
C9B0.0236 (9)0.0461 (12)0.0299 (10)0.0067 (8)0.0102 (8)0.0029 (8)
C8B0.0344 (10)0.0530 (13)0.0396 (12)0.0161 (9)0.0137 (9)0.0018 (9)
C7B0.0220 (9)0.0803 (17)0.0355 (11)0.0086 (10)0.0139 (8)0.0028 (11)
C6B0.0230 (9)0.0723 (16)0.0301 (10)0.0124 (10)0.0114 (8)0.0064 (10)
C5B0.0218 (8)0.0544 (13)0.0264 (9)0.0093 (8)0.0072 (7)0.0061 (8)
Geometric parameters (Å, º) top
O2A—C12A1.422 (2)O2B—C12B1.430 (2)
O2A—H2AO0.86 (2)O2B—H2BO0.88 (3)
C12A—C111.521 (2)C12B—C13B1.513 (2)
C12A—C131.525 (2)C12B—C11B1.522 (2)
C12A—H12A1C12B—H12B1
C11—C10A1.513 (3)C11B—C10B1.526 (2)
C11—H11A0.99C11B—H11D0.99
C11—H11C0.99C11B—H11B0.99
C10A—N1A1.466 (2)C10B—N1B1.466 (2)
C10A—H10A0.99C10B—H10D0.99
C10A—H10C0.99C10B—H10B0.99
N1A—C1A1.351 (2)N1B—C1B1.348 (2)
N1A—C14A1.467 (2)N1B—C14B1.471 (2)
C14A—C131.517 (2)C14B—C13B1.526 (2)
C14A—H14A0.99C14B—H14D0.99
C14A—H14C0.99C14B—H14B0.99
C13—H13A0.99C13B—H13D0.99
C13—H13C0.99C13B—H13B0.99
C1A—O1A1.236 (2)C1B—O1B1.243 (2)
C1A—C2A1.492 (2)C1B—C2B1.488 (2)
C2A—C3A1.324 (2)C2B—C3B1.336 (2)
C2A—H2A0.95C2B—H2B0.95
C3A—C4A1.473 (2)C3B—C4B1.467 (2)
C3A—H3A0.95C3B—H3B0.95
C4A—C5A1.388 (2)C4B—C9B1.390 (3)
C4A—C9A1.402 (2)C4B—C5B1.400 (2)
C9A—C8A1.385 (2)C9B—C8B1.390 (3)
C9A—H9A0.95C9B—H9B0.95
C8A—C7A1.384 (3)C8B—C7B1.397 (3)
C8A—H8A0.95C8B—H8B0.95
C7A—C6A1.385 (2)C7B—C6B1.366 (3)
C7A—H7A0.95C7B—H7B0.95
C6A—C5A1.392 (2)C6B—C5B1.383 (3)
C6A—H6A0.95C6B—H6B0.95
C5A—H5A0.95C5B—H5B0.95
C12A—O2A—H2AO110.9 (14)C12B—O2B—H2BO107.4 (16)
O2A—C12A—C11112.16 (14)O2B—C12B—C13B108.72 (13)
O2A—C12A—C13112.01 (14)O2B—C12B—C11B110.86 (14)
C11—C12A—C13110.86 (14)C13B—C12B—C11B110.09 (14)
O2A—C12A—H12A107.2O2B—C12B—H12B109
C11—C12A—H12A107.2C13B—C12B—H12B109
C13—C12A—H12A107.2C11B—C12B—H12B109
C10A—C11—C12A110.33 (14)C12B—C11B—C10B111.42 (15)
C10A—C11—H11A109.6C12B—C11B—H11D109.3
C12A—C11—H11A109.6C10B—C11B—H11D109.3
C10A—C11—H11C109.6C12B—C11B—H11B109.3
C12A—C11—H11C109.6C10B—C11B—H11B109.3
H11A—C11—H11C108.1H11D—C11B—H11B108
N1A—C10A—C11110.29 (14)N1B—C10B—C11B110.11 (13)
N1A—C10A—H10A109.6N1B—C10B—H10D109.6
C11—C10A—H10A109.6C11B—C10B—H10D109.6
N1A—C10A—H10C109.6N1B—C10B—H10B109.6
C11—C10A—H10C109.6C11B—C10B—H10B109.6
H10A—C10A—H10C108.1H10D—C10B—H10B108.2
C1A—N1A—C10A126.07 (14)C1B—N1B—C10B126.15 (14)
C1A—N1A—C14A120.33 (14)C1B—N1B—C14B120.17 (14)
C10A—N1A—C14A113.59 (14)C10B—N1B—C14B113.35 (13)
N1A—C14A—C13110.10 (13)N1B—C14B—C13B110.85 (14)
N1A—C14A—H14A109.6N1B—C14B—H14D109.5
C13—C14A—H14A109.6C13B—C14B—H14D109.5
N1A—C14A—H14C109.6N1B—C14B—H14B109.5
C13—C14A—H14C109.6C13B—C14B—H14B109.5
H14A—C14A—H14C108.2H14D—C14B—H14B108.1
C14A—C13—C12A111.96 (14)C12B—C13B—C14B110.23 (13)
C14A—C13—H13A109.2C12B—C13B—H13D109.6
C12A—C13—H13A109.2C14B—C13B—H13D109.6
C14A—C13—H13C109.2C12B—C13B—H13B109.6
C12A—C13—H13C109.2C14B—C13B—H13B109.6
H13A—C13—H13C107.9H13D—C13B—H13B108.1
O1A—C1A—N1A121.98 (15)O1B—C1B—N1B121.24 (15)
O1A—C1A—C2A120.51 (16)O1B—C1B—C2B120.50 (15)
