Download citation
Download citation
link to html
In the crystal structure of the title compound, {[Mn(NCSe)2(C12H10N2)(CH3OH)2]·C12H10N2}n, the MnII cation is coordin­ated by two terminal N-bonded seleno­cyanate anions, two methanol mol­ecules and two 1,2-bis­(pyridin-4-yl)eth­ene (bpe) ligands within a slightly distorted octahedral geometry. The MnII cations are linked into chains along the c-axis direction by the bpe ligands, which are further connected by inter­molecular O—H...N hydrogen bonding between the methanol H atoms and additional bpe mol­ecules that are not coordinated to the metal atoms. The MnII cation and both crystallographically independent bpe ligands are located on centers of inversion, whereas the seleno­cyanate and methanol ligands occupy general positions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536813012609/zl2549sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536813012609/zl2549Isup2.hkl
Contains datablock I

CCDC reference: 954375

Key indicators

  • Single-crystal X-ray study
  • T = 220 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.041
  • wR factor = 0.112
  • Data-to-parameter ratio = 14.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.970 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C1 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.2 PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 2 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.595 79 PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF .... 9
Alert level G PLAT004_ALERT_5_G Info: Polymeric Structure Found with Dimension . 1 PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF ? PLAT007_ALERT_5_G Note: Number of Unrefined Donor-H Atoms ........ 1 PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... 1 PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 60 %
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 6 ALERT level C = Check. Ensure it is not caused by an omission or oversight 5 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 3 ALERT type 5 Informative message, check

Comment top

Recently, we have reported on the synthesis, thermal and magnetic properties of new coordination polymers based on paramagnetic transition metal thiocyanates with different neutral co-ligands like e. g. pyridine, 1,2-bis(pyridin-4-yl)ethene (Boeckmann & Näther, 2010, 2012; Wöhlert et al., 2012). In the course of these investigations we have reacted manganese(II) chloride dihydrate with potassium selenocyanate and 1,2-bis(pyridin-4-yl)ethene in methanol, which leads to the formation of crystals of the title compound that were identified by single-crystal structure analysis.

In the crystal structure of the title compound each manganese(II) cation is coordinated by two terminally N-bonded selenocyanate anions, two methanol molecules and two 1,2-bis(pyridin-4-yl)ethene (bpe) ligands within slightly distorted octahedra (Fig. 1). The Mn—O and Mn—N distances range from 2.187 (3) Å to 2.279 (3) Å with angles arround the manganese(II) cation between 86.82 (11) ° and 93.18 (11) ° and 180 ° (Tab. 1). The Mn(II) cations are linked by the bpe ligands into chains, which elongate in the direction of the crystallographic c-axis (Fig. 2). These chains are further linked into layers by intermolecular O—H···N hydrogen bonding to the non-coordinated bpe ligands (Fig. 2, Tab. 2).

Related literature top

For background to this work see: Boeckmann & Näther (2010, 2012); Wöhlert et al. (2012).

Experimental top

MnCl2×2H2O, KNCSe and 1,2-bis(pyridin-4-yl)ethene were obtained from Alfa Aesar. All chemicals were used without further purification. 0.15 mmol (24 mg) MnCl2×2H2O and 0.2 mmol (28 mg) KNCSe were reacted with 0.3 mmol (54 mg) 1,2-bis(pyridin-4-yl)ethene in 1 ml methanol.

Refinement top

All C—H atoms were positions with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined isotropic with Uiso(H) = 1.2 Ueq(C) using a riding model with C—H = 0.94 and 0.97 Å. The O—H H atom was located in a difference map, its bond length was set to 0.83 Å, and finally it was refined isotropically with Uiso(H) = 1.5 Ueq(O) using a riding model.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: i = -x+2, -y+1, -z+1; ii = -x+1, -y+1, -z; iii = -x+2, -y, -z+1.
[Figure 2] Fig. 2. : Crystal structure of the title compound with view along the a-axis (black = manganese, blue = nitrogen, orange = selenium, red = oxygen, grey = carbon, white = hydrogen). Intermolecular hydrogen bonding is shown as dashed lines.
catena-Poly[[[bis(methanol-κO)bis(selenocyanato-κN)manganese(II)]-µ-1,2-bis(pyridin-4-yl)ethene-κ2N:N'] 1,2-bis(pyridin-4-yl)ethene monosolvate] top
Crystal data top
[Mn(NCSe)2(C12H10N2)(CH4O)2]·C12H10N2F(000) = 694
Mr = 693.42Dx = 1.499 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14170 reflections
a = 7.3580 (6) Åθ = 2.8–25.0°
b = 17.2445 (11) ŵ = 2.83 mm1
c = 12.1219 (9) ÅT = 220 K
β = 92.630 (9)°Block, yellow
V = 1536.5 (2) Å30.13 × 0.08 × 0.05 mm
Z = 2
Data collection top
Stoe IPDS-1
diffractometer
2633 independent reflections
Radiation source: fine-focus sealed tube2072 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
phi scanθmax = 25.0°, θmin = 2.8°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 88
Tmin = 0.754, Tmax = 0.862k = 2020
14170 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.077P)2]
where P = (Fo2 + 2Fc2)/3
2633 reflections(Δ/σ)max < 0.001
179 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
[Mn(NCSe)2(C12H10N2)(CH4O)2]·C12H10N2V = 1536.5 (2) Å3
Mr = 693.42Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.3580 (6) ŵ = 2.83 mm1
b = 17.2445 (11) ÅT = 220 K
c = 12.1219 (9) Å0.13 × 0.08 × 0.05 mm
β = 92.630 (9)°
Data collection top
Stoe IPDS-1
diffractometer
2633 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
2072 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 0.862Rint = 0.091
14170 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 0.99Δρmax = 0.38 e Å3
2633 reflectionsΔρmin = 0.78 e Å3
179 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn11.00000.50000.50000.02859 (18)
N10.8412 (3)0.59745 (16)0.5588 (2)0.0411 (6)
C10.7531 (4)0.65174 (18)0.5703 (3)0.0383 (7)
Se10.61619 (5)0.73559 (2)0.58880 (5)0.0748 (2)
N100.8026 (3)0.49379 (14)0.3495 (2)0.0317 (5)
C100.7810 (4)0.55472 (17)0.2815 (3)0.0337 (7)
H100.83520.60200.30320.040*
C110.6839 (4)0.55203 (17)0.1814 (3)0.0329 (6)
H110.67370.59640.13660.039*
C120.6011 (3)0.48261 (16)0.1474 (2)0.0281 (6)
C130.6159 (4)0.42049 (17)0.2201 (3)0.0342 (7)
H130.55740.37330.20250.041*
C140.7172 (4)0.42818 (17)0.3185 (3)0.0358 (7)
H140.72640.38520.36610.043*
C150.5041 (4)0.47366 (18)0.0402 (3)0.0312 (6)
H150.44230.42670.02680.037*
N300.9261 (4)0.26379 (17)0.5841 (4)0.0604 (9)
C301.0231 (6)0.2228 (2)0.6583 (4)0.0605 (10)
H301.06910.24830.72220.073*
C311.0604 (5)0.1445 (2)0.6469 (4)0.0528 (9)
H311.12970.11820.70210.063*
C320.9951 (4)0.10541 (19)0.5537 (3)0.0413 (8)
C330.8968 (5)0.1487 (2)0.4737 (4)0.0576 (10)
H330.85180.12520.40810.069*
C340.8666 (5)0.2261 (2)0.4925 (5)0.0663 (12)
H340.80040.25440.43790.080*
C351.0281 (4)0.02177 (19)0.5422 (3)0.0403 (7)
H351.09500.00290.60010.048*
O10.8375 (3)0.41425 (12)0.58486 (19)0.0386 (5)
H1O10.87410.36870.58400.058*
C20.6647 (5)0.4215 (2)0.6300 (4)0.0636 (11)
H2A0.65650.47120.66710.095*
H2B0.64800.38000.68270.095*
H2C0.57090.41830.57130.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0300 (3)0.0289 (3)0.0260 (3)0.0065 (2)0.0084 (2)0.0038 (2)
N10.0433 (14)0.0367 (14)0.0427 (17)0.0107 (12)0.0045 (12)0.0074 (12)
C10.0337 (14)0.0325 (16)0.048 (2)0.0011 (13)0.0026 (13)0.0061 (13)
Se10.0493 (3)0.0317 (3)0.1452 (5)0.01097 (15)0.0249 (3)0.0019 (2)
N100.0335 (12)0.0324 (13)0.0282 (13)0.0039 (10)0.0084 (10)0.0004 (10)
C100.0348 (14)0.0307 (15)0.0344 (17)0.0000 (11)0.0100 (12)0.0011 (12)
C110.0376 (14)0.0320 (15)0.0282 (17)0.0010 (11)0.0072 (12)0.0040 (11)
C120.0232 (12)0.0339 (15)0.0268 (15)0.0029 (10)0.0045 (10)0.0019 (11)
C130.0350 (14)0.0332 (16)0.0337 (17)0.0035 (11)0.0062 (12)0.0011 (12)
C140.0410 (16)0.0329 (16)0.0324 (17)0.0011 (12)0.0091 (13)0.0031 (12)
C150.0263 (13)0.0369 (15)0.0297 (16)0.0013 (11)0.0065 (11)0.0009 (12)
N300.0468 (17)0.0362 (17)0.099 (3)0.0034 (13)0.0122 (17)0.0041 (17)
C300.059 (2)0.046 (2)0.078 (3)0.0011 (17)0.010 (2)0.001 (2)
C310.0517 (19)0.045 (2)0.062 (3)0.0026 (15)0.0041 (17)0.0050 (17)
C320.0278 (14)0.0377 (17)0.059 (2)0.0014 (12)0.0099 (13)0.0125 (15)
C330.0503 (19)0.0381 (19)0.083 (3)0.0021 (15)0.0075 (19)0.0109 (19)
C340.050 (2)0.042 (2)0.106 (4)0.0091 (16)0.007 (2)0.020 (2)
C350.0299 (14)0.0361 (17)0.055 (2)0.0042 (12)0.0062 (13)0.0136 (14)
O10.0332 (10)0.0350 (12)0.0476 (14)0.0057 (8)0.0001 (9)0.0008 (9)
C20.052 (2)0.055 (2)0.085 (3)0.0040 (17)0.023 (2)0.007 (2)
Geometric parameters (Å, º) top
Mn1—N12.185 (3)C15—H150.9400
Mn1—N1i2.185 (3)N30—C301.327 (6)
Mn1—O12.188 (2)N30—C341.343 (6)
Mn1—O1i2.188 (2)C30—C311.386 (6)
Mn1—N10i2.281 (2)C30—H300.9400
Mn1—N102.281 (2)C31—C321.383 (6)
N1—C11.151 (4)C31—H310.9400
C1—Se11.782 (3)C32—C331.399 (5)
N10—C141.340 (4)C32—C351.470 (5)
N10—C101.341 (4)C33—C341.374 (6)
C10—C111.381 (4)C33—H330.9400
C10—H100.9400C34—H340.9400
C11—C121.397 (4)C35—C35iii1.321 (7)
C11—H110.9400C35—H350.9400
C12—C131.388 (4)O1—C21.413 (4)
C12—C151.462 (4)O1—H1O10.8300
C13—C141.384 (4)C2—H2A0.9700
C13—H130.9400C2—H2B0.9700
C14—H140.9400C2—H2C0.9700
C15—C15ii1.331 (6)
N1—Mn1—N1i180.00 (14)N10—C14—H14118.3
N1—Mn1—O193.12 (10)C13—C14—H14118.3
N1i—Mn1—O186.88 (10)C15ii—C15—C12125.6 (4)
N1—Mn1—O1i86.88 (10)C15ii—C15—H15117.2
N1i—Mn1—O1i93.12 (10)C12—C15—H15117.2
O1—Mn1—O1i180.00 (8)C30—N30—C34116.6 (3)
N1—Mn1—N10i91.91 (9)N30—C30—C31123.6 (4)
N1i—Mn1—N10i88.09 (9)N30—C30—H30118.2
O1—Mn1—N10i89.85 (9)C31—C30—H30118.2
O1i—Mn1—N10i90.15 (9)C32—C31—C30119.6 (4)
N1—Mn1—N1088.09 (9)C32—C31—H31120.2
N1i—Mn1—N1091.91 (9)C30—C31—H31120.2
O1—Mn1—N1090.15 (9)C31—C32—C33117.0 (3)
O1i—Mn1—N1089.85 (8)C31—C32—C35120.2 (3)
N10i—Mn1—N10180.000 (1)C33—C32—C35122.8 (4)
C1—N1—Mn1167.9 (3)C34—C33—C32119.1 (4)
N1—C1—Se1179.6 (3)C34—C33—H33120.4
C14—N10—C10116.6 (2)C32—C33—H33120.4
C14—N10—Mn1122.50 (19)N30—C34—C33123.9 (4)
C10—N10—Mn1120.54 (19)N30—C34—H34118.0
N10—C10—C11123.8 (3)C33—C34—H34118.0
N10—C10—H10118.1C35iii—C35—C32125.7 (4)
C11—C10—H10118.1C35iii—C35—H35117.2
C10—C11—C12119.3 (3)C32—C35—H35117.2
C10—C11—H11120.3C2—O1—Mn1130.0 (2)
C12—C11—H11120.3C2—O1—H1O1112.7
C13—C12—C11117.0 (3)Mn1—O1—H1O1116.7
C13—C12—C15120.3 (3)O1—C2—H2A109.5
C11—C12—C15122.8 (3)O1—C2—H2B109.5
C14—C13—C12119.8 (3)H2A—C2—H2B109.5
C14—C13—H13120.1O1—C2—H2C109.5
C12—C13—H13120.1H2A—C2—H2C109.5
N10—C14—C13123.4 (3)H2B—C2—H2C109.5
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N300.831.852.675 (4)173

Experimental details

Crystal data
Chemical formula[Mn(NCSe)2(C12H10N2)(CH4O)2]·C12H10N2
Mr693.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)220
a, b, c (Å)7.3580 (6), 17.2445 (11), 12.1219 (9)
β (°) 92.630 (9)
V3)1536.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.83
Crystal size (mm)0.13 × 0.08 × 0.05
Data collection
DiffractometerStoe IPDS1
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
Tmin, Tmax0.754, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
14170, 2633, 2072
Rint0.091
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 0.99
No. of reflections2633
No. of parameters179
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.78

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011), XCIF in SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Mn1—N12.185 (3)Mn1—N102.281 (2)
Mn1—O12.188 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N300.831.852.675 (4)172.9
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds