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Perfect crystals in the asymmetric Bragg geometry are evaluated as optical elements for manipulating 
coherent X-ray beams. Such optics can be used to modify the transverse coherence length of a 
synchrotron X-ray beam, with the intention of increasing the usable coherent flux. The wavelength 
range, angular divergence and flux of X-rays passing through a pinhole aperture are examined in 
detail, as functions of source and pinhole size, crystal-to-pinhole separation and the asymmetry factor. 
In developing this analysis, the behavior of asymmetrically cut crystals is explained in reciprocal 
space, with reference to the crystal truncation rod associated with the reflection. The results show 
that, for synchrotron beams that are collimated to a small fraction of the incident Darwin width, the 
wavelength range accepted by the crystal is typically dispersed into an angular spread in the exit 
beam. This chromatic aberration greatly reduces the transverse coherence length in a manner that 
does not conserve the coherent flux. The calculations are in agreement with measurements of the 
divergence and flux through a micrometer-sized pinhole using a synchrotron wiggler X-ray source. 

Keywords: perfect-crystal optics; coherent X-ray beams; coherent flux; dynamical diffraction; 
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1.  I n t r o d u c t i o n  

Understanding the behavior of perfect crystals as X-ray 
optical elements is becoming increasingly important as 
the collimation of synchrotron X-ray sources increases. 
In the past, the angular divergence of the source was 
generally significantly larger than the angular acceptance 
(Darwin width) of a crystal monochromator. In contrast, the 
divergence of the beam emitted by an X-ray undulator at a 
third-generation synchrotron (,-~20 wad) is smaller than the 
Darwin width of a typical monochromator crystal. Under 
these new conditions, it is necessary to understand the 
detailed optical behavior of diffracting crystals, such as 
the exact angles the exit beam makes with respect to the 
incident beam, on a scale finer than the Darwin width. 
These properties are especially important for the manipu- 
lation of coherent X-ray beams, which have typically been 
collimated to a small fraction of the total source divergence. 

The use of coherent X-ray beams is a new area of 
research in X-ray science, made feasible by recent large in- 
creases in the brilliance of X-ray sources. This development 
is exciting because many powerful experimental techniques 
that rely on coherent illumination have previously been lim- 
ited to visible wavelengths, where high-brilliance sources 
(e.g. lasers) are available. Such techniques can now be con- 
sidered at hard-X-ray wavelengths. With advantage taken 
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of the small wavelength and relatively large penetration 
depth, X-ray speckle patterns from antiphase domains in a 
binary metal alloy have already been observed (Sutton et 
al., 1991). Techniques such as X-ray intensity-fluctuation 
spectroscopy (XIFS) and Fourier imaging of atomic sized 
structures with coherent X-rays are currently under devel- 
opment (Dufresne et al., 1992; Brauer, Stephenson, Sutton, 
BriJning et al., 1995). For each of these techniques it is 
essential to obtain the maximum coherent flux, and to 
control the spatial and angular size and the wavelength 
content of the coherent beam. In this paper, we will focus on 
the use of asymmetrically cut perfect crystals to influence 
these properties of the X-ray beam. 

Although synchrotron sources emit incoherent radiation, 
coherent X-ray illumination may be obtained by selecting 
a sufficiently collimated and monochromatic portion of 
the light. The longitudinal coherence length dz is de- 
termined by the range of wavelengths AA through the 
relation dt = A2/2ZIA. A typical symmetrically cut Si(111) 
monochromator gives AA/A '-, 1.3x10 -4, so that the 
longitudinal coherence length is about 0.3 lxm for A = 
0.10 nm. The transverse coherence length dt is determined 
by the divergence D through the relation dt = A/2D.  In the 
absence of optical elements which affect the collimation, 
the divergence at a point is equal to the angle subtended 
by the source. At a distance L = 30 m from a source of 
size A = 300 lxm one obtains D = A / L  ~_ 10 wad, which 
gives dt '~ 5 I.tm. A pinhole aperture several micrometers 
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in diameter serves to select a portion of the beam which 
is transversely coherent, discarding most of the incident 
radiation. Since the coherent flux is proportional to the 
brilliance of the source, high-brilliance insertion devices 
are required to obtain sufficient coherent flux for most 
experiments. 

Our main motivation for this work is to increase 
the usable coherent flux from synchrotron sources. For 
experiments such as XWS, there is an optimum size for 
the transverse coherence length which depends upon the 
length scales of interest in the sample. In our experiments, 
transverse coherence lengths of one micrometer or less are 
often sought. Since the transverse coherence length of the 
raw beam from an insertion device source is typically larger 
than this, the ability to modify the transverse coherence 
length without loss of coherent flux is in general very 
desirable. In addition, control of the longitudinal coherence 
length is required. 

The spatial size of synchrotron sources is typically larger 
horizontally than vertically, often by a factor of 10. Thus, 
the collimation is better, and the transverse coherence 
length is larger in the vertical direction than the horizontal. 
If a circular pinhole aperture is used to select a coherent 
beam, it must have a diameter approximately equal to the 
smaller of the two transverse coherence lengths. In this 
configuration, only one tenth of the vertical transverse 
coherence length is admitted and 90% of the coherent 
flux is discarded. Although elliptical apertures could be 
used, a symmetric coherence volume is better suited to 
many experiments. In our XIFS experiments, for example, 
equal transverse coherence lengths are well matched to the 
isotropic antiphase domains within the samples. 

The full brilliance of such an asymmetric source would 
be better exploited if optical elements were used to match 
the vertical coherence length with the horizontal whilst 
preserving the coherent flux. For example, a focusing 
optic such as an X-ray mirror could be used to trade 
off vertical collimation for increased flux per unit area. 
However, in practice, a glancing incidence X-ray mirror can 
be inconvenient because of its expense and because it must 
be situated far upstream of the experiment to provide the 
optimum geometry. In this article, we consider the use of 
asymmetrically cut crystals to perform this function. Such 
crystals have fundamentally different optical properties than 
focusing mirrors. In particular, we have studied an Si(111) 
crystal cut to condense the beam spatially by 10x in the 
vertical direction. We have measured the resulting increase 
in vertical divergence in order to determine the vertical 
coherence length produced. Our measurements on the X25 
wiggler beamline at the National Synchrotron Light Source 
(NSLS) are explained by calculations of the wavelength- 
angle-position correlations in the optical system. 

We note that asymmetrically cut crystals have previ- 
ously been used to manipulate coherent X-ray beams, with 
the rather different intention of increasing the coherence 
volume at the expense of useful coherent flux (Ishikawa, 
1988). 

Perfect crystals in the asymmetric Bragg geometry as optical elements for coherent X-ray beams 

2. The asymmetric Bragg geometry - overview 

We briefly review the behavior of asymmetrically cut 
perfect crystals in the Bragg (reflection) geometry. More 
extensive reviews are provided by Matsushita & Hashizume 
(1983) and Caciuffo, Melone, Rustiehelli & Boeuf (1987). 
We restrict our discussion to geometries in which the 
surface normal of the crystal is in the diffraction plane, 
so that 'inclined' geometries are not considered. Although 
much of the analysis developed here applies, a discussion of 
the Laue (transmission) and inclined Bragg eases is deferred 
to subsequent publications (e.g. Brauer, Stephenson, Sutton, 
Mochrie et al., 1995). 

The asymmetric Bragg geometry is shown in Fig. 1, 
where the diffracting lattice planes form an angle a with 
the crystal surface. Just as in the symmetric ease (a = 0), 
when the diffraction conditions are met, the angles between 
the reflecting lattice planes and both the incidence and exit 
beams are approximately equal to the Bragg angle 0B. 
For a crystal of lattice spacing d, the Bragg angle for a 
wavelength A is given by 

0B -- s in- l (A/2d) ,  (1) 

and is sometimes called the kinematical Bragg angle. The 
exact angles of the incident and exit beams with respect to 
the surface of the crystal may be expressed as 

Oi = OB + Ct q- AOi, (2) 

0e = 0B -- a + A0e, (3) 

where AOi and A0e are the small deviations of the incident 
and exit beam directions, respectively, from the Bragg-law 
directions. These deviations arise because of both the finite 
width of the reflection (the Darwin width) and a correction 
arising from the index of refraction within the crystal. The 
deviations are always very small (< 100 grad). For a perfect 
crystal with a flat surface, there is an exact one-to-one 
relationship between the incidence and exit angles for a 
given wavelength, which we will discuss shortly. 

The asymmetry of the surface orientation can be charac- 
terized by an asymmetry factor 

sin (a + 0B) 
b - sin (a - 0s)" (4) 

h~ rays 

• . . . - . , o - . . . - . . . . - . . . . . . .  -. "-."/ • -... .. -.-crystal planes 

Figure 1 
Reflection geometry for diffraction from an asymmetrically cut 
perfect crystal. 
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For the Bragg geometry, where c~ is smaller than 0B, 0e is 
positive and b is negative. For a given crystal having fixed 
values of c~ and d, the parameter b depends implicitly on 
wavelength through 0B. The value b = - 1  represents the 
symmetric Bragg case (c~ = 0), whilst b = 1 represents the 
symmetric Laue case (c~ = 7r/2). 

Several features of diffraction from asymmetrically 
cut crystals can be understood by considering perfectly 
monochromatic illumination. First, as seen from the 
geometry of Fig. 1, the spatial width of the beam in the 
diffraction plane is altered by a geometrical 'foreshortening' 
effect according to 

he - h,/Ibl, (5) 

where hi and he are the spatial extent of the incident and 
exit beams, respectively. In the geometry of Fig. 1, Ibl > 1 
so that the radiation is spatially condensed and the flux per 
unit area of the reflected beam is increased. The crystals 
used in our measurements were cut to give Ibl = 10 at the 
operating wavelength. 

The second feature which contrasts the asymmetric with 
the symmetric case is that the beam divergence in the 
diffraction plane is altered upon reflection from an asym- 
metrically cut crystal. General expressions for the exact 
incidence and exit angles over which reflection occurs, 
derived from dynamical diffraction theory, will be given 
in the next section. One simple result is the relationship 
between AOi and A0e, given by 

AOe = -b AOi. (6) 

It follows that for a monochromatic beam containing a 
range of incident angles that are all reflected from the 
crystal, the exit divergence is Ibl times as large as the 
incident divergence. For Ibl > 1 the reduction in collimation 
is the price paid for spatially condensing the beam. The 
effect is especially important for coherent X-ray studies 
since the increased divergence decreases the transverse 
coherence length. 

With these general ideas about diffraction from asymmet- 
rically cut perfect crystals under monochromatic illumina- 
tion, two questions arise in the context of our application. 
First, if we illuminate such a crystal with polychromatic 
radiation, exactly what wavelengths and angles will be 
transmitted through a pinhole aperture in the diffracted 
beam? These factors will determine the observed longi- 
tudinal and transverse coherence lengths. Secondly, how 
much might we expect the usable coherent flux to be 
increased in an asymmetric geometry? To answer these 
questions analytically, we use the next section to present 
the detailed behavior of a crystal in the asymmetric Bragg 
geometry, as derived from dynamical diffraction theory. In 
subsequent sections we employ two established formalisms 
for following the wavelength, angle and position of rays 
through our optical system. Thereafter, we consider the 
implications for coherent beam experiments. 
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3. Results of dynamical diffraction theory for the 
asymmetric Bragg geometry 
The exact relationship between the incident and exit beam 
directions, and the expression for the reflectivity as a 
function of incident beam direction, can be obtained as 
a function of wavelength and crystal parameters by using 
dynamical diffraction theory. We will demonstrate how the 
results of dynamical diffraction theory for a fiat perfect 
crystal can be concisely described in reciprocal space 
using the concept of a crystal truncation rod (CTR). The 
relationship between the CTR and the dispersion surface 
representation of Batterman & Cole (1964) is described in 
more detail in the Appendix. 

Let us briefly review some key results of dynamical 
diffraction theory, following the classic review paper by 
Batterman & Cole (1964). Neglecting absorption, for a 
semi-infinite centrosymmetric crystal, the ratio of the bril- 
liance of the exit beam Be (photons per unit time per unit 
solid angle per unit area per unit wavelength range) to that 
of the incident beam Bi can be expressed as 

Be(Oe,, ) 
Bi(Oi, A) - I t / --  ('r/2 -- 1)1/212' (7) 

where 7/is a normalized angular deviation defined in terms 
of AOi by the relation 

A0~ - Zl0~ en 
7 _  = (8) 

Wi 

The function Be/Bi given in (7) is centered at r / =  0 and 
has a value of unity for the range - 1 < r / <  1. One can s e e  

from (8) that for monochromatic radiation, in terms of the 
incidence angle, the full width of the reflection (the incident 
Darwin width) is 21wi I while the center of the reflection is 
offset by A0 cen --- i  from the Bragg-law angle. (Although the 
actual FWHM is 2.121wi I, the effect of absorption, which 
we have neglected, is to make the peak slightly narrower. 
We will simply use 21wi I as the full width.) The dynamical 
theory gives 

wi = tan  OBP 1 ~  ~ H, (9) 

A0cen IF01 b -  1 ~H (10) 
-i -- tan  0B [F/_/ [ 2--~ ' 

where P = 1 for a polarization, P = [COS20B[ for 
zr polarization, and [F0[ and IF/-/] are the magnitudes 
of the structure factors per unit cell for the (000) and 
H reflections, respectively. The dimensionless parameter 
k0H (introduced here) is particularly useful since it is 
independent of wavelength, and is characteristic of a given 
reflection from a crystal. It is defined by 

2re d2lFHI 
~H---- - -  (11) 

~" V ' 

where re = e2/mc 2 = 2 .8x10 -13cm is the Thompson 
electron radius and V is the unit-cell volume. The half width 
and offset of the exit-angle deviation are simply related to 
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those of the incidence angle by the expressions Table 1 
Parameters used to calculate the angular widths wi, we and 

We = -bwi  (12) angular offsets A0~ en, A0~ e" for various crystal reflections. 

= A O  ten (13) A0 cen - b  --- i  

which are similar to (6). In the Bragg case, both wi and we 
are negative numbers while A0 cen A0 cen ---i  and ---e are positive. 

Typical values of d, I fol l l fHI and 'VH are shown in 
Table 1 for a selection of crystal reflections. In the specific 
case of A = 0.177 nm and a polarization, angular widths 
and offsets for the same reflections are listed in Table 2, 
for both b = - 1  andb  = -10 .  

The above results from dynamical theory may be com- 
pactly described in reciprocal space, using the concept of 
a CTR, by simply extending the geometry used in deriving 
the dynamical theory. While the necessary geometrical con- 
struction is shown in detail in the Appendix, the results may 
be described using Fig. 2, which shows a reciprocal-space 
diagram for the asymmetric Bragg geometry. The incident 
and exit beams are indicated by vectors ki and ke, each of 
length 27r/A. In the simple kinematical approximation, the 
diffraction condition would be satisfied when the scattering 
vector q = ke - ki is equal to the reciprocal lattice vector 
H of the diffracting planes, which has a length 27r/d. As 
described in the Appendix, the permitted scattering vectors 
in dynamical theory are those which terminate along the line 
passing through the point H and oriented perpendicular to 
the crystal surface. In a general sense, this line is the CTR 
associated with the reciprocal lattice point H. Commonly 
discussed from a kinematical approach (Robinson, 1986), 
such CTRs arise in the diffraction pattern of a crystal which 
is truncated by a crystal. 

To maintain q on the line of the CTR, the incidence and 
exit angles must satisfy the relationship 

(A/d) sin a = cos0e - cos 0i. (14) 

This result is required for momentum conservation as was 
shown by Kuriyama & Boettinger (1975). When c~ = 0 
we find Oi = 0e as expected. However, for a # 0, the 
incidence and exit angles are related in a manner which 
depends upon the wavelength. Note that differentiation of 
(14) at constant wavelength leads to (6). 

Dynamical theory predicts that the crystal exhibits near- 
unit reflectivity only over the range - 1  _< 7/ _< 1. In 
reciprocal space, scattering vectors corresponding to this 
range all terminate on a small segment of the CTR labeled 
T in Fig. 2. The region T is slightly displaced from It 
because the index of refraction within the crystal is slightly 
less than one. The length of T is inversely proportional to 
the extinction depth of X-rays in the crystal, as determined 
by dynamical theory. From the geometry detailed in the 
Appendix, it can be shown that the line segment T has a 
length 2]wiS I and its center is shifted from It along the 
CTR by an amount Ao~ens, where 

~ sin 20B cos 2a 
S = ~ sin0B sin(0B -- a)" (15) 

Si(111 ) S i (220)  Diamond(111) 

d (nm) 0.3135 0.1920 0.2059 
IFol/IFHI 1.85 1.59 2.69 
q'H (grad) 66.7 29.1 29.9 

4. The DuMond formalism 
4.1. Monochromatic source 

An elegant formalism for tracing the wavelengths and 
angles of rays diffracted by perfect crystals was put forward 
by DuMond (1937) more than 50 years ago. DuMond 
represented Bragg's law (1) graphically, similar to Fig. 
3. The relationship between wavelength and angle for a 
diffracting crystal is shown by plotting wavelength, scaled 
to the crystal d spacing, as a function of incidence angle 
on one side, and exit angle on the other. Such a figure 
depicts the mapping from incidence angle to exit angle, 
the wavelength of the ray being unchanged. Because we 
are considering the Bragg geometry, in which 0e > 0, the 
curve is drawn as a dotted line in the region 0 < O/< 2c~. 
This region corresponds to the Laue geometry which we 
will discuss in another work (Brauer, Stephenson, Sutton, 
Mochrie et al., 1995). Obviously, the incidence and exit 
curves become symmetric about the origin if the crystal is 
symmetrically cut (a = 0). 

The curves shown on the DuMond diagram have the 
form 

A/2d = sin (0i - a - AOi), (16) 

A/2d = sin (0e + a -  A0e), (17) 

T 

Figure 2 
Reciprocal-space representation of scattering from an asymmetri- 
cally cut crystal. The crystal surface makes an angle a with the 
atomic planes which are parallel to the dotted lines. For a ray to 
be reflected, the scattering vector q - ke - k, must fall along the 
segment of the crystal tnmcation rod with near-unit reflectivity T. 
The crystal truncation rod makes an angle of a with the reciprocal 
lattice vector H. 
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Table 2 
Bragg angles OB, angular widths w,, w~ and angular offsets A0~ ~n, AO c~n of various crystal reflections for an X-ray wavelength of 
,~ = 0.177nm (7.0 keV), o- polarization and both b - -1  and b = -10. 

Si(111) Si(220) Diamond(111) 
b = - I  b = - 1 0  b = - I  b = - 1 0  b = - I  b = - 1 0  

8B (o) 16.40 27.45 25.46 
wi (grad) --19.6 --6.2 --15.1 --4.8 --14.2 --4.5 
w~ (grad) -19.6 -62.1 -15.1 -47.8 -14.2 -45.0 
A0~ en (Brad) 36.3 20.0 24.0 13.2 38.3 21.1 
nO cen (grad) 36.3 200.0 24.0 132.0 38.3 211.0 

where we have treated the incidence and exit sides sepa- 
rately. The case of ,40i = A0e = 0 is Bragg's law. For 
a given wavelength, the region of near-unit reflectivity is 
determined by 

Aocen I __ Aocen v i - - W i  < A O i  < __v  i + w i ,  (18) 

A•cen A o c e n  (19) -e - w ~  < AOe <___e +we.  

These ranges are themselves functions of wavelength and 
are typically smaller than 100 grad, so that the region of 
near-unit reflectivity can be distinguished from the Bragg- 
law curves only in the enlarged views of Fig. 3. Since only 
those angles and wavelengths which fall within this region 
can be reflected by the crystal, we shall call this region the 
'reflectivity band'. For the Bragg geometry, the upper and 
lower edges of the incident reflectivity band map onto the 
upper and lower edges, respectively, of the exit reflectivity 
band. The dashed line represents monochromatic, divergent 
incident illumination. From the intersection of the dashed 
line with the incident reflectivity band and its mapping 
across to the exit side, one can see that the exit Darwin 

0 _n+CX 
2 

"" .,,,T,,, ..'" l 

1 

Figure 3 

a 0 -~-c~ <___ ®. ® ..._> z 
1 e 

Schematic DuMond diagram for an asymmetrically cut crystal 
in the Bragg geometry. The horizontal dashed line represents 
divergent monochromatic radiation incident on the crystal. The 
enlarged insets show the Bragg-law curves (dot-dashed) and the 
reflectivity bands (between the solid lines) on the incidence and 
exit sides. The angular range emitted is Ibl times the angular range 
accepted. 

width is Ibl times as large as the incident Darwin width. 
Likewise, if  the divergence of the incident beam Di only 
partially fills the incident Darwin width, the divergence of 
the exit beam will be De = IblD/. 

4.2. Polychromatic source 

In addition to providing a simple description of how 
monochromatic radiation is affected by an asymmetrically 
cut crystal, the DuMond diagram can also be used to 
treat the case of polychromatic illumination. For simplicity, 
consider first the case of perfectly collimated polychro- 
matic radiation illuminating the crystal, which is a good 
approximation to the case of coherent X-ray beams. The 
description of this case on the incidence side of the DuMond 
diagram is obvious. The available rays within the source 
are represented by a vertical line as shown in Fig. 4. The 
intersection of this line with the incidence reflectivity band 
gives the wavelengths which will be passed by the crystal. 
Equation (14) shows how this intersection maps to the exit 
side. The vertical line on the incidence side of the DuMond 

C~ 

,.< 

0 
rr+( x 
2 

Figure 4 
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• [ % ~% 
• ....1., ...'" I I$1 

a 0 ~--®. ®---~ 
1 e 

/ 

_n--CX 
2 

Schematic DuMond diagram for an asymmetrically cut crystal 
illuminated with perfectly collimated polychromatic radiation. The 
incident radiation is represented by the vertical dashed line which 
is transformed to the dashed cosine curve on the exit side. The 
enlarged insets show the Bragg-law curves (dot-dashed) and the 
reflectivity bands (between the solid lines) on the input and exit 
sides. As shown in the exit-side inset, the exit angular range is 
nearly the full Darwin width, even though the incident radiation 
is perfectly collimated. 
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diagram (Oi fixed) is transformed to a cosine curve on 
the exit side. The intersection of this curve with the exit 
reflectivity band reveals the notable result that the exit 
divergence is nearly the full exit Darwin width, even though 
we began with perfectly collimated radiation. Moreover, the 
wavelength range is dispersed across the exit-angle range. 
The full ranges of wavelengths and exit angles are given 
by the simple relations 

(20) A , V , ~  = 2 lw~ l / t an  OB, 

D e  = 21wi - w~l = 21w~l I1 + b[. (21) 

(Recall that wi, we and b are all negative in the Bragg 
geometry.) 

The extension of the DuMond analysis to the case of 
a polychromatic source with a finite angular divergence is 
straightforward. If we imagine two closely spaced vertical 
lines on the input side of Fig. 4, which define the range of 
incidence angles, these map into two closely spaced cosine 
curves on the exit side. Thus, there are parallelograms of 
intersection on the incident and exit side, which define the 
wavelengths and angles accepted and emitted by the crystal, 
respectively. For an incident divergence D/, the full ranges 
of wavelengths and exit angles are now given by 

AA/A -- (2lwil + Di) / tan  0S, (22) 

De = 21w,111 + bl + Di. (23) 

The behavior depends on the size of the incident divergence 
Di compared with the incident Darwin width 21wi I. When 
the incident divergence is large (Di > >  21wi[), the exit 
divergence is equal to the incident value. When the incident 
divergence is small (Di < <  21wil), the exit divergence 
approaches the lower limit set by (21). At the crossover 
point Di = 2[wil, the exit divergence is given by De = 
IblDi for b < -1 .  Only under this condition is the exit 
divergence for a polychromatic beam as small as it would 
be for a monochromatic beam. 

Note that in the special case of b = - 1 ,  the exit 
divergence given by (23) is always equal to the incident 
divergence. This illustrates the unique property of symmet- 
ric Bragg reflection: the beam divergence is unaltered upon 
reflection because 0i = 0~ for all A. 

5. Matsushita-Kaminaga formalism 
5.1. Radiation passing through a pinhole 

The matrix formalism developed by Matsushita & Kam- 
inaga (1980), hereafter referred to as the M-K formalism, 
permits a more general treatment of the wavelengths and 
angles transmitted through a sequence of crystals and 
apertures. We will use the M-K formalism to examine 
in detail the situation where a pinhole aperture is located 
a distance Le downstream from a fiat asymmetrically cut 
crystal in order to select a beam from a real synchrotron 
source. This situation is illustrated in Fig. 5. The crystal 

itself is a distance Li from the source of size A. For those 
rays which pass through the pinhole, the divergence on the 
incident side of the crystal is not known a priori, so that it 
is necessary to trace the rays from the pinhole back to the 
source, accounting for their spatial as well as angular and 
wavelength coordinates. 

To conduct the ray tracing in this approach, we consider 
small variations about the central operating point, in space 
(y), angle (y') and wavelength (AA/A). The position, 
angle and wavelength coordinates of rays in the source 
ys = (y~, y'~, AA/A) are transformed to those at the pinhole 
yp = (yp,yp, AA/A)  by the product of three transfer 
matrices thus: 

Yv -- TeTcrystTiys,  (24) 

where 

1 and Te = 1 
0 0 

(25) 

map the evolution of the rays from the source to the crystal 
and the crystal to the pinhole, respectively, and 

[1/b 0 0 
Tcryst : [ 0 b - ( 1  + b ) t a n 0 B  (26) 

[ 0 0 1 

is the transfer matrix of the crystal. [Note that Matsushita 
& Kaminaga chose to invert their coordinate system upon 
reflection from a Bragg crystal in order that the angle y' 
of a given ray has the same sign both before and after 
reflection, as is conventional for incidence (0i) and exit (0e) 
angles. However, in the treatment of optical systems where 
multiple matrices are required to conduct the ray tracing, it 
is more convenient to have a single absolute sense for all 
ray angles. We have adopted the latter convention. In our 

' -AOe.] M-K formalism therefore, Y'8 = A0i while yp = 
Properties of the radiation passing through the pinhole 

may be found by seeking solutions to (24) where yp is on 
either side of the pinhole diameter Z, and y8 is on either 
side of the source of size A. Each of these combinations 
(Ys = 4-2/2,  yp = 4-A/2) gives a line of AA/A versus 
y~ - -A0e  in M-K space. The four lines together bound 
a region of rays which would pass through the pinhole 

pinhole 

• L e n  
source ~ °e 

y~[~ .. . . . . . . . . .  ~i . . . . . . . . . . . . . . .  ~" Tasymmetrically 

Figure 5 
Geometry of rays leaving a finite-size X-ray source, diffracting 
from an asymmetrically cut crystal and entering a pinhole aperture. 
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provided they are reflected by the crystal. Because of the 
close relationship with the geometry of the source and 
apertures in the system, we will refer to the region bounded 
by these lines as the 'geometrical band' on the exit side. 
These negatively sloped lines are shown in Fig. 6, which 
is essentially a small region from a DuMond diagram. 

To incorporate the reflectivity band of the crystal, (17) 
is linearized around the operating point resulting in the two 
solid lines in Fig. 6. These lines 

(AA/A) tan0B = A0e q-we, (27) 

delimit the exit reflectivity band. 
From the intersection of the geometrical band with the 

reflectivity band, the wavelength range and exit divergence 
are found to be: 

A__~_~ _ 21wil(Li + b2Le) + A + IblZ (28) 
A (Li - bLe) t an  0 s 

De - - 21willl + blLi + A + IblZ 
L i - b L e  (29) 

As shown in Fig. 6 these quantities are the extreme widths, 
measured from the projection of the most extreme points 
on the M - K  parallelepiped of transmitted rays. There are 
three separate contributions to the wavelength and exit- 
angle ranges, as can be seen from the numerators of (28) 
and (29). The first of these is due to the Darwin width of the 
crystal 21wi I. In the case of Li ~ ~ this term dominates 
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the others and equations (28) and (29) reduce to our results 
for perfectly collimated incident radiation, equations (20) 
and (21). The second term arises from the finite source size 
A while the third term is due to the finite size of the pinhole 
aperture Z. In the case of Le = 0, equations (28) and 
(29) reduce to equations (22) and (23), where the second 
and third terms give the incident divergence Di.  All three 
terms in equations (28) and (29) are positive because each 
of these effects broadens the angle and wavelength range. 
Although the three terms add linearly to give the extreme 
width, the FWHM values for the wavelength spread and 
exit divergence might be better approximated by adding 
these terms in quadrature. Note that if Li = bLe, which 
can happen in the Laue case, both AA/A and De diverge. 
This is due to the 'focusing' property of a Laue crystal 
whereby rays that leave a point source and diffract from 
the crystal converge to another point. 

Figs. 7(a) and 7(b) show AA/A and De as functions 
of Le for various asymmetry factors, in conditions typical 
of our experiments at X25. From Fig. 7(a) we see that at 
Le = 0, the wavelength range decreases with increasing 
asymmetry, owing to the reduction in Iwi [. In addition, the 
wavelength spread is a sensitive function of Le for large 
asymmetry factors. For example, by changing Le from 0.1 
to 0.5 m with the b "-" - 1 0  crystal of our experiments, 
AA/A is increased by a factor of almost 2. The same change 
in Le has a smaller effect on the divergence. However, Fig. 
7(b) shows that De is abruptly increased as we change from 
a symmetric surface (b = - 1 )  to even a small asymmetry. 
Unfortunately, the maximum increase of 7 x in De that we 

x " , . x  ,,  • 

• x .  " ' , , x  x 
× 

~. 0 - , . , ,  

, ,  . . ~ ,  , ,  

" ' , .  " , , "  " i 

reflectivity band "-. 
--5 .. . . . .  geometrical band, yp=Z/2 ........... " 

?<:~"<'/ _ .geometrical band, yp=-Z/2 e ' -  

, , i , . ,  , , I , , , /, i , ,, 

- 5  0 5 
60 e x l O  ~ 

Figure 6 
M-K space diagram showing the range of wavelengths and angles 
passing through a Z = 7 lxm pinhole aperture after reflection from 
an asymmetrically cut crystal. The reflectivity band is drawn for 
S i ( l l l )  (d = 0.3135nm) with a miscut angle of o~ = 13.5 °, 
and X-ray wavelength of A = 0.177nm (7.0keV). At this 
wavelength, the asymmetry factor is b = -9.83 and the exit 
Darwin width is 21w, I = 123 ~trad. The geometrical band is drawn 
for NSLS beamline X25, where Li = 27.3 m, L~ = 0.438 m and 
A = 501.tm. 

2 4  

~. 2O 

I o 1 6  

12 
K 

,< 8 
< i  

--- 1 0  2 

¢~101 

1000. 0 

Figure 7 

, , , , J | | 

- b - - I  

b - - l . 5  
~ b - - 4  

(a) 

I I I I I I I 

@) 

b=-4  

b=-10  

b=-l.5 

b = - I  

i 

' ' ~2  0.4 0.8 i 1'.8 z'.o z'.4 z .8  
L e (m) 

Wavelength range (a) and exit divergence (b) of radiation passing 
through a Z = 7 p.m pinhole aperture, as a function of crystal- 
pinhole separation L~, for various asymmetry factors b. As for 
the NSLS wiggler beamline X25, the X-ray source has height 
A - 50 lam and is located L, = 27.3 m from the asymmetric 
Si(ll  1) crystal. The wavelength is A = 0.177 nm (7.0keV). 
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Table 3 
Size and flux of transversely coherent X-ray beams obtained using a horizontal aperture at the source, a vertically diffracting Si(111) 
crystal of asymmetry b, and a pinhole aperture, for wavelength A = 0.177 nm, Li = 27.3 m, L~ = 0 and source brilliance 
B - 1 x 10 Is photons s -1 mm -2 mrad -2 (0.1% bandwidth) -1. 

Horizontal transverse 

A h°r D h°r d h°r A 

(gm) (grad) (gm) (gm) 

Vertical transverse 

Di  
(grad) b 

Long. 
2[wi[ De dt AA/A Z h°r x Z Ft 
(grad) (grad) (gm) (10 -6)  (I/m) (106 counts s - l  ) Ft/F[ nax 

1000 36.6 2.4 50 1.8 - 1 
1000 36.6 2.4 50 1.8 - 1 
345 12.6 7.0 50 1.8 - 1 
50 1.8 48 50 1.8 - 1 

345 12.6 7.0 50 1.8 - 1.32 
1000 36.6 2.4 50 1.8 - 2 . 3 6  

39 1.8 48 140 2 .4x48  1.04 0.96 
39 1.8 48 140 2.4 x 2.4 0.052 0.048 
39 1.8 48 140 7 .0x7 .0  0.152 0.14 
39 1.8 48 140 48 x 48 1.04 0.96 

34 12.6 7 122 7 .0x7 .0  0.173 0.18 
26 36.6 2.4 93 2.4 x 2.4 0.082 0.109 

can tolerate occurs at the slight asymmetry of b = -1.3,  
which offers only a modest increase in coherent flux, as 
described in the next section. 

6. Optimization of coherent X-ray beams 

As discussed in the introduction, our goal is to produce 
a transversely coherent X-ray beam of desired size and 
monochromaticity which is as intense as possible. When 
the desired size is smaller than the transverse coherence 
length in the incident beam, an asymmetrically cut crystal 
can be used as shown in Fig. 5 to condense the beam 
spatially, increasing the flux coming through the beam- 
defining pinhole. The optimum asymmetry and flux are 
determined by the maximum exit divergence that can be 
tolerated without reducing the transverse coherence length 

b e l o w  the desired size. 
We begin by developing expressions for the flux in a co- 

herent beam. If we first consider a beam with no correlation 
between position, angle and wavelength, the flux through a 
given pinhole area  Z h°r X Z vert is simply the product of the 
beam brilliance B and the accepted area, solid angle and 
wavelength range, F = zvertDvertzh°rDh°r(AA/A)B.  

For a coherent beam, where the pinhole dimensions have 
been set to equal the transverse coherence lengths Z = 
dt = A/2D,  one obtains 

Ft m°-x = B. (30) 

The coherent flux is thus proportional to the brilliance and 
independent of the transverse coherence length. Although 
optics can be used to modify dt, the brilliance of the 
beam cannot be increased. This formula thus gives the 
maximum coherent flux that can be obtained within a given 
wavelength range at any dt. 

For a monochromatic beam, a crystal of large Darwin 
width 21wi I > Di, cut with asymmetry b, produces an 
exit beam with Ze = Zi/Ibl and De = IblDi, with the 
product Z~D~ = ZiDi remaining constant. Thus, for a 
monochromatic beam, an asymmetric crystal can be used 
to modify the transverse coherence length while preserving 
the coherent flux. 

For a non-monochromatic beam, an asymmetric crystal 
in general introduces a correlation between the wavelength 
and the exit angle and position in the diffraction direction. 
This causes the useful coherent flux in a given AA/A to 
be smaller than the maximum value. The flux through a 
pinhole of vertical size Z is given by 

( !bI--ZA--~ 21w~l )zh°rDh°rB (31) 
F = ~, Li - bLe tan 0S 

where we have assumed the diffraction plane to be vertical. 
The factor in parentheses is the position-angle-wavelength 
volume of the M-K space parallelepiped accepted by the 
crystal-pinhole system, calculated using the analysis in §5. 

The flux that can be obtained in transversely coherent 
beams of various sizes is shown in Table 3, for source 
parameters typical of NSLS wiggler beamline X25 and 
using an Si(111) reflection. For this table, a value of Le - 0 
has been used and the contribution of finite pinhole size has 
been neglected, so that equations (22) and (23) can be used 
to calculate AA/A and De, with Di = A / L i .  In the upper 
section of the table, the behavior of a symmetrically cut 
crystal is shown for comparative purposes. The first row 
gives the results using the full source size of 1000x50gm 
and a symmetrically cut crystal. The factor of 20 difference 
in the source dimensions leads to unequal horizontal and 
vertical transverse coherence lengths of 2.4x48 gm. The 
transversely coherent flux Ft obtained by using a pinhole 
with these dimensions, calculated using (31), is shown in 
Table 3. Because the symmetrically cut crystal introduces 
almost no correlation between angle and wavelength, the 
coherent flux is nearly equal to the maximum possible 
coherent flux. 

To obtain a coherent beam with equal horizontal and 
vertical dimensions, one can simply use a circular pinhole 
with diameter given by the smaller of the two transverse 
coherence lengths. This is demonstrated in the second row, 
columns 11-13, of the Table 3. In this case the flux obtained 
in a 2.4gm square beam is a factor of 20 below the 
optimum. 

If the desired beam size is larger than the 2.4gm 
coherence length obtained using the full horizontal source 
size, it is useful to put a horizontal aperture near the source 
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which effectively reduces the source size A h°r and increases 
d h°r to the desired beam size. The flux in equiaxial 7 and 
48 Bm coherent beams is shown in rows 3 and 4 of the table. 
Such an aperture near the source is a very effective way to 
increase the coherence length controllably. In particular, the 
maximum possible coherent flux is obtained in an equiaxial 
48 l.tm beam simply by reducing the effective source size 
in the horizontal to be equal to that in the vertical. 

The improvement in coherent flux that can be obtained 
using an asymmetrically cut crystal is shown in the lower 
section of the table. For beam sizes of 7.0 and 2.4 lam, 
the optimum asymmetry is that which increases the exit 
divergence to the maximum allowable value to preserve 
coherence, i.e. 12.6 and 36.6wad, respectively. Because 
of the rapid increase in exit divergence with only small 
departures from the symmetric geometry, given by (23), 
only very modest improvements in coherent flux can be 
obtained in this example. Increases in De by factors of 6.9 
and 20 are produced using asymmetries which condense the 
beam size by factors of [bl -- 1.32 and 2.36, respectively. 
Because AA/A is also decreased by a factor of Ibl 1/2, the 
coherent flux is increased only by factors of 1.15 and 1.54, 
respectively. The fundamental reason why the asymmetric 
crystal is only marginally effective in improving the co- 
herent flux is that the collimated polychromatic incident 
beam is dispersed across the exit Darwin width, as shown 
in Fig. 6. 

Although in this example we have considered only a 
S i ( l l l )  reflection, the results obtained depend strongly 
upon the crystal and reflection chosen. For the problem 
considered, the main effect of using a higher-index Si 
peak (220, 004, etc.) is to decrease the wavelength range 
AA/A (and therefore the flux) considerably while improv- 
ing F t / F ~  ~x only marginally. In general, the type of 
crystal and its properties (IxlJH, tan 0B, b) can be optimized 
given the requirements of the problem (Di, AA/A, Z). For 
example, the ratio of the coherent flux to the maximum 
coherent flux F t / F ~  ~'' depends upon the ratio of the 
incident divergence to the incident Darwin width Di/2lwi[. ~ 5 
In particular, when the latter ratio is unity, the former 
is always 1/2 [using Le = 0 and neglecting the terms "~ 4 
containing Z in (28) and (29)]. Thus, a good choice o 
of crystal and reflection for current purposes will have 3 
2lw~l approximately equal to Di. Another consideration is tD 
the wavelength range AA/A desired, which depends upon 2 
the (generally conflicting) requirements for longitudinal 
coherence and flux. If a given Di determines 2[wi [, then a 

o 1 
desired AA/A can be obtained by choosing a crystal with t3 
an appropriate value of tan OB. For the problem considered 
above, crystals with smaller values of both tan OS and ~H 0 
would in principle give better results. 

7. Comparison with experiment 

An experiment was conducted at NSLS beamline X25 
to measure the effect of an asymmetrically cut crystal 
on the divergence and flux obtained through a pinhole 
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aperture. A pair of flat S i ( l l l )  symmetric Bragg crystals 
in non-dispersive configuration were used in the beamline 
monochromator, which was set to A = 0.177 nm (7.0 keV). 
A third symmetric S i ( l l l )  crystal and the crystal under 
study [Si(111) cut to a = 13.5 or 0 ° giving b = - 10 or - 1, 
respectively] were placed within the experimental hutch, 
again in a nondispersive configuration, the latter crystal 
being downstream. All crystals were vertically diffract- 
ing (a polarization). A pinhole aperture was placed at 
Le = 0.438 m downstream of the final crystal. Since the 
three upstream symmetrically cut crystals did not alter 
the divergence of the beam and since they transmitted an 
angular range at least as wide as the incident Darwin width 
2lwil of the final crystal, they did not substantially alter 
the bandpass, divergence or flux through the pinhole. The 
crystals were aligned in the x-direction (rotation along the 
incident beam axis) to -t-0.05 ° to obtain maximum through- 
put. (The crystals had been prepared by Semiconductor 
Processing Company, 409 East 1 st St, Boston, MA 02127, 
USA. Crystal quality was measured at A = 0.154 nm, where 
the a = 13.5 ° crystals have b - -36.9. The narrow 
Darwin width was measured by rocking one such crystal 
against another, both being mounted in a strain-free fashion. 
The rocking curve had a width of 8.0 5:0.5 Brad which 
agrees with the theoretical value of 7.6 l.trad.) The pinhole 
apertures were manufactured (Optimation Inc., Windham, 
NH 03087, USA) by pulsed laser drilling through 50 ~m- 
thick platinum foils. The source size at X25 was estimated 
by scanning a slit across the beam 10 m downstream from 
the source, and monitoring the intensity transmitted by a 
pinhole aperture in the experimental hutch. The source was 
found to be 43 ktm FWHM high, which is close to the 
designed source size of 50 gm. 

Fig. 8 shows the measured angular distribution of X-rays 
exiting a Z = 18 ~tm diameter pinhole, after diffracting 

II b=- 1 

13 . l z ~  _ 

b=-lO 

I I I i 
-100 0 100 

60 e (/zrad) 
Figure 8 
Angular distribution of X-rays exiting an 18 I.tm diameter pinhole, 
after vertically diffracting from Si(111) with b = -1 and b = 
-10. The dotted curve shows the calculated divergence (1.8 ~trad) 
for b - - 1, under the experimental conditions of Lz - 27.3 m, 
Le = 0.438m and A = 501am. 
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from S i ( l l l )  crystals with b = - 1  or b = -10 .  The 
data were acquired by vertically scanning a 7 lxm diameter 
detector aperture located 1 m behind the beam-defining 
pinhole. The symmetric case (b = - 1 )  was included 
in order to verify the resolution of the measurement. 
The dotted curve is the calculated distribution for b = 
- 1  in the absence of pinhole diffraction and resolution 
broadening. From the estimated source size of A = 50 l.tm, 
the calculated full width is A/(Li + Le) = 1.8 l.trad. The 
measured curve for b = - 1  has a FWHM of 13 wad. 
This width is dominated by Fraunhoffer diffraction from 
the pinhole itself, which contributes A/Z = 10 wad and by 
the resolution of the measurement (7 wad). The measured 
angular distribution for the asymmetric case (b - -10)  
is clearly much broader than the pinhole diffraction plus 
resolution. The measured FWHM of 95 ~rad for b = 
- 1 0  is consistent with the extreme width of 1041.trad 
calculated using (29). It is more than a factor of 50 
larger than the incident divergence of 1.8 grad. Thus, our 
measurement verifies that the divergence of the incident 
beam is broadened by much more than a factor of I bl -- 10 
due to the behavior of an asymmetrically cut crystal in a 
polychromatic beam. 

The total flux through the Z = 7 l-tm pinhole was 
measured for both b = - 1  and b = - 1 0  by using a 
large-diameter detector aperture to capture all radiation 
transmitted through the pinhole. For the selected horizon- 
tal source size (A h°r = 1.1 mm) and a ring current of 
200mA, we observed 4 .2xl05countss  -1 with b = -1  
and 1.1xl06 counts s -1 with b = -10 .  The measured flux 
enhancement is also evident from the integrated areas of 
Fig. 8. These flux measurements are in good agreement 
with (31), which predicts a flux enhancement of 2.7 x for 
this geometry. 

Perfect crystals in the asymmetric Bragg geometry as optical elements for coherent X-ray beams 

For the case of a pinhole collimator located after an 
asymmetrically cut crystal, we have determined the range 
of wavelengths and angles which are transmitted. We in- 
vestigated the possibility of using this geometry to increase 
the flux in a coherent X-ray beam. In the specific example 
considered, we found that the divergence is increased to 
a far greater extent than the beam is spatially condensed, 
so that the transverse coherence length is greatly reduced 
and the coherent flux is not conserved. A consequence of 
this effect is that only crystals cut to a slight asymmetry 
could be used, providing only a modest increase in usable 
coherent flux. 

We would like to thank Ralf Brtining and Eric Dufresne 
for their assistance with the experiments and Lonny E. 
Berman and Denis T. Keane for their comments on the 
manuscript. The experiments were conducted at beamline 
X25, NSLS, which is operated under the United States De- 
partment of Energy contract DE-AC02-76CH00016. This 
research was supported in part by the Natural Sciences and 
Engineering Research Council of Canada. 

APPENDIX 
Crystal truncation rods and dynamical diffraction 
theory 
The relationship between the dispersion surface diagram 
and the crystal truncation rod (CTR) is shown in Fig. 9. 
While it is most convenient to use a dispersion surface 
diagram to derive dynamical diffraction theory for perfect 
crystals with an arbitrarily oriented surface, the resulting 
diffraction behavior is most clearly described using the 
concept of a CTR in reciprocal space. The reader is referred 
to Batterman & Cole (1964) for a complete description 
of dynamical theory and dispersion surfaces. Note that all 

8. Conclusions 
We have investigated in detail the relationship between 
incident angle, exit angle and wavelength for diffraction of 
X-rays from crystals in the asymmetric Bragg geometry. 
The results of dynamical diffraction theory for perfect 
crystals can be concisely described in reciprocal space, 
using the concept of a crystal truncation rod. We have 
used these results to understand how X-ray beams which 
are polychromatic yet highly collimated are diffracted from 
asymmetrically cut crystals. It is found that the angular 
range in the exit beam is typically dispersed across the full 
exit Darwin width, even if the incident beam is perfectly 
collimated. This effect can be viewed as a strong chromatic 
aberration, whereby the wavelength spread accepted by the 
crystal is transformed into an angular spread. Only the 
symmetric Bragg geometry is free from this aberration. 
For an asymmetrically cut crystal, the only condition under 
which the exit divergence for a polychromatic beam is 
as small as that for a monochromatic beam is when the 
incident divergence is equal to the incident Darwin width, 

Di = 21Wi I. 

T 
q 

P, 

L . . . . . . . . . . . .  q . n  

Figure 9 
Reciprocal-space representation of dynamical diffraction showing 
the relationship between the dispersion-surface construction used 
by Batterman & Cole and the crystal truncation rod used to 
describe surface diffraction. 
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of the results of interest here, except the exact width of 
the reflection, can be obtained simply by considering the 
refractive index correction to kinematical theory. 

The vector H is the reciprocal lattice vector of interest. 
The orientation of the crystal lattice planes for this reflection 
is shown by the dotted lines. The length of H is 27r/d. The 
point L is the center of the Ewald sphere in the simplest 
kinematical diffraction theory, which gives Bragg's law 
(1). In this approximation the lines LO and LH,  both of 
length 27r/A, represent the incident and exit wavevectors, 
respectively. They each make an angle 0]3 with respect to 
the lattice planes. 

When kinematical theory is modified to account for the 
refractive index of the crystal, there are two important 
changes. Firstly, the X-ray wavelength inside the crystal 
is slightly longer than its value A outside because the real 
part of the refractive index of the crystal Re(n) is less than 
unity by the small amount 

6 - 1 - Re(n) = A 2 IFol 
IFHI 4d 2" (32) 

The center of the Ewald sphere thus shifts inward from L 
to Q, the magnitude of the shift being greatly exaggerated 
in Fig. 9 for clarity. With this modification the lines QO 
and QH, both of length 27rRe(n)/A, represent the incident 
and exit wavevectors, respectively, inside the crystal. 

Secondly, the directions of the incident and exit beams 
outside the crystal differ from those inside because of 
refraction at the surface. The crystal surface orientation 
is shown at the bottom of the figure, making an angle 
a with respect to the diffracting planes. The construction 
shown in Fig. 9 can be used to show that the incident 
and exit wavevectors outside the crystal, ki and ke, are 
given by PO and E H ,  respectively. This construction is 
based on the principle which leads to Snell's law, i.e. that 
the wavevectors outside the crystal can differ from those 
inside only by a component normal to the crystal surface. 
In addition, the length of the outside wavevectors must be 
the same as LO and LH.  To satisfy these two criteria, one 
can construct lines passing through L perpendicular to LO 
and L H  that represent small arcs centered on O and H 
having radii of the correct length. The intersections P and 
E of these lines with the line drawn through Q normal 
to the crystal surface give the endpoints of the outside 
wavevectors PO and E H  which correctly match the inside 
wavevectors QO and QH, respectively. 

The scattering vector q - k ~ -  ki given by this 
construction can be obtained simply by translating the exit 
wavevector from E to P,  as shown in Fig. 9. One can see 
that the tip q of the scattering vector q is displaced slightly 
from the reciprocal lattice point H in a direction normal 
to the crystal surface, owing to the effect of the refractive 
index of the crystal. 
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So far we have neglected the finite width of the reflection 
predicted by dynamical diffraction theory. In the dynamical 
theory as described by Batterman & Cole (1964) (neglecting 
absorption), the point Q becomes the center of an approxi- 
mately hyperbolic dispersion surface which defines the loci 
of allowed centers of Ewald spheres inside the crystal. The 
finite diameter of this hyperbola gives rise to the finite width 
of the reflection in the Bragg geometry. The construction 
shown in Fig. 9 remains valid, with the vectors ki, ke and 
q as drawn corresponding to the center of the reflection. All 
allowed scattering vectors which have significant diffracted 
intensity terminate on the line segment T in reciprocal 
space. The line segment T is centered on q and oriented 
normal to the crystal surface. Allowed scattering vectors 
can differ from H only by vectors normal to the surface 
because of the boundary conditions relating wavevectors 
inside and outside the crystal. 

By representing the results of dynamical theory in recip- 
rocal space, we can see how they are directly related to the 
crystal truncation rod (CTR) used to describe diffraction 
from crystal surfaces. According to a kinematical approach 
(Robinson, 1986), such CTRs arise when the crystal is 
truncated by a surface. The CTR lies along the line through 
H normal to the surface and represents all of the allowed 
scattering vectors for the reflection. The line segment T 
is the section of the CTR with near-unit reflectivity. The 
length and location of T, deduced from dynamical theory 
and the geometry of Fig. 9, are given at the end of §3. 
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