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Inclined double-crystal monochromators for synchrotron radiation suffer from aberration that is 
connected with the horizontal divergence of the synchrotron radiation beam. Two different methods 
are proposed to compensate for this aberration. The first method introduces slightly different angles of 
inclination for the first and the second monochromator crystals. The condition for the difference of the 
angles of inclination is Bragg angle dependent and also depends on the projection of the distance of 
both crystals onto the direction of the normal to the diffracting planes. The second method uses an 
additional inclined double-crystal monochromator cut such that the aberration introduced by the first 
pair of crystals is nearly completely compensated by the second pair of crystals. This method is 
independent of wavelength. Both methods are illustrated by ray tracing. 
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1. Introduction 

The inclined-geometry double-crystal X-ray monochroma- 
tor has been independently proposed in Sincrotrone Trieste 
(Hrd2~, 1990, 1992) and APS (Khounsary, 1992) as one of 
the most attractive methods for handling high radiation 
power densities. In this geometry the crystal surfaces are cut 
at a large angle with respect to the atomic diffracting planes 
such that the plane determined by the normal to the surface 
and the normal to the diffracting crystallographic planes is 
perpendicular to the plane determined by the impinging and 
diffracted beams. By orienting the crystal in this way one 
can obtain considerable spreading of the incident beam on 
the surface of the first crystal whilst retaining nearly 
symmetric diffraction (Macrander, Haeffner & Cowan, 
1992; Hrd2~ & Pacherovfi, 1993). This gives a larger range 
of wavelength tunability as compared with the asymme- 
trically cut crystal. The second crystal must be cut in the 
same way to give the exit beam nearly the original shape. 

The inclined monochromator has been successfully tested 
by the APS group (Macrander, Lee et al., 1992; Lee et al., 
1992) and its properties have been discussed in a number of 
papers (Macrander & Lee, 1992; Lee & Macrander, 1992; 
Macrander, Khounsary & Graham, 1992; Macrander, 
Haeffner & Cowan, 1992; Hrd~ & Pacherov~, 1993; Rogers 
& Macrander, 1993; Macrander & Blasdell, 1994; Blasdell, 
Macrander & Lee, 1994). It has also been shown (Ice & 
Sparks, 1992) that in the inclined geometry the second 
crystal may be sagittally bent to focus the monochromatic 
radiation. 

In order to increase the spreading of the incident radiation 
on the surface of the first inclined crystal further, one may 
decrease the angle between the incident beam and the 
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surface of the crystal by turning the monochromator around 
the normal to the diffracting planes (Smither & Fernandez, 
1994; Blasdell & Macrander, 1994). The resulting position 
is a combination of 'pure' inclined and 'pure' asymmetric 
geometry, although the 'pure' asymmetric position does not 
exist if the angle of inclination is higher than the Bragg 
angle. This was called a general asymmetric position by 
Smither & Fernandez (1994), although the name general 
inclined seems to be more appropriate. This approach has 
been adopted for SPring-8 (Kamiya et al., 1995; Uruga 
et al.,  1995) where the geometry was called a rotated- 
inclined double-crystal monochromator. 

Recently (Hrd2~ & Pacherovfi, 1993; Hrd2~, Busetto & 
Bernstorff, 1995), we have shown that the inclined double- 
crystal monochromator introduces a certain distortion of the 
profile of the exit beam which manifests itself as a 
deformation of the shape of the virtual source. This 
distortion is connected with the horizontal divergence of 
the synchrotron radiation beam. The real point source is 
transformed into a virtual source that has the shape of a 
vertical line. A similar observation was also reported by 
Blasdell, Macrander & Lee (1994). We have analyzed this 
kind of aberration both analytically and by ray tracing. In 
this paper we propose two different ways in which it can be 
suppressed. 

2. Different angles of the first and second crystals 

In the symmetric double-crystal ( + , - )  monochromator, the 
gap (defined as the distance between the diffracting planes 
on the first and the second crystals for a given beam) is 
independent of the direction of the beam. Here the gap is 
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equal to the distance between the planes containing the 
diffracