Download citation
Download citation
link to html
Halogen atoms in mol­ecular crystals may be involved in various inter­actions, often playing a very important role in structure stabilization. By introducing electron-donating groups, such as NH2, the electron density of the mol­ecule is changed and thus inter­actions with the bromine substituent may alter. Herein, the crystal structures of meta-bromo­nitro­benzene and its NH2-substituted derivatives are analyzed. In all four described structures, namely m-bromo­nitro­benzene [Charlton & Trotter (1963). Acta Cryst. 16, 313], 4-bromo-2-nitro­aniline (C6H5BrN2O2, 1), 2-bromo-6-nitro­aniline (2) and 2-bromo-4-nitro­aniline [Arshad et al. (2009). Acta Cryst. E65, o480], the Br atom is engaged in different inter­actions (Br...π, Br...O, Br...Br and C—H...Br, respectively). The Hirshfeld surface analysis (HS) and Reduced Density Gradient NonCovalent Inter­action (RDG NCI) plots are used to prove the relevance, directionality and stabilizing nature of these inter­actions. Their modifications have been associated with the position of the amino group in the mol­ecular structure and its influence on charge distribution analyzed with electrostatic potential surfaces (EPS). The diversification of the inter­actions has been correlated with a σ-hole potential value that enables a switching of the Br-atom character from electrophilic to nucleophilic.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618013608/yp3165sup1.cif
Contains datablocks 1, 2, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618013608/yp31651sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618013608/yp31652sup3.hkl
Contains datablock 2

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618013608/yp31651sup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229618013608/yp31652sup5.cml
Supplementary material

CCDC references: 1869457; 1869456

Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL (Sheldrick, 2015a); molecular graphics: Mercury CSD (Macrae et al., 2008) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

4-Bromo-2-nitroaniline (1) top
Crystal data top
C6H5BrN2O2F(000) = 424
Mr = 217.03Dx = 1.975 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 11.1643 (11) ÅCell parameters from 3126 reflections
b = 3.8275 (4) Åθ = 2.4–27.6°
c = 17.2764 (16) ŵ = 5.58 mm1
β = 98.662 (3)°T = 130 K
V = 729.82 (12) Å3Needle, yellow
Z = 40.60 × 0.42 × 0.38 mm
Data collection top
Bruker D8 Venture Photon II
diffractometer
2965 reflections with I > 2σ(I)
Radiation source: TRIUMPH monochromator and fine focus sealed tubeRint = 0.059
φ and ω scansθmax = 29.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1515
Tmin = 0.579, Tmax = 0.746k = 55
12367 measured reflectionsl = 2320
3712 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.51 e Å3
3712 reflectionsΔρmin = 0.77 e Å3
215 parametersAbsolute structure: Flack x determined using 1017 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
6 restraintsAbsolute structure parameter: 0.030 (12)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.27039 (4)0.95174 (18)0.14819 (3)0.0270 (2)
O10.1481 (4)0.7273 (14)0.4930 (3)0.0280 (12)
O20.0525 (4)1.0151 (13)0.3946 (3)0.0312 (12)
N10.3685 (7)0.4902 (15)0.4868 (4)0.0277 (16)
H1A0.313 (5)0.521 (16)0.518 (3)0.018 (18)*
H1B0.440 (3)0.40 (2)0.504 (5)0.04 (2)*
N20.1407 (5)0.8386 (15)0.4244 (3)0.0208 (12)
C10.3445 (6)0.6017 (18)0.4122 (4)0.0196 (14)
C20.2357 (6)0.7667 (18)0.3791 (4)0.0165 (13)
C30.2143 (6)0.8733 (15)0.3005 (3)0.0143 (12)
H30.14040.98440.27970.017*
C40.3009 (6)0.8151 (17)0.2546 (4)0.0192 (14)
C50.4104 (6)0.6541 (18)0.2851 (4)0.0210 (15)
H50.46990.61260.25230.025*
C60.4319 (6)0.5560 (18)0.3623 (4)0.0250 (15)
H60.50790.45470.38260.030*
Br110.77175 (6)0.51283 (17)0.85196 (4)0.0268 (2)
O110.6691 (5)1.1576 (16)0.5080 (3)0.0378 (14)
O120.5605 (4)1.1624 (16)0.6013 (3)0.0387 (14)
N110.8927 (6)0.9025 (18)0.5326 (4)0.0291 (14)
H11A0.969 (2)0.86 (2)0.528 (5)0.04 (2)*
H11B0.837 (5)1.016 (18)0.501 (4)0.04 (3)*
N120.6553 (5)1.0795 (16)0.5758 (4)0.0254 (14)
C110.8602 (6)0.8231 (17)0.6033 (4)0.0187 (14)
C120.7478 (6)0.9009 (16)0.6259 (4)0.0172 (13)
C130.7217 (6)0.8121 (17)0.7007 (4)0.0179 (14)
H130.64510.86910.71490.022*
C140.8055 (6)0.6462 (16)0.7522 (4)0.0159 (13)
C150.9211 (6)0.5656 (16)0.7317 (4)0.0196 (13)
H150.98080.45390.76840.024*
C160.9454 (6)0.6492 (17)0.6595 (4)0.0199 (14)
H161.02230.58940.64600.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0404 (5)0.0233 (3)0.0199 (4)0.0028 (4)0.0134 (4)0.0035 (4)
O10.029 (3)0.043 (3)0.012 (3)0.003 (2)0.007 (2)0.004 (2)
O20.019 (2)0.050 (4)0.025 (3)0.013 (2)0.005 (2)0.009 (2)
N10.030 (4)0.029 (4)0.020 (3)0.009 (3)0.007 (3)0.006 (3)
N20.014 (3)0.031 (3)0.017 (3)0.001 (2)0.000 (2)0.002 (2)
C10.015 (3)0.016 (3)0.025 (4)0.002 (3)0.007 (3)0.001 (3)
C20.015 (3)0.022 (4)0.013 (3)0.003 (3)0.005 (2)0.001 (3)
C30.014 (3)0.018 (3)0.012 (3)0.000 (2)0.004 (3)0.001 (2)
C40.021 (4)0.020 (3)0.018 (4)0.005 (3)0.009 (3)0.003 (3)
C50.016 (3)0.023 (4)0.025 (4)0.002 (3)0.008 (3)0.002 (3)
C60.013 (3)0.028 (4)0.032 (4)0.004 (3)0.000 (3)0.001 (3)
Br110.0406 (5)0.0233 (3)0.0179 (4)0.0007 (3)0.0091 (3)0.0024 (3)
O110.036 (3)0.054 (4)0.022 (3)0.003 (3)0.001 (3)0.015 (3)
O120.014 (3)0.061 (4)0.040 (3)0.014 (2)0.001 (2)0.015 (3)
N110.030 (4)0.042 (4)0.018 (3)0.004 (3)0.015 (3)0.001 (3)
N120.020 (3)0.032 (3)0.023 (3)0.001 (3)0.001 (3)0.008 (3)
C110.020 (4)0.018 (4)0.020 (4)0.001 (3)0.009 (3)0.005 (3)
C120.016 (3)0.019 (3)0.018 (3)0.001 (3)0.005 (3)0.002 (2)
C130.015 (3)0.019 (3)0.022 (4)0.001 (3)0.008 (3)0.001 (3)
C140.020 (3)0.016 (3)0.013 (3)0.001 (3)0.004 (3)0.002 (2)
C150.016 (3)0.021 (3)0.020 (3)0.004 (3)0.004 (3)0.000 (3)
C160.013 (3)0.023 (3)0.025 (4)0.003 (3)0.005 (3)0.004 (3)
Geometric parameters (Å, º) top
Br1—C41.892 (7)Br11—C141.890 (6)
O1—N21.249 (6)O11—N121.240 (8)
O2—N21.241 (7)O12—N121.247 (7)
N1—H1A0.879 (7)N11—H11A0.881 (7)
N1—H1B0.879 (7)N11—H11B0.880 (7)
N1—C11.346 (10)N11—C111.360 (9)
N2—C21.436 (8)N12—C121.419 (9)
C1—C21.411 (9)C11—C121.401 (9)
C1—C61.407 (10)C11—C161.419 (9)
C2—C31.405 (8)C12—C131.409 (9)
C3—H30.9500C13—H130.9500
C3—C41.358 (8)C13—C141.348 (9)
C4—C51.399 (9)C14—C151.421 (9)
C5—H50.9500C15—H150.9500
C5—C61.370 (10)C15—C161.355 (9)
C6—H60.9500C16—H160.9500
H1A—N1—H1B122 (7)H11A—N11—H11B130 (8)
C1—N1—H1A119 (5)C11—N11—H11A115 (5)
C1—N1—H1B119 (6)C11—N11—H11B115 (6)
O1—N2—C2120.2 (5)O11—N12—O12120.3 (6)
O2—N2—O1120.9 (5)O11—N12—C12120.6 (6)
O2—N2—C2118.9 (5)O12—N12—C12119.0 (6)
N1—C1—C2124.3 (7)N11—C11—C12125.1 (6)
N1—C1—C6119.4 (6)N11—C11—C16118.5 (6)
C6—C1—C2116.3 (6)C12—C11—C16116.4 (6)
C1—C2—N2121.8 (6)C11—C12—N12122.1 (6)
C3—C2—N2116.1 (6)C11—C12—C13121.5 (6)
C3—C2—C1122.1 (6)C13—C12—N12116.4 (5)
C2—C3—H3120.5C12—C13—H13120.0
C4—C3—C2119.1 (6)C14—C13—C12120.0 (6)
C4—C3—H3120.5C14—C13—H13120.0
C3—C4—Br1118.8 (5)C13—C14—Br11121.0 (5)
C3—C4—C5120.7 (6)C13—C14—C15120.3 (6)
C5—C4—Br1120.5 (5)C15—C14—Br11118.8 (5)
C4—C5—H5119.9C14—C15—H15120.2
C6—C5—C4120.2 (6)C16—C15—C14119.6 (6)
C6—C5—H5119.9C16—C15—H15120.2
C1—C6—H6119.2C11—C16—H16118.9
C5—C6—C1121.7 (6)C15—C16—C11122.3 (6)
C5—C6—H6119.2C15—C16—H16118.9
Br1—C4—C5—C6179.9 (5)Br11—C14—C15—C16177.9 (5)
O1—N2—C2—C16.5 (10)O11—N12—C12—C113.7 (10)
O1—N2—C2—C3174.2 (6)O11—N12—C12—C13177.7 (6)
O2—N2—C2—C1172.8 (6)O12—N12—C12—C11175.1 (6)
O2—N2—C2—C36.6 (9)O12—N12—C12—C133.6 (9)
N1—C1—C2—N21.7 (11)N11—C11—C12—N120.8 (10)
N1—C1—C2—C3179.0 (6)N11—C11—C12—C13179.4 (7)
N1—C1—C6—C5177.7 (7)N11—C11—C16—C15178.9 (7)
N2—C2—C3—C4179.5 (6)N12—C12—C13—C14179.1 (6)
C1—C2—C3—C40.2 (10)C11—C12—C13—C140.5 (10)
C2—C1—C6—C52.5 (10)C12—C11—C16—C150.8 (10)
C2—C3—C4—Br1178.9 (5)C12—C13—C14—Br11178.3 (5)
C2—C3—C4—C50.5 (9)C12—C13—C14—C151.1 (10)
C3—C4—C5—C60.7 (10)C13—C14—C15—C161.6 (10)
C4—C5—C6—C12.2 (10)C14—C15—C16—C111.4 (10)
C6—C1—C2—N2178.0 (6)C16—C11—C12—N12178.9 (6)
C6—C1—C2—C31.3 (10)C16—C11—C12—C130.3 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.89 (6)1.99 (6)2.640 (9)129 (4)
N1—H1B···O12i0.88 (5)2.19 (7)2.967 (9)148 (6)
N11—H11A···O1ii0.88 (3)2.23 (4)3.104 (8)169 (8)
N11—H11B···O110.88 (6)1.97 (6)2.655 (9)134 (6)
N11—H11B···N120.88 (6)2.58 (6)2.939 (9)106 (5)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z.
2-Bromo-6-nitroaniline (2) top
Crystal data top
C6H5BrN2O2F(000) = 424
Mr = 217.03Dx = 2.055 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.4477 (2) ÅCell parameters from 5872 reflections
b = 11.4469 (4) Åθ = 2.3–30.4°
c = 13.8244 (5) ŵ = 5.80 mm1
β = 94.635 (2)°T = 130 K
V = 701.53 (5) Å3Needle, yellow
Z = 40.42 × 0.30 × 0.25 mm
Data collection top
Bruker D8 Venture Photon II
diffractometer
1813 reflections with I > 2σ(I)
φ and ω scansRint = 0.035
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 30.6°, θmin = 2.3°
Tmin = 0.522, Tmax = 0.746h = 66
14025 measured reflectionsk = 1616
2162 independent reflectionsl = 1619
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.050 w = 1/[σ2(Fo2) + (0.0164P)2 + 0.5734P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2162 reflectionsΔρmax = 0.54 e Å3
108 parametersΔρmin = 0.46 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.23474 (4)0.47820 (2)0.10999 (2)0.02263 (6)
O10.2381 (3)0.58496 (13)0.49773 (10)0.0274 (3)
O20.5543 (3)0.72679 (14)0.52156 (10)0.0321 (3)
N10.1533 (3)0.48393 (15)0.32640 (11)0.0198 (3)
H1A0.109 (6)0.481 (2)0.3871 (7)0.034 (7)*
H1B0.070 (5)0.4381 (16)0.2809 (12)0.027 (6)*
N20.4252 (3)0.65371 (14)0.46827 (11)0.0196 (3)
C10.3467 (4)0.56763 (15)0.30262 (12)0.0150 (3)
C20.4908 (4)0.64946 (15)0.36741 (12)0.0161 (3)
C30.6962 (4)0.73235 (16)0.33831 (14)0.0195 (4)
H30.79200.78410.38490.023*
C40.7603 (4)0.73946 (16)0.24314 (14)0.0208 (4)
H40.89980.79580.22340.025*
C50.6172 (4)0.66259 (16)0.17556 (13)0.0198 (4)
H50.65570.66780.10910.024*
C60.4222 (4)0.57999 (15)0.20480 (12)0.0164 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02501 (10)0.02499 (10)0.01769 (9)0.00115 (8)0.00048 (6)0.00340 (7)
O10.0283 (7)0.0344 (8)0.0206 (7)0.0053 (6)0.0092 (5)0.0006 (6)
O20.0388 (8)0.0336 (8)0.0241 (7)0.0056 (7)0.0041 (6)0.0109 (6)
N10.0213 (7)0.0207 (7)0.0177 (7)0.0036 (6)0.0037 (6)0.0007 (6)
N20.0195 (7)0.0209 (8)0.0185 (7)0.0043 (6)0.0020 (6)0.0010 (6)
C10.0126 (7)0.0144 (8)0.0180 (8)0.0035 (6)0.0016 (6)0.0012 (6)
C20.0149 (7)0.0173 (8)0.0162 (8)0.0036 (6)0.0026 (6)0.0010 (6)
C30.0160 (8)0.0161 (8)0.0261 (9)0.0020 (7)0.0008 (7)0.0003 (7)
C40.0169 (8)0.0186 (9)0.0275 (9)0.0012 (7)0.0050 (7)0.0044 (7)
C50.0183 (8)0.0218 (9)0.0199 (8)0.0051 (7)0.0061 (6)0.0058 (7)
C60.0156 (8)0.0181 (8)0.0154 (8)0.0040 (6)0.0012 (6)0.0009 (6)
Geometric parameters (Å, º) top
Br1—C61.8958 (17)C1—C61.426 (2)
O1—N21.238 (2)C2—C31.399 (2)
O2—N21.226 (2)C3—H30.9500
N1—H1A0.878 (5)C3—C41.371 (3)
N1—H1B0.878 (5)C4—H40.9500
N1—C11.346 (2)C4—C51.399 (3)
N2—C21.448 (2)C5—H50.9500
C1—C21.413 (2)C5—C61.366 (2)
H1A—N1—H1B123 (2)C2—C3—H3119.8
C1—N1—H1A117.3 (16)C4—C3—C2120.50 (17)
C1—N1—H1B119.4 (15)C4—C3—H3119.8
O1—N2—C2119.23 (15)C3—C4—H4120.5
O2—N2—O1122.05 (16)C3—C4—C5119.02 (17)
O2—N2—C2118.71 (15)C5—C4—H4120.5
N1—C1—C2125.66 (16)C4—C5—H5119.9
N1—C1—C6120.41 (16)C6—C5—C4120.22 (17)
C2—C1—C6113.93 (15)C6—C5—H5119.9
C1—C2—N2121.08 (15)C1—C6—Br1118.06 (13)
C3—C2—N2116.17 (16)C5—C6—Br1118.36 (13)
C3—C2—C1122.73 (16)C5—C6—C1123.56 (16)
O1—N2—C2—C10.6 (2)C1—C2—C3—C41.9 (3)
O1—N2—C2—C3177.77 (16)C2—C1—C6—Br1178.24 (12)
O2—N2—C2—C1179.49 (16)C2—C1—C6—C50.4 (2)
O2—N2—C2—C31.2 (2)C2—C3—C4—C50.0 (3)
N1—C1—C2—N23.6 (3)C3—C4—C5—C61.6 (3)
N1—C1—C2—C3178.20 (16)C4—C5—C6—Br1179.99 (13)
N1—C1—C6—Br11.6 (2)C4—C5—C6—C11.4 (3)
N1—C1—C6—C5179.78 (16)C6—C1—C2—N2176.23 (15)
N2—C2—C3—C4176.44 (16)C6—C1—C2—C32.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.88 (1)1.99 (2)2.635 (2)130 (2)
N1—H1A···O1i0.88 (1)2.43 (2)3.201 (2)148 (2)
N1—H1B···Br10.88 (2)2.57 (2)3.0432 (15)115 (2)
C3—H3···O20.952.332.661 (2)100
C5—H5···O2ii0.952.533.253 (2)133
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+3/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds