SLS - EXTREME ULTRAVIOLET FOR SCALABLE SILICON QUANTUM DEVICES

Extreme-ultraviolet light (EUV) is the key to state-of-the-art mass production of the classical electronics which drives the continuing information revolution. Scientists from PSI, UCL, EPFL and ETHZ have now used the Swiss Light Source (SLS) to perform the first experiments to demonstrate the potential of EUV for the manufacture of silicon-based quantum nanoelectronics, the building block for truly scalable quantum computers.

Read more: https://www.psi.ch/de/psd/scientific-highlights

Procopios Constantinou, et al., *Nature Communications* 15, 694 (2024)
https://doi.org/10.1038/s41467-024-44790-6

SLS — OBSERVING LASER-INDUCED RECRYSTALLIZATION

We present a new method to induce local recrystallization based on a selective laser-based heat treatment technique. The successive stages of recrystallization are studied by in situ X-ray diffraction combined with electron microscopy observations. This work paves the way for local tailoring of microstructures using laser treatments.

Read more: https://www.psi.ch/en/lsc/scientific-highlights-and-news

Claire Navarre, et al., *Materials and Design* 238 (2024) 112628
DOI: 10.1016/j.matdes.2023.112628

SWISSFEL — THE SECRET LIFE OF AN ELECTROMAGNON

Scientists have revealed how lattice vibrations and spins talk to each other in a hybrid excitation known as an electromagnon. To achieve this, they used a unique combination of experiments at the X-ray free electron laser SwissFEL. Understanding this fundamental process at the atomic level opens the door to ultrafast control of magnetism with light.

Read more: https://www.psi.ch/en/science/psd-highlights

Hiroki Ueda, et al., *Nature Communications*, Online, 27. November 2023
DOI: 10.1038/s41467-023-43581-9

Paul Scherrer Institut, 5232 Villigen PSI, Switzerland, useroffice@psi.ch, http://www.psi.ch