N1A—C1A—C2A117.49 (15)N1B—C1B—C2B118.26 (15)
C3A—C2A—C1A120.63 (15)C3B—C2B—C1B119.80 (16)
C3A—C2A—H2A119.7C3B—C2B—H2B120.1
C1A—C2A—H2A119.7C1B—C2B—H2B120.1
C2A—C3A—C4A126.32 (15)C2B—C3B—C4B126.63 (17)
C2A—C3A—H3A116.8C2B—C3B—H3B116.7
C4A—C3A—H3A116.8C4B—C3B—H3B116.7
C5A—C4A—C9A118.75 (15)C9B—C4B—C5B118.61 (16)
C5A—C4A—C3A119.48 (15)C9B—C4B—C3B122.90 (15)
C9A—C4A—C3A121.75 (16)C5B—C4B—C3B118.48 (17)
C8A—C9A—C4A120.31 (17)C8B—C9B—C4B120.39 (18)
C8A—C9A—H9A119.8C8B—C9B—H9B119.8
C4A—C9A—H9A119.8C4B—C9B—H9B119.8
C7A—C8A—C9A120.56 (16)C9B—C8B—C7B119.7 (2)
C7A—C8A—H8A119.7C9B—C8B—H8B120.1
C9A—C8A—H8A119.7C7B—C8B—H8B120.1
C8A—C7A—C6A119.56 (15)C6B—C7B—C8B120.36 (18)
C8A—C7A—H7A120.2C6B—C7B—H7B119.8
C6A—C7A—H7A120.2C8B—C7B—H7B119.8
C7A—C6A—C5A120.21 (17)C7B—C6B—C5B120.00 (19)
C7A—C6A—H6A119.9C7B—C6B—H6B120
C5A—C6A—H6A119.9C5B—C6B—H6B120
C4A—C5A—C6A120.61 (16)C6B—C5B—C4B120.9 (2)
C4A—C5A—H5A119.7C6B—C5B—H5B119.5
C6A—C5A—H5A119.7C4B—C5B—H5B119.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2AO···O1Bi0.86 (2)1.89 (2)2.746 (2)171 (2)
O2B—H2BO···O2Aii0.88 (3)1.90 (3)2.748 (2)160 (2)
C10A—H10A···O2Biii0.992.453.314 (2)146
C2B—H2B···O1A0.952.353.237 (2)156
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z1/2; (iii) x+2, y, z+1.
Selected anticonvulsant activity results and neurotoxicity data for analyzed cinnamamide derivatives top
CompoundMES (100 mg, 0.5 h)scPTZ (300 mg, 0.5 h)Neurotoxicity (100 mg, 0.5 h)Neurotoxicity (300 mg, 0.5 h)
(1) (R,S)2/31/11/84/4
(2) (R,S)1/31/13/84/4
(3)3/31/14/4
(4) (R,S)3/31/14/4
(5) (S)3/32/84/4
(6) (R)3/31/11/84/4
(7) (R,S)3/31/14/4
(8)4/4
The results are presented as the number of animals responding to treatment or displaying neurotoxicity over the number of animals used in the test. The dash (–) indicates a lack of activity/neurotoxicity at the tested dose.
Comparison of the reported pharmacophore model of anti-MES active agents (Khan et al., 2012) with distances (Å) in the crystal structures of cinnamamide derivatives top
CompoundPh–HBDPh–D1Ph–D2HBD–D1HBD–D2Reference
Model4.9–8.023.02–5.683.02–5.682.89–6.002.89–6.00Khan et al. (2012)
(1)5.6828.7053.3283.3512.410This work
(2)5.7188.0543.3323.2282.418This work
(3), molecule A5.7119.5633.3154.7722.426This work
(3), molecule B5.7149.8653.3194.7872.426This work
(4)5.7297.9903.3393.1122.412Gunia-Krzyżak et al. (2016a)
(5)5.7008.3673.3223.3782.413Gunia-Krzyżak et al. (2016b)
(6)5.7088.3763.3303.3752.414Gunia-Krzyżak et al. (2016b)
(7)5.7086.6733.3103.3092.443Gunia-Krzyżak et al. (2017b)
(7), 2nd position OH5.7088.3723.3103.3992.443Gunia-Krzyżak et al. (2017b)
(8)5.7168.5233.3363.3312.410Gunia-Krzyżak et al. (2016a)
Abbreviations: D1 is the O atom in the substituent at the N atom, HBD is the centroid of the amide bond, Ph is the centroid of the phenyl ring and D2 is the centroid of the double bond.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds