Download citation
Download citation
link to html
In the title complex, [Cu(C7H4NO4)(C11H10N3O2)]·2H2O, the CuII atom is in a distorted octa­hedral geometry. The equatorial plane is formed by two N atoms and one O atom from 6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinate and by one N atom from pyridine-2,6-dicarboxyl­ate (pdc). Two pdc O atoms occupy the axial positions. Water mol­ecules are hydrogen bonded to the complex mol­ecules, forming a two-dimensional sheet structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808013731/zl2096sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808013731/zl2096Isup2.hkl
Contains datablock I

CCDC reference: 665034

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.043
  • wR factor = 0.113
  • Data-to-parameter ratio = 12.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT180_ALERT_4_C Check Cell Rounding: # of Values Ending with 0 = 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Recently we reported the crystal structures of bis(6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato)zinc(II) trihydrate [Yin et al., 2007] and bis[3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato]cobalt(II) hemipentahydrate [Zhao et al., 2007]. As a continuation of these investigations, we report here the crystal structure of a new copper(II) complex with the ligand 3-chloro-6-(3,5-dimethyl-1 H-pyrazol-1-yl) picolinic acid (CDPA) and pyridine-2,6-dicarboxylate (PDBL). (Fig.1).

The title compound, (I), consists of a central asymmetric copper(II) complex cation and two uncoordinated water molecules. The compound is isostructural with its Ni derivative [Feng et al., 2008]. In the cation (Fig.1), the Cu atom is six-coordinated by three N atoms and three O atoms from CDPA and PDBL ligands. The three diagonal angles for the Cu(II) octahedron range from 150.7 (4)° to 173.7 (2)°, the dihedral angle between the planes of the two ligands is 80.5 (6)°, which indicates a slightly distorted octahedral geometry around the CuIIatom.

Analysis of the crystal packing of the title compound reveals the existence of multiple intermolecular O—H···O hydrogen bonds between the mononuclear subunits and the lattice water molecules (Figure 2), forming a two-dimensional hydrogen-bonded sheet perpendicular to the c-axis of the structure (Figure 3). In this sheet the two interstitial water molecules are connecting three complex molecules with each other: The protonated carboxyl oxygen atom O4 acts as a hydrogen donor towards O7 of one of the water molecules. One of the H atoms of O7 in turn binds with the second water molecule, and each one H atom of both water molecules acts as a hydrogen bonding donor towards the two carboxyl O atoms O5 and O6 of a neighboring complex. The last remaining water H atom (H8b) makes the connection to the third complex connected by the two water molecules (Figure 2). The carboxylate group that acts as an H bond acceptor towards both water molecules via both of its O atoms O5 and O6 exhibits a delocalized π system with nearly identical C—O distances.

Related literature top

For the isostructural Ni derivative of the title compound, see: Feng et al. (2008). For other related literature, see: Yin et al. (2007); Zhao et al. (2007).

Experimental top

3-Chloro-(6-(3,5-dimethyl-1H-pyrazol-1-yl))picolinic acid, pyridine-2,6-dicarboxylic acid and CuCl2.6H2O were available commercially and were used without further purification. Equimolar amounts of 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl) picolinic acid (0.5 mmol, 125 mg) and pyridine-2,6-dicarboxylic acid (0.5 mmol, 83 mg) were dissolved in anhydrous alcohol (15 ml). The mixture was stirred to give a clear solution, to this solution was added CuCl2.6H2O (0.5 mmol, 113 mg) in anhydrous alcohol (10 ml). After keeping the resulting solution in air to evaporate about half of the solvents, blue prisms of the title compound were formed. The crystals were isolated, washed with alcohol three times and dried in a vacuum desiccator using silica gel (Yield 75%). Elemental analysis: found: C, 44.85; H, 3.78; N, 11.65%. calc. for C18H18CuN4O8: C, 44.86; H, 3.76; N, 11.63%.

Refinement top

H atoms on C atoms were positioned geometrically and refined using a riding model with C–H = 0.93–0.96 Å and Uiso(H) = 1.2–1.5Ueq(C). The water H atoms were located in difference density Fourier maps and refined using a riding model with O–H = 0.82 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound (I) showing 50% proability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Detail of (I), showing the O—H···O hydrogen bonds. Displacement ellipsoids are drawn at the 50% probability level and the hydrogen bonds are indiacted by dashed lines. [Symmetry codes:(i) x, -1+y, z; (ii) -1+x, -1+y, z.]
[Figure 3] Fig. 3. Crystal packing of (I) showing the hydrogen bonding interactions.
[6-(3,5-Dimethyl-1H-pyrazol-1-yl)picolinato](pyridine-2,6- dicarboxylato)copper(II) dihydrate top
Crystal data top
[Cu(C7H4NO4)(C11H10N3O2)]·2H2OZ = 2
Mr = 481.90F(000) = 494
Triclinic, P1Dx = 1.653 Mg m3
a = 9.004 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.036 (1) ÅCell parameters from 3268 reflections
c = 12.6760 (15) Åθ = 2.3–27.8°
α = 103.932 (3)°µ = 1.19 mm1
β = 90.289 (2)°T = 298 K
γ = 104.177 (3)°Block, blue
V = 968.25 (19) Å30.39 × 0.35 × 0.32 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3361 independent reflections
Radiation source: fine-focus sealed tube2844 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 106
Tmin = 0.655, Tmax = 0.684k = 1010
5068 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0647P)2 + 0.7713P]
where P = (Fo2 + 2Fc2)/3
3361 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cu(C7H4NO4)(C11H10N3O2)]·2H2Oγ = 104.177 (3)°
Mr = 481.90V = 968.25 (19) Å3
Triclinic, P1Z = 2
a = 9.004 (1) ÅMo Kα radiation
b = 9.036 (1) ŵ = 1.19 mm1
c = 12.6760 (15) ÅT = 298 K
α = 103.932 (3)°0.39 × 0.35 × 0.32 mm
β = 90.289 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3361 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2844 reflections with I > 2σ(I)
Tmin = 0.655, Tmax = 0.684Rint = 0.014
5068 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.03Δρmax = 0.39 e Å3
3361 reflectionsΔρmin = 0.30 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.72104 (5)0.95250 (5)0.26981 (3)0.03369 (16)
N10.7309 (3)0.9975 (3)0.4271 (2)0.0318 (6)
N20.8342 (3)0.7887 (3)0.4100 (2)0.0358 (6)
N30.8359 (3)0.7890 (3)0.3006 (2)0.0350 (6)
N40.6970 (3)0.9233 (3)0.1106 (2)0.0296 (6)
O10.6153 (3)1.1315 (3)0.3022 (2)0.0476 (6)
O20.5465 (4)1.2990 (4)0.4420 (2)0.0662 (8)
O30.9435 (3)1.1261 (3)0.2279 (2)0.0472 (7)
O41.0063 (3)1.2352 (3)0.0888 (2)0.0578 (8)
H41.07571.29450.13230.087*
O50.5089 (3)0.7472 (3)0.21665 (19)0.0498 (7)
O60.3550 (4)0.6217 (4)0.0688 (2)0.0735 (10)
O70.2133 (3)0.4600 (3)0.1912 (2)0.0576 (7)
H7D0.26170.44840.24510.069*
H7E0.27540.49280.14670.069*
O80.4582 (4)0.4587 (4)0.3057 (3)0.0964 (13)
H8A0.50020.54980.29720.116*
H8B0.51120.43950.35400.116*
C10.6077 (4)1.1920 (4)0.4025 (3)0.0419 (8)
C20.6808 (4)1.1214 (4)0.4800 (3)0.0359 (8)
C30.6976 (4)1.1722 (4)0.5913 (3)0.0459 (9)
H30.66321.25850.62790.055*
C40.7675 (4)1.0906 (5)0.6474 (3)0.0463 (9)
H4A0.78131.12390.72300.056*
C50.8171 (4)0.9614 (4)0.5940 (3)0.0427 (9)
H50.86370.90660.63180.051*
C60.7943 (4)0.9166 (4)0.4808 (3)0.0337 (7)
C70.8598 (6)0.6154 (5)0.5339 (3)0.0578 (11)
H7A0.86100.50710.52440.087*
H7B0.76820.63280.56750.087*
H7C0.94810.68210.57950.087*
C80.8633 (4)0.6533 (4)0.4257 (3)0.0402 (8)
C90.8869 (5)0.5692 (5)0.3260 (3)0.0474 (9)
H90.91050.47190.31030.057*
C100.8691 (4)0.6564 (4)0.2504 (3)0.0394 (8)
C110.8836 (5)0.6158 (5)0.1306 (3)0.0558 (11)
H11A0.87560.70300.10200.084*
H11B0.80310.52470.09670.084*
H11C0.98140.59360.11580.084*
C120.9239 (4)1.1361 (4)0.1343 (3)0.0354 (8)
C130.7922 (4)1.0210 (4)0.0612 (3)0.0325 (7)
C140.7664 (4)1.0143 (4)0.0471 (3)0.0418 (8)
H140.83221.08410.07970.050*
C150.6420 (5)0.9030 (5)0.1072 (3)0.0460 (9)
H150.62460.89570.18090.055*
C160.5451 (4)0.8038 (4)0.0566 (3)0.0437 (9)
H160.46050.72860.09530.052*
C170.5747 (4)0.8171 (4)0.0524 (3)0.0350 (8)
C180.4718 (4)0.7214 (4)0.1191 (3)0.0404 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0395 (3)0.0366 (2)0.0240 (2)0.00751 (18)0.00296 (16)0.00805 (16)
N10.0295 (15)0.0370 (15)0.0271 (14)0.0050 (12)0.0005 (11)0.0082 (11)
N20.0410 (16)0.0431 (16)0.0251 (14)0.0105 (13)0.0025 (12)0.0124 (12)
N30.0421 (17)0.0390 (15)0.0244 (14)0.0096 (13)0.0014 (12)0.0099 (12)
N40.0303 (14)0.0297 (13)0.0268 (14)0.0040 (11)0.0029 (11)0.0072 (11)
O10.0601 (17)0.0491 (15)0.0353 (14)0.0208 (13)0.0082 (12)0.0070 (11)
O20.083 (2)0.0616 (18)0.0598 (19)0.0395 (17)0.0055 (16)0.0045 (15)
O30.0454 (15)0.0490 (15)0.0385 (15)0.0078 (12)0.0113 (12)0.0148 (11)
O40.0518 (17)0.0564 (16)0.0536 (17)0.0187 (14)0.0063 (13)0.0252 (13)
O50.0479 (15)0.0552 (15)0.0326 (14)0.0134 (13)0.0022 (11)0.0122 (11)
O60.066 (2)0.077 (2)0.0546 (18)0.0361 (17)0.0245 (15)0.0292 (16)
O70.0581 (18)0.0593 (17)0.0539 (17)0.0052 (14)0.0020 (14)0.0211 (14)
O80.076 (2)0.074 (2)0.147 (4)0.0085 (19)0.033 (2)0.055 (2)
C10.040 (2)0.0373 (19)0.045 (2)0.0083 (16)0.0040 (16)0.0062 (16)
C20.0344 (19)0.0364 (18)0.0319 (18)0.0025 (15)0.0008 (14)0.0058 (14)
C30.053 (2)0.044 (2)0.0331 (19)0.0061 (18)0.0057 (17)0.0002 (16)
C40.050 (2)0.057 (2)0.0234 (17)0.0041 (19)0.0008 (16)0.0042 (16)
C50.045 (2)0.053 (2)0.0295 (18)0.0078 (18)0.0021 (16)0.0146 (16)
C60.0324 (18)0.0396 (18)0.0292 (17)0.0057 (15)0.0008 (14)0.0122 (14)
C70.079 (3)0.057 (2)0.045 (2)0.021 (2)0.001 (2)0.0243 (19)
C80.039 (2)0.044 (2)0.041 (2)0.0103 (16)0.0043 (16)0.0179 (16)
C90.058 (3)0.043 (2)0.044 (2)0.0169 (18)0.0040 (18)0.0120 (17)
C100.040 (2)0.045 (2)0.0324 (18)0.0115 (16)0.0030 (15)0.0074 (15)
C110.075 (3)0.059 (2)0.036 (2)0.025 (2)0.002 (2)0.0070 (18)
C120.0322 (18)0.0374 (18)0.0367 (19)0.0032 (15)0.0038 (15)0.0151 (15)
C130.0334 (18)0.0354 (17)0.0299 (17)0.0070 (14)0.0002 (14)0.0121 (14)
C140.045 (2)0.048 (2)0.0338 (19)0.0052 (17)0.0028 (16)0.0183 (16)
C150.054 (2)0.057 (2)0.0253 (17)0.0098 (19)0.0060 (16)0.0118 (16)
C160.047 (2)0.048 (2)0.0294 (18)0.0035 (17)0.0093 (16)0.0054 (15)
C170.041 (2)0.0312 (17)0.0300 (17)0.0064 (15)0.0037 (15)0.0052 (14)
C180.040 (2)0.0379 (18)0.037 (2)0.0032 (16)0.0065 (16)0.0101 (15)
Geometric parameters (Å, º) top
Cu1—N11.934 (3)C3—C41.387 (5)
Cu1—N41.975 (3)C3—H30.9300
Cu1—O12.032 (3)C4—C51.377 (5)
Cu1—N32.104 (3)C4—H4A0.9300
Cu1—O52.279 (2)C5—C61.394 (5)
Cu1—O32.372 (2)C5—H50.9300
N1—C61.327 (4)C7—C81.490 (5)
N1—C21.340 (4)C7—H7A0.9600
N2—C81.370 (4)C7—H7B0.9600
N2—N31.388 (4)C7—H7C0.9600
N2—C61.406 (4)C8—C91.357 (5)
N3—C101.318 (4)C9—C101.410 (5)
N4—C131.344 (4)C9—H90.9300
N4—C171.345 (4)C10—C111.489 (5)
O1—C11.266 (4)C11—H11A0.9600
O2—C11.233 (4)C11—H11B0.9600
O3—C121.226 (4)C11—H11C0.9600
O4—C121.269 (4)C12—C131.505 (5)
O4—H40.8200C13—C141.376 (5)
O5—C181.230 (4)C14—C151.385 (5)
O6—C181.256 (4)C14—H140.9300
O7—H7D0.8498C15—C161.369 (5)
O7—H7E0.8498C15—H150.9300
O8—H8A0.8500C16—C171.377 (5)
O8—H8B0.8500C16—H160.9300
C1—C21.519 (5)C17—C181.512 (5)
C2—C31.370 (5)
N1—Cu1—N4173.70 (11)C6—C5—H5121.5
N1—Cu1—O180.55 (11)N1—C6—C5121.3 (3)
N4—Cu1—O193.19 (10)N1—C6—N2112.0 (3)
N1—Cu1—N377.82 (11)C5—C6—N2126.8 (3)
N4—Cu1—N3108.45 (10)C8—C7—H7A109.5
O1—Cu1—N3158.36 (10)C8—C7—H7B109.5
N1—Cu1—O5103.92 (10)H7A—C7—H7B109.5
N4—Cu1—O576.16 (10)C8—C7—H7C109.5
O1—Cu1—O598.55 (11)H7A—C7—H7C109.5
N3—Cu1—O587.33 (11)H7B—C7—H7C109.5
N1—Cu1—O3105.16 (10)C9—C8—N2106.0 (3)
N4—Cu1—O375.33 (9)C9—C8—C7130.9 (3)
O1—Cu1—O389.65 (11)N2—C8—C7123.1 (3)
N3—Cu1—O395.34 (10)C8—C9—C10107.4 (3)
O5—Cu1—O3150.70 (9)C8—C9—H9126.3
C6—N1—C2121.3 (3)C10—C9—H9126.3
C6—N1—Cu1121.7 (2)N3—C10—C9110.2 (3)
C2—N1—Cu1116.9 (2)N3—C10—C11121.2 (3)
C8—N2—N3110.9 (3)C9—C10—C11128.5 (3)
C8—N2—C6132.6 (3)C10—C11—H11A109.5
N3—N2—C6116.4 (3)C10—C11—H11B109.5
C10—N3—N2105.5 (3)H11A—C11—H11B109.5
C10—N3—Cu1140.2 (2)C10—C11—H11C109.5
N2—N3—Cu1110.3 (2)H11A—C11—H11C109.5
C13—N4—C17119.1 (3)H11B—C11—H11C109.5
C13—N4—Cu1120.4 (2)O3—C12—O4126.6 (3)
C17—N4—Cu1120.1 (2)O3—C12—C13119.5 (3)
C1—O1—Cu1114.9 (2)O4—C12—C13113.9 (3)
C12—O3—Cu1108.3 (2)N4—C13—C14121.2 (3)
C12—O4—H4109.5N4—C13—C12114.5 (3)
C18—O5—Cu1111.8 (2)C14—C13—C12124.3 (3)
H7D—O7—H7E110.6C13—C14—C15119.6 (3)
H8A—O8—H8B109.0C13—C14—H14120.2
O2—C1—O1126.8 (4)C15—C14—H14120.2
O2—C1—C2118.0 (3)C16—C15—C14119.0 (3)
O1—C1—C2115.1 (3)C16—C15—H15120.5
N1—C2—C3121.1 (3)C14—C15—H15120.5
N1—C2—C1112.1 (3)C15—C16—C17119.0 (3)
C3—C2—C1126.7 (3)C15—C16—H16120.5
C2—C3—C4117.7 (3)C17—C16—H16120.5
C2—C3—H3121.1N4—C17—C16122.1 (3)
C4—C3—H3121.1N4—C17—C18113.7 (3)
C5—C4—C3121.6 (3)C16—C17—C18124.2 (3)
C5—C4—H4A119.2O5—C18—O6125.8 (3)
C3—C4—H4A119.2O5—C18—C17117.9 (3)
C4—C5—C6116.9 (3)O6—C18—C17116.2 (3)
C4—C5—H5121.5
O1—Cu1—N1—C6179.7 (3)O1—C1—C2—C3175.1 (3)
N3—Cu1—N1—C61.0 (3)N1—C2—C3—C40.3 (5)
O5—Cu1—N1—C683.1 (3)C1—C2—C3—C4179.8 (3)
O3—Cu1—N1—C693.3 (3)C2—C3—C4—C50.8 (6)
O1—Cu1—N1—C25.0 (2)C3—C4—C5—C60.2 (5)
N3—Cu1—N1—C2174.3 (3)C2—N1—C6—C52.7 (5)
O5—Cu1—N1—C2101.6 (2)Cu1—N1—C6—C5172.4 (2)
O3—Cu1—N1—C282.0 (2)C2—N1—C6—N2178.1 (3)
C8—N2—N3—C101.3 (4)Cu1—N1—C6—N26.8 (4)
C6—N2—N3—C10177.3 (3)C4—C5—C6—N11.5 (5)
C8—N2—N3—Cu1160.9 (2)C4—C5—C6—N2179.4 (3)
C6—N2—N3—Cu115.0 (3)C8—N2—C6—N1160.3 (3)
N1—Cu1—N3—C10161.2 (4)N3—N2—C6—N114.5 (4)
N4—Cu1—N3—C1018.1 (4)C8—N2—C6—C520.6 (6)
O1—Cu1—N3—C10163.0 (3)N3—N2—C6—C5164.6 (3)
O5—Cu1—N3—C1056.4 (4)N3—N2—C8—C91.4 (4)
O3—Cu1—N3—C1094.4 (4)C6—N2—C8—C9176.4 (4)
N1—Cu1—N3—N28.5 (2)N3—N2—C8—C7176.3 (3)
N4—Cu1—N3—N2170.80 (19)C6—N2—C8—C71.3 (6)
O1—Cu1—N3—N210.3 (4)N2—C8—C9—C100.8 (4)
O5—Cu1—N3—N296.3 (2)C7—C8—C9—C10176.6 (4)
O3—Cu1—N3—N2112.9 (2)N2—N3—C10—C90.8 (4)
O1—Cu1—N4—C1379.0 (3)Cu1—N3—C10—C9152.7 (3)
N3—Cu1—N4—C13100.6 (3)N2—N3—C10—C11179.0 (3)
O5—Cu1—N4—C13177.0 (3)Cu1—N3—C10—C1127.5 (6)
O3—Cu1—N4—C139.8 (2)C8—C9—C10—N30.0 (4)
O1—Cu1—N4—C1793.3 (2)C8—C9—C10—C11179.8 (4)
N3—Cu1—N4—C1787.1 (3)Cu1—O3—C12—O4168.4 (3)
O5—Cu1—N4—C174.7 (2)Cu1—O3—C12—C1312.6 (4)
O3—Cu1—N4—C17177.9 (3)C17—N4—C13—C140.1 (5)
N1—Cu1—O1—C12.1 (3)Cu1—N4—C13—C14172.3 (3)
N4—Cu1—O1—C1178.6 (3)C17—N4—C13—C12179.3 (3)
N3—Cu1—O1—C10.4 (5)Cu1—N4—C13—C126.9 (4)
O5—Cu1—O1—C1104.9 (3)O3—C12—C13—N45.8 (5)
O3—Cu1—O1—C1103.3 (3)O4—C12—C13—N4175.1 (3)
N1—Cu1—O3—C12161.4 (2)O3—C12—C13—C14175.0 (3)
N4—Cu1—O3—C1212.1 (2)O4—C12—C13—C144.1 (5)
O1—Cu1—O3—C1281.3 (2)N4—C13—C14—C151.3 (5)
N3—Cu1—O3—C12119.8 (2)C12—C13—C14—C15179.6 (3)
O5—Cu1—O3—C1225.8 (4)C13—C14—C15—C161.4 (6)
N1—Cu1—O5—C18168.6 (3)C14—C15—C16—C170.4 (6)
N4—Cu1—O5—C184.9 (3)C13—N4—C17—C160.9 (5)
O1—Cu1—O5—C1886.3 (3)Cu1—N4—C17—C16173.3 (3)
N3—Cu1—O5—C18114.6 (3)C13—N4—C17—C18176.4 (3)
O3—Cu1—O5—C1818.5 (4)Cu1—N4—C17—C184.0 (4)
Cu1—O1—C1—O2178.3 (3)C15—C16—C17—N40.8 (6)
Cu1—O1—C1—C20.8 (4)C15—C16—C17—C18176.3 (4)
C6—N1—C2—C32.0 (5)Cu1—O5—C18—O6175.8 (4)
Cu1—N1—C2—C3173.3 (3)Cu1—O5—C18—C174.4 (4)
C6—N1—C2—C1178.0 (3)N4—C17—C18—O50.8 (5)
Cu1—N1—C2—C16.7 (4)C16—C17—C18—O5178.1 (4)
O2—C1—C2—N1174.4 (3)N4—C17—C18—O6179.3 (3)
O1—C1—C2—N14.8 (4)C16—C17—C18—O62.0 (6)
O2—C1—C2—C35.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O7i0.821.692.477 (4)159
O7—H7D···O80.851.892.637 (4)145
O7—H7E···O60.851.732.524 (4)154
O8—H8A···O50.852.253.020 (4)152
O8—H8B···O2ii0.851.962.730 (4)151
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C7H4NO4)(C11H10N3O2)]·2H2O
Mr481.90
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.004 (1), 9.036 (1), 12.6760 (15)
α, β, γ (°)103.932 (3), 90.289 (2), 104.177 (3)
V3)968.25 (19)
Z2
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.39 × 0.35 × 0.32
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.655, 0.684
No. of measured, independent and
observed [I > 2σ(I)] reflections
5068, 3361, 2844
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.03
No. of reflections3361
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.30

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O7i0.821.692.477 (4)158.8
O7—H7D···O80.851.892.637 (4)144.8
O7—H7E···O60.851.732.524 (4)154.4
O8—H8A···O50.852.253.020 (4)151.5
O8—H8B···O2ii0.851.962.730 (4)150.5
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds