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An outline of the theory of X-ray absorption as applied to X-ray absorption spectroscopy is given, 
concentrating on EXAFS, showing how structural parameters are contained within the theory. A full 
description of the scattering problem and of inelastic effects is also included, and a description is 
given of how structural information may be extracted from experimental data. The emphasis is on 
curve-fitting methods, including those techniques which allow the inclusion of external constraints. 
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1. Introduction 

It has long been known that X-ray absorption spectra 
obtained from condensed samples show an oscillatory struc- 
ture that can extend for many hundreds of volts above 
the edge (Kronig, 1931, 1932). This is known as extended 
X-ray absorption fine structure (EXAFS). 

Since the first EXAFS experiment on an X-ray beamline 
at a synchrotron was reported (Kincaid & Eisenberger, 
1975), there has been an impressive development in EXAFS 
studies. 99% of these are now carded out at synchrotron 
radiation facilities. This dominance arises from the twin 
requirements of continuum radiation and high intensity. The 
EXAFS oscillations are weak, of the order of 1-10% of 
the absorption coefficient. In a noise-limited experiment we 
therefore need to collect 106-108 photons at each energy 
point of the spectrum, with perhaps 200 energy points 
spaced over a 1 keV energy range making up the spec- 
trum. Even recent developments in computer-controlled 
laboratory-based systems (Udagawa, 1991), which can run 
unattended for the long periods required to accumulate 
good spectra with a rotating-anode source, do not seriously 
challenge the superiority of electron storage rings for XAS 
studies. 

Modem X-ray absorption spectroscopy (XAS) began 
with the work of Sayers, Stem & Lytle (1971). They pointed 
out that a single-scattering short-range order theory could 
adequately account for the structure beyond about 50 eV 
from the edge (the EXAFS - close to the edge the structure 
is strongly affected by multiple-scattering contributions and 
is known as XANES, X-ray absorption near-edge structure) 
and described the potential of EXAFS in the determination 
of local atomic geometries. Their short-range theory of 
EXAFS explained the observed oscillatory structure in the 
X-ray absorption coefficient as a final-state electron effect, 
arising from the interference between the wavefunction 
of the outgoing photoelectron and that small part of the 
wave that is scattered back from neighbouring atoms. Thus, 
conceptually, EXAFS may be regarded as a type of electron 
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diffraction in which the source of electrons lies within the 
atom which participated in the X-ray absorption event. 

The primary objective in XAS studies is to determine 
the local atomic environment of the excited atom by ana- 
lyzing the measured oscillatory structure. The interference 
which gives rise to the EXAFS reflects directly the total 
phase and amplitude of the backscattered wave. This is 
shown in Stem's (1974) original semi-phenomenological 
expression for the EXAFS function x(k) which describes 
the oscillatory part of the K absorption coefficient: 

x(k) =-A(k)~-~(Ni/kR~)lf3(k, 7r)lexp(-2cr~k 2) 
J 

x exp(-2Rj/A)sin(2kRj + 261 + ~j). (1) 

In (1), the EXAFS is defined in terms of sets of identical 
scattering atoms, usually referred to as shells: a typical shell 
contains Ny identical scattering atoms at a mean distance 
Rj from the excited atom, each with an electron-scattering 
factor j~. The phase of the backscattered wave is largely 
due to the product of the photoelectron wavevector k and 
the total distance travelled, 2Rj. This is the distance out to 
the scattering atom and back since the major contribution 
to the absorption matrix element comes from regions of 
space very close to the nucleus of the excited atom, where 
the highly localized initial core state exists. The phase also 
contains contributions from the scattering process, the phase 
~j of the electron-scattering factor, and from the passage 
of the photoelectron out and back through the potential 
of the excited atom, 261 (for a K edge, the photoelectron 
must have angular momentum 1 = 1). The amplitude of the 
backscattered wave depends on the number of scattering 
atoms, Nj, and their scattering strength I~(k, 7r)[: since 
the wave must return to the origin, only backscattering 
is significant in this simple single-scattering expression. 
There is also a Debye-Waller factor which depends on 
crj 2, the mean-square variation in Rj. In addition there are 
two factors which reflect the many-body nature of the X- 
ray absorption process: an elastic mean free path parameter 
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(only elastically scattered electrons can take part in the 
interference process) and an amplitude factor A(k),  which 
measures the proportion of absorption events that result in 
the excitation of just a single photoelectron. 

Thus, we see that analysis of the EXAFS can yield 
information not only on the distance but also on the number 
and chemical type [through ~(k, 70| of the near neigh- 
bours of the excited atom. Only near neighbours contribute 
because of the presence of the mean free path factor 
exp(-2R/A): EXAFS spectra typically contain information 
on atoms less than 5/~ from the excited atom. Also, since 
the EXAFS is measured on a known absorption edge, 
for an atom of known atomic number, the technique is 
chemically specific, giving the environment of a known 
type of atom. It is therefore particularly useful for the 
study of systems containing many different types of atom, 
especially if we are interested in the environment of an atom 
of low concentration, a situation which occurs in many 
biological molecules. 

In the following sections we shall give an outline of the 
theory of EXAFS, showing how expression (1) and more 
accurate expressions for the EXAFS function arise. We shall 
also consider methods of data analysis and demonstrate 
how the structural information contained within an EXAFS 
spectrum is extracted. 

2. The theory of XAS 
The attenuation of X-rays passing through a medium occurs 
via three principal processes: scattering, pair production 
and photoelectric absorption. In the energy range used 
in XAS studies, 1-40 keV, photoelectric absorption totally 
dominates the attenuation process. 

In photoelectric absorption a single X-ray photon is 
absorbed by an atom. Because of the presence of the 
electron--electron interaction this is strictly a many-body 
process and should be treated as such. However, good 
results are obtained by the use of a one-electron theory, 
in which all of the photon energy is given up to one 
photoelectron, with many-electron effects treated as a sec- 
ondary process. This is the form of theory we shall employ: 
many-electron effects are considered in §2.3. 

In a one-electron process energy conservation requires 
that: 

E f  = hw - Eb (2) 

where hw is the energy of the X-ray photon, Eb the 
(positive) binding energy of the electron in its initial core 
state and Ef its energy after absorption of the photon. We 
always assume that the final-state electron is unbound, i.e. 
that it has a continuous distribution of allowed energies. 

The absorption of an X-ray photon by an atom is a 
quantum-mechanical process and may be understood by the 
use of time-dependent perturbation theory. We thus obtain 
Fermi's Golden Rule as the expression for the absorption 
cross section. So long as the X-ray wavelength is much 
longer than the dimension of the initial state, a situation 
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which always applies in the XAS regime, we may use 
the dipole approximation. Within this the X-ray absorption 
coefficient is given by the equivalent expressions: 

lz(o;) = ( 4 7 r e Z w / c ) Z l ( f  I e . r[ i ) lZr(Ef  - hw - Ei) 

Y 

= (47re2w/c)l(f l  e .r[ i ) lZp(Ef)  

= (47reZw/c ) ( - l h r ) ( f l e . rG+(r ,  r ~, E f ) e . r ' l i  ) (3) 

in Dirac notation, which we shall use for brevity. In the 
perhaps more familiar integral notation the matrix element 
is written as 

( f l e . r l i )  = f d3r¢}rr.r¢,. (4) 

Ii), equivalent to ~ i ( r ) ,  is the wavefunction of the initial 
state, If) that of the final state ((fl is the complex conjugate 
of If)) and p(Ey) the density of allowed states at the final- 
state energy Ef. e is the polarization vector of the electric 
field of the X-ray beam. The sum over final states, which 
gives rise to the density of states factor and also allows us to 
introduce the final-state Green's function G ÷, arises because 
we measure the X-ray absorption, not the photoelectron 
current, so every energy-conserving final state contributes. 
In the closely allied technique of photoelectron diffraction, 
we do detect the photoelectron and the final-state sum does 
not appear. The theory of photoelectron diffraction is very 
similar to that of EXAFS (Fadley, 1992) except that the 
Green's function formalism is not used. 

The scattering approach to EXAFS shows that the den- 
sity of final states, p(Ef), is that of a free electron of 
wavevector k and energy h2k2/2m: in this approach it arises 
from the normalization of the final-state wavefunction to 
unit outgoing flux. The wavevector and energy of the 
photoelectron are linked by 

h 2 k 2 / 2 m  = E l - E = ha; - Eedg e + E0, (5) 

in which E is the energy, in the sample, of a free electron 
of zero wavevector. E therefore corresponds to the effective 
mean potential seen by the photoelectron. Note that we do 
not measure the energy and momentum of the photoelectron 
from the absorption edge. The edge occurs at the Fermi 
energy, or rather at the lowest unoccupied energy level, 
and has the energy Eedge. The offset E0 is usually called 
the threshold energy: it is of order 10 eV and is negative. 

With the free-electron form for the density of final states 
p(Ef), the only factor which can give rise to the oscillatory 
structure, the EXAFS signal, is the matrix element. Now 
the initial-state wavefunction is fixed. It is the final-state 
wavefunction, or the final-state Green's function, which 
varies with photon energy, by virtue of (2), and this must 
be the origin of the structure. Hence our statement that 
EXAFS is a final-state effect. 

In order to be able to extract structural information from 
the EXAFS signal we must be able to calculate the X-ray 
absorption coefficient. In practice this means calculating 
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the final-state wavefunction or Green's function, since the 
initial state is a deep core state whose wavefunction is 
known and independent of environment. There are two 
main approaches to this problem, which we shall refer to 
in this paper as the XANES and EXAFS approaches. The 
difference between the two lies in the relative importance 
of multiple scattering of the photoelectron. 

2.1. XANE$ 

XANES is structure which lies close to the absorption 
edge: the upper energy limit is usually set arbitrarily some 
50 eV above the edge. In this region of low photoelectron 
energy the elastic mean free path is long and the electron- 
scattering factor f (k ,  7r) is generally large. Thus, multiple 
scattering can be highly important. A detailed report of 
this has been given by Tyson, Hodgson, Natoli & Benfatto 
(1992). In some cases the scattering series may not con- 
verge, in which situation the final-state wavefunction must 
be calculated using band-structure or cluster methods. 

Band-structure methods have been used for many years 
to calculate the XANES spectra of crystalline materials, 
although this terminology is rarely used. An obvious ex- 
ample is the use of soft X-ray absorption spectra to obtain 
information on the unoccupied density of states, which goes 
right back to the beginnings of solid-state physics (Mott & 
Jones, 1936). OPW methods have been the most popular, 
but all band-structure techniques have been used at some 
time. All involve Brillouin zone sums. The results of such 
calculations are angular momentum projections of the final 
density of states, the selection rule implicit in (3) ensuring 
that only one or two components contribute. An equivalent 
calculation, based on molecular orbitals, may be made for 
molecular systems. 

More recently, cluster calculations of the XANES struc- 
ture have become the norm. The validity of these is 
based upon the fact that the photoelectron mean free path, 
although long, is not infinite, if only because of the lifetime 
of the core hole left upon photoexcitation (see §2.3). 
Multiple scattering is strong, so the use of a scattering series 
in these calculations is inefficient and it may not even be 
convergent. Thus, we solve for the final-state wavefunction, 
or more usually Green's function, in a finite-size cluster by 
inversion of a matrix which represents the interaction of the 
photoelectron with all of the atoms in the cluster (Durham, 
Pendry & Hodges, 1981). The size of the cluster has a 
major effect on the computing time required and is set at 
the minimum value needed to give an adequate description 
of the XANES. 

The result of a XANES calculation is the X-ray absorp- 
tion coefficient #(,;), which may be compared with exper- 
iment. In all cases the calculation is so time-consuming 
computationally and involves so many atomic coordinates 
that it is not practicable to try to fit the calculated spectrum 
to experiment. Instead, calculations are made for a few 
cluster geometries, using interatomic distances derived from 
EXAFS or other data, and these are used to 'fingerprint' the 
experiment, to identify the symmetry of the site occupied 
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by the excited atom. A good example of this method of 
analysis is the study of the various forms of haemoglobin, 
completed by Durham et al. (1983), in which it is clearly 
shown that the orientation of the ligands of the iron 
atom has a strong influence on the near-edge structure. 
XANES is perhaps the only spectroscopic technique which 
is sufficiently sensitive to multiple-scattering contributions 
to provide such information directly. 

2.2. EXAFS 

The EXAFS region is conventionally taken to start 
some 50eV above the edge, although single-scattering 
calculations may often be taken down to within 10-15 eV 
of the edge. Observable structure often exists over 1000 eV 
above the edge. The high-energy photoelectron has a short 
mean free path and electron scattering is comparatively 
weak. In this region the scattering series rapidly converges 
and in many cases only single-scattering processes need 
be considered. Thus, EXAFS calculations are reasonably 
simple and computationally rapid. These attributes lead 
to the possibility of fitting calculated EXAFS spectra to 
experiment and so obtaining detailed structural information. 

If the electron scattering is not too strong then it is conve- 
nient to expand the final-state wavefunction in a scattering 
series. We may then consider this wavefunction as a sum 
of two terms: the original outgoing wave plus a scattered 
wave. If the excited atom were isolated then only the first 
component would exist. In this case the matrix element, and 
hence the absorption coefficient, shows no fine structure. 
Such is observed for a monatomic gas such as argon. If 
the excited atom is now surrounded by other atoms, as in a 
molecular gas or in any condensed phase, then the outgoing 
photoelectron will be scattered by these atoms, giving rise 
to incoming waves which can interfere constructively or 
destructively with the outgoing wave. This interference 
gives rise to an oscillatory variation of the matrix element 
as the photon energy changes since the wavelength of the 
photoelectron is a function of hw according to (5). The 
significant region of space for this interference is the region 
where the initial-state wavefunction is large, close to the 
nucleus of the central atom. Thus, in a scattering formalism 
we need only consider closed photoelectron paths, those 
which return the photoelectron to the atom from which it 
was emitted. This is because the photoelectron itself is not 
observed in XAS. In the related technique of photoelectron 
diffraction, where the photoelectron is observed, open paths 
are significant: here we must include all paths that leave the 
photoelectron travelling in a particular direction. 

The scattering analysis leads us to write the X-ray 
absorption coefficient in the form 

~(k) = ~0(k)[1 + x(k)] (6) 

where k, the photoelectron wavevector, is given by (5). 
/zo(k) is the smoothly varying background which corre- 
sponds physically to the absorption coefficient of an isolated 
atom. x(k) is the EXAFS function, which is defined by 
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this equation: it is this function which was originally 
investigated by Sayers et al. (1971) with the result given as 
(1). We note that/z0(k) is only that part of the absorption 
coefficient which is due to transitions from the initial state 
of interest, i.e. the contribution of one particular edge. 

In order to calculate the EXAFS function x(k) we need to 
calculate the wavefunction of the photoelectron. Since the 
initial state has a well defined angular momentum it is most 
convenient to expand the photoelectron wavefunction in 
terms of eigenfunctions of the angular momentum operator. 
Thus, we write 

If) = ~]~ (I + Z)z,m,,tmllm) (7) 
lrn,l 'm' 

where the unit matrix I gives the outgoing part of the wave 
and the matrix Z gives the scattered part. The components 
of If) which contribute to the absorption will be strongly 
limited by the selection rules inherent in (3). 

With this form for the final-state wavefunction the 
EXAFS function defined by (6) is a linear function of 
the matrix Z: 

x(k) = (1 / / z0 )~  ~ (lomole.rllm) 
rno Ira,I'm' 

× 2Re{Zzm,t,m,exp[i(6t + 6z,)]}(l'm'le.rllomo) (8) 

where l0 and m0 are the angular momentum quantum 
numbers of the initial state, the m0 sum being over the 
degenerate sub-levels of total angular momentum l0 which 
is fixed by the edge. For a K edge, with excitation from 
a ls state, we have l0 = 0 so that mo = 0 only. In (8) the 
matrix elements contain wavefunctions for isolated atoms 
only and, with the excited atom phase shift factored out 
as shown, are real (Gurman, 1983). All of the effects of 
scattering are contained in the matrix Z. 

Equation (8) is often described as a first-order approxi- 
mation, implying a neglect of the Z 2 term and a consequent 
inaccuracy. However, the optical theorem shows that it is, 
in fact, exact. 

In the case of a polycrystalline or amorphous sample the 
angle between ¢ and r is randomly distributed. When we 
average over this angle only the diagonal matrix elements 
of Z survive. The dipole selection rule further limits the 
final-state angular momentum l to the values l0 -+ l if the 
matrix element is to be non-zero. The transition l0 ---* l0 + 
1 always dominates the absorption (Gurman, 1983) and if 
we approximate the theory to include just this contribution 
then we may cancel the free-atom matrix elements in (8). 
(For K-edge absorption, the only possible transition is l0 --* 
l0 + 1.) Thus, we find 

x(k) = (2/21 + 1)~Re[Ztm,zmexp(2i6t)] l = l0 + 1 (9) 
m 

so that we never need to calculate the atomic matrix 
elements. 

We see from (9) that the EXAFS function x(k) depends 
only on the matrix Z which describes the scattering of 
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the outgoing photoelectron. Since EXAFS is an inter- 
ference phenomenon, only elastic scattering events need 
be considered. Also, since the only part of the final- 
state wavefunction which is of importance in the matrix 
element is that very close to the nucleus of the excited 
atom, the only scattering paths of interest are those which 
return the photoelectron to the excited atom. Moreover, 
the elastic mean free path is short so that only a few of 
these closed scattering paths contribute. Thus, we expand 
Z in a series over different paths and orders of scattering. 
Only low orders contribute and in many cases only single 
(back)scattering events contribute significantly. For a given 
order of scattering, Z may be written as a sum over (a few) 
closed electron paths. Further, since x(k) is a linear function 
of Z, the contributions from each path will be independent. 
Thus, we can build up x(k) as a sum over closed electron 
paths. 

The form of the Z matrix was first given by Lee & 
Pendry (1975). They noted that the electron propagates 
between atoms as a free spherical wave: in an angular 
momentum representation the wavefunctions then have 
the form of Hankel functions. Lee & Pendry worked 
through the algebra of the scattering in detail, for all 
orders of scattering, obtaining an exact expression for 
Z. Their expression may be simplified considerably for 
polycrystalline or amorphous samples, by virtue of the sum 
over diagonal elements which appears in (9). This gives rise 
to the Fast Curved Wave theory (Gurman, Binsted & Ross, 
1984, 1986). In this theory the single-scattering contribution 
from a scattering atom at R is given by 

x(k) = (2/2l + 1)Re ~ exp(2i6z) hO~(kR) TL2(2I + 1) 
L1L2 

× (2Lz + 1)(2L2 + 1)[C(ILzL2; 000)] 2 (10) 

in which C is a Clebsch--Gordan coefficient and T is the 
usual scattering t matrix which may be written in terms 
of electron-scattering phase shifts. This exact expression is 
very rapid to compute. 

Higher order scattering terms are also calculated within 
the FCW theory. However, these take too long to compute 
to be generally useful in fitting routines although such 
analyses have been done (Gurman et al., 1986; Strange, 
Blackburn, Knowles & Hasnain, 1987). Approximate fast 
schemes which can be used for this purpose have been 
developed by Gurman (1988), Rehr & Albers (1990) and 
Filipponi (1991). 

In the case of single-crystal samples we do not average 
over the directions of r. In this situation, extensively used 
in surface studies, beam polarization and direction effects 
become important and information on bond directions can 
be obtained. This has been covered in detail by Brouder 
(1990). 

At high photoelectron energies the Hankel functions 
which appear in (10) may be approximated by their asymp- 
totic forms, which are exponentials. The angular momentum 
sums may then be performed analytically and we find that 
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the expression for the EXAFS function reduces to 

X~)w(k) = (-1)t(1/kR2)lf(k, 7r)lsin(2kR + 26 + ¢) (11) 

in which f(k, 70 is the usual electron-backscattering factor. 
We thus obtain the expression of Sayers et al. (1971) as 
the high-energy limit of the exact expression. Higher-order 
contributions may also be written in this form (Boland, 
Crane & Baldeschweiler, 1982). In fact this so-called plane- 
wave approximation is never a good one, although it does 
serve to show the physical origins of EXAFS. For it to be 
valid we require kR >> l(l + 1) for all significant partial 
waves. However, the phase shifts are only significantly 
different from zero for a maximum angular momentum 
given by kR < 2/max. Thus, the required inequality can never 
be satisfied in normal scattering conditions. 

Equations (10) and (11) relate to a single scattering 
atom. To get the total EXAFS signal we need to sum 
over all scattering atoms. This process introduces the pair 
distribution function go~(r) so that 

x~)(k) = ~ p(/3)/47rr2dr g~(r)x(~(r) (12) 

in which p(fl) is the mean density of atoms of type fl and 
g,~z(r) measures the number of atoms of type fl at a distance 
r from an atom of type a. X~z(k) is the EXAFS function 
[equation (10) or (11)] on an absorption edge of an atom 
of type t~ due to a single scattering atom of type fl at a 
distance r away. We note the presence of just a single sum 
over atom type (cf. diffraction studies) - the type a is fixed 
by the edge. 

Equation (12) is rarely used, except in reverse Monte 
Carlo simulations (Gurman & McGreevy, 1990). Usually, 
we assume that g,~(r) may be written as a sum of Gaussian 
peaks, centred at Rj with mean-square deviation aj 2 and 
containing Nj atoms. We then find, assuming the form of 
(I I) for integration purposes, that the EXAFS function due 

to a single peak is given by 

2 2 (1) X~)(k) = ~_Njexp ( -2a j k  )X,~z(k, Rj). (13) 
j~ 

Apart from factors describing inelastic processes, which 
will be considered in {}2.3, this is the form originally 
proposed by Sayers et al. (1971) except that we now have 
the possibility of using exact forms such as the FCW theory 
for the single-atom EXAFS function X,~(k, Rj). 

The assumption of a Gaussian peak shape may be relaxed 
by use of the cumulant expansion (Bunker, 1983) in which 
the contribution to (12) of each peak in g,~a(r) is written 
in terms of the exponential of a power series in (ik). Odd 
powers contribute to the phase of the EXAFS, even powers 
to its amplitude. The coefficients of the power series are 
used as fitting parameters (usually three terms are sufficient) 
and the shape and size of the peak may then be recovered 
from these fitted values. 

EXAFS data 

2.3. Inelastic processes 
The description of the theory of XAS given above 

completely neglects inelastic processes. Such processes 
arise from the interaction between the photoelectron and 
the other electrons, both on the excited and scattering 
atoms, and must therefore be discussed in terms of many- 
body theory. The effect of inelastic processes is always 
to diminish the amplitude of the XAS signal, since they 
contribute to the absorption but not to the interference. 

A proper many-body analysis of X-ray absorption would 
consider all electrons in the sample together. However, 
we may, to a good approximation, separate the interaction 
between the photoelectron and the other electrons on the 
excited atom, known as intrinsic processes, from those 
between the photoelectron and the other electrons which 
it meets during the scattering process, known as extrinsic 
processes. 

Intrinsic processes include the effects of the finite life- 
time of the core hole plus shake-up and shake-off processes, 
which involve the rearrangement or removal, respectively, 
of other electrons on the excited atom as part of the 
photoabsorption event. These latter two can be dealt with 
in the sudden approximation (Carlson, Nestor, Tucker & 
Malik, 1968). In this we write the many-body electron 
wavefunction for the N electrons on the excited atom as 
a product of N one-electron wavefunctions, the Hartree ap- 
proximation. The expression for the absorption coefficient 
then becomes 

N - 1  

~- ~ l ( i l e . r l f )  [26(e~ - Ey + hw) H I(c~1c~)12' (14) 
i = 1  

the extra factor arising from the N - 1 passive electrons, 
those not directly involved in the photoabsorption. The 
wavefunctions of these differ between the initial and final 
states because of the presence of the core-hole potential in 
the latter. 

The one-electron contribution to (14) is that where none 
of the passive electrons changes its state. It is therefore 
given by the last factor of (14) with (ci[ the wavefunctions 
of the passive electrons on the unexcited atom and I ci') 
those of the passive electrons in the same quantum states 
in the potential of the excited atom with a core hole. This 
factor is necessarily less than unity. There is a sum rule 
which states that the overall absorption is unchanged by 
the inclusion of many-body effects: the extra contribution 
of multiple-electron excitations allows for this. Thus, the 
effect of shake-up and shake-off processes on the XAS 
signal is to multiply it by an amplitude factor A(k) given by 

N - 1  

A(k)= H I(cilc~)12' (15) 
i = 1  

a result originally due to Rehr, Stem, Martin & Davidson 
(1978). This factor may be calculated fairly easily from 
tables of bound-state wavefunctions, those in the presence 
of the core hole being approximated by the wavefunctions 
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of the next atom in the Periodic Table, the so-called Z + 1 
approximation. We find that A(k) takes values between 0.6 
and 0.9 for all atoms and all hard (E > 4 keV) X-ray edges. 
In this approximation A(k) is, in fact, independent of k and 
this is found generally to be a fairly good approximation 
in the EXAFS regime. 

The lifetime of the core hole also influences the EXAFS: 
interference can only occur if the returning photoelectron 
wave sees the same potential as the outgoing wave. The 
effects of core-hole lifetime are normally included as a 
mean free path type of factor derived from a constant 
imaginary part of the photoelectron energy equal to the 
energy uncertainty corresponding to the lifetime (this is 
one contribution to the width of the edge step) so that 
)~core cx k. Tabulations of core-hole lifetimes are available 
(Keski-Rahkonen & Krause, 1974). 

The extrinsic process of interest in EXAFS is inelastic 
scattering of the photoelectron. The major source of this is 
plasmon excitation by the photoelectron as it travels through 
the sample. This problem has been considered within the 
local density approximation (LDA) by Lee & Beni (1977). 
The result of this analysis is that the potential seen by 
the photoelectron becomes energy-dependent, owing to 
the energy dependence of the exchange contribution, and 
it also acquires an imaginary (absorptive) part owing to 
plasmon excitation when the energy of the photoelectron 
is sufficiently high. This potential may be calculated using 
standard routines. It forms the basis of the FEFF series of 
data-analysis programs (Mustre de Leon, Rehr, Sabinsky & 
Albers, 1991) and also of the current version (EXCURV92) 
of the Daresbury Laboratory program. In a simpler approx- 
imation used in earlier EXAFS studies (up to about 1988!) 
the imaginary part was approximated by a constant, a form 
commonly used in LEED theory. This again gives rise to a 
mean free path type of factor with ~plasmon O( k. In general, 
use of the complex energy-dependent LDA potential gives 
better results. 

3. Obtaining structural information 

XAS is mostly used to determine the local structure around 
the excited atom in amorphous solids, liquids, complex 
crystals and biological molecules, i.e. it is the EXAFS 
which is generally of most interest. The chief problem 
of data analysis is how best to obtain this structural in- 
formation. In order to treat this problem and the methods 
employed to solve it, we shall use the form of the EXAFS 
function given as (1), the PWA. In practice, wave curvature 
effects are always important, as we noted in §2.2, so we 
need to use (10). Multiple-scattering contributions may also 
be significant. Although these effects greatly complicate the 
programs used in practice, they do not alter the principles 
of data analysis. 

The first stage in data analysis is to extract the EXAFS 
function x(k) from the measured absorption (or fluores- 
cence or total yield) data. The first step is to remove the 
contributions of lower energy edges from that due to the 
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edge of interest. This is performed by fitting a smooth 
function, such as the Victoreen expression, to the absorption 
coefficient below the edge and extrapolating this to higher 
energies. Subtracting this from the data gives the/z(k) used 
in (6). Similarly we obtain /z0(k) by fitting such a smooth 
form to the edge contribution to obtain the EXAFS function 
defined by (6). This process is usually fairly straightforward 
although the small size of the EXAFS function compared to 
unity means that the fitting procedure used to obtain/z0(k) 
must be rather accurate. 

The simplest form of analysis, and the one which was 
almost exclusively used in the early (1970-1980) days of 
EXAFS studies, is to Fourier transform kx(k) with respect 
to sin(2kr) or exp(-2ikr). The latter is to be preferred since 
taking the modulus of a complex transform removes some 
of the problems associated with a finite data range. We may 
usefully state at this point that one of the major limitations 
on the usefulness of EXAFS comes from the fact that we 
do not have data down to k = 0 owing to the presence of 
the threshold energy E0 [equation (5)]: the lower limit kmin 
is usually 2-3 A -1 

The result of a Fourier transform is a series of peaks, 
one corresponding to each shell of atoms contributing to 
the EXAFS, which may overlap. There are also peaks 
due to noise in the spectrum and to the effects of the 
finite data range: these last may be minimized by use of 
a window function at the cost of some peak broadening. 
There may also be a strong contribution at an unphysically 
short distance: this is usually a sign of poor background 
subtraction. The peaks due to real shells are shifted from 
the true interatomic distances by the effects of the extra 
phase factor 26 + ~ and their widths are dominated by 
the effects of the finite data range, not in the majority 
of cases by the Debye-Waller factor. To improve this 
simple analysis we may weight the spectrum by a higher 
power of k, k 3 being most commonly used, to counteract 
the decrease in amplitude with increasing k arising from 
the Debye-Waller factor and the fall off in If(k, 701: a 
function with constant amplitude gives a sharper Fourier 
transform. We might also take the transform with respect 
to exp[-i(2kR + 26 + ~p)] using calculated phases for the 
strongest contribution. This moves all peaks close to their 
true interatomic distances since the phase is dominated by 
the excited-atom contribution. 

A simple Fourier transform gives a good idea of the 
amount of information in the experimental EXAFS spec- 
trum and of the principal interatomic distances in the 
sample. To obtain more information we must fit to x(k). 
This is always best done by fitting to the raw data. 

Fitting the experimental spectrum in k space involves 
calculating a spectrum using an assumed set of structural 
parameters and scattering data and varying the structural 
parameters until a best least-squares fit is obtained. The 
accuracy of the fit, and of the resulting structural parame- 
ters, clearly depends on the quality of the scattering data 
used and much work has gone into evaluating methods of 
calculating electron-scattering phase shifts. At present, the 
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best results are obtained using complex energy-dependent 
potentials based on the LDA (Lee & Beni, 1977; Mustre 
de Leon et al., 1991). k-space fitting can be rather time- 
consuming computationally but it does extract the maxi- 
mum amount of structural information. It is also amenable 
to statistical analysis (Joyner, Martin & Meehan, 1987): 
this enables reliable estimates of the uncertainties of the 
(often correlated) structural parameters to be obtained. It 
also helps to avoid obtaining more information than is 
actually present! 

The whole question of the amount of structural in- 
formation contained within an EXAFS spectrum and the 
consequent uncertainties on the fitted parameters obtained 
in a fitting analysis is of major importance and is often 
neglected. This problem has been thoroughly considered 
by the International Workshop on Standards and Criteria in 
XAFS and the recommendations of their report (Bunker, 
Hasnain & Sayers, 1991) are required reading for all X-ray 
absorption spectroscopists. 

The preset parameters in the curve-fitting analysis of an 
EXAFS spectrum are the atomic scattering data, including 
inelastic effects and the core-hole lifetime, and the am- 
plitude factor A(k), obtained from standard values or by 
fitting the spectrum from a sample of known structure. This 
process also acts as a check on the accuracy of the scattering 
data used. In a free analysis run the user sets the number 
of shells to be included and the type of atom making up 
each shell. The parameters varied during the least-squares 
fitting process are the correlated pairs of parameters (E0, 
Rj) and (Nj, O'j 2) which control the phase and amplitude, 
respectively, of the EXAFS signal. Correlation between 
parameters is a major problem in EXAFS analysis, more so 
than in diffraction analysis because of the lack of data going 
down to k = 0, and this greatly increases the uncertainties 
on the fitted parameters. The presence of correlation means 
that a proper statistical analysis of the quality of the fit 
is essential. A good data-analysis program will search for 
a best fit automatically, varying those parameters selected 
by the user. Fitting tends to proceed interactively and 
iteratively, fixing the phase by varying E0 and Rj, then 
the amplitude using Nj and O'j 2, then the phase and so 
on until a good fit, defined by a good reliability factor, is 
obtained. At this final stage a statistical package will give 
the uncertainties on the fitted parameters. 

With good experimental data, over as long a k range as 
is possible, and well separated shells, we may expect to 
obtain interatomic distances with an accuracy of _+0.02 A 
or a little better. N and a 2, which are strongly correlated 
by the lack of low-k data, can be fitted to about +10%. The 
variation in f(k,  ~r) is such that we can reliably identify 
atoms whose atomic numbers differ by about ten or more: 
such identification can, of course, often be made more exact 
by using other chemical information or the bond lengths. 

Surface EXAFS (SEXAFS) experiments are quite of- 
ten considered as distinct from EXAFS. This is because 
the requirements of the surface physics equipment mean 
that indirect (fluorescence or total electron yield) methods 
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have to be used to obtain the absorption spectrum and 
also because the use of single-crystal samples means that 
polarization and beam direction effects (§2.2) are impor- 
tant. In low-symmetry situations, these require the use of 
a full polarization-dependent calculation (Gurman, 1988; 
Brouder, 1990) in the fitting procedure. In higher symmetry 
situations, the majority studied to date, the standard analysis 
described in the previous paragraph can be used. The fitted 
coordination numbers Nj are then effective coordinations, 
being equal to the true coordination numbers multiplied by a 
beam and polarization factor (less than unity) which can be 
easily calculated from the assumed symmetry of the surface 
environment. In this way the identity and symmetry of 
adsorption sites on surfaces can be determined, along with 
the interatomic distances between adsorbate and substrate. 

In the curve-fitting method of EXAFS analysis described 
above, the EXAFS data is the only information used. 
In complex systems, containing many different shells of 
scattering atoms, the large number of parameters required 
cannot be justified by the information content of the EXAFS 
spectrum. The refinement is then underdetermined and a 
large number of solutions become possible, with no clearly 
defined minimum in the fit index. This is a problem 
which occurs particularly in biological studies. The only 
solution is to increase the amount of information available 
by including other data. The techniques of restrained and 
constrained refinement (Binsted, Strange & Hasnain, 1992) 
have been developed for this purpose. 

As an example of the inclusion of extra information, 
consider a system containing a well defined chemical unit, 
such as an imidazole ring, which is bonded to the central 
atom. The atoms in this unit are not independent, as 
would be assumed in a free fit, since it is known that 
the structure of such units varies little between molecules. 
In constrained refinement the unit is treated as absolutely 
fixed in internal structure and the refinement only uses a 
distance parameter, from the central atom to the bonded 
atom in the unit, plus at most three angular parameters to 
define the orientation of the unit. We thus have a major 
reduction in the number of fitting parameters, especially if 
multiple scattering has to be included (as it usually does for 
such rigid structures). The refinement process is therefore 
much more determinate. Total constraint has a problem 
in that it neglects small but significant variations which 
may occur in the unit structure. This is overcome in a 
restrained refinement. In this, a common practice in protein 
crystallography, departures from the ideal structure are 
permitted, but these differences contribute to the fit index 
which is being minimized. Depending on the weighting 
applied to these changes, more or less flexibility is allowed. 
Again the result is to lessen the number of free parameters. 

Another method of including extra information is used 
in reverse Monte Carlo simulations (Gurman & McGreevy, 
1990) for the analysis of EXAFS data from solids and 
liquids. In these simulations, all (or as many as possible) 
EXAFS spectra from the sample are fitted simultaneously. 
The calculated spectra are built up by summing the contri- 



S. J. 

butions of each atom pair in an array of perhaps 1000 atoms. 
The external constraints are the density and composition of 
the array. No a priori assumptions as to peak shapes are 
applied. In the data-analysis process atoms are moved at 
random, moves being accepted always if they lower the 
fit index and with a probability, determined randomly, if 
they raise it. Eventually convergence is achieved and the 
partial radial distribution functions of the final array of 
atoms represent those of the sample. The density constraint 
is very powerful and the simultaneous fitting of several 
spectra also acts as a strong constraint on the system. 

4. Conclusions 

The introduction of synchrotron radiation has made pos- 
sible the measurement of high-resolution low-noise X-ray 
absorption spectra. Extraction of the oscillatory structure 
(EXAFS and XANES) from these spectra provides infor- 
mation on the local atomic environment in molecules and 
condensed material by way of the theory of the electron 
scattering which gives rise to the structure. 

The theory of photoelectron scattering has reached a 
high level of development over the past 20 years. It 
now provides an essentially complete description of the 
processes leading to EXAFS and XANES. It shows how 
structural information is contained in the spectrum as well 
as the effects of inelastic processes. 

Data-analysis programs based on the theory have also 
reached a high level. Several curve-fitting programs now 
exist which can rapidly and accurately extract the maximum 
amount of information from an experimental data set and, 
perhaps as important, the uncertainties on these parameters. 
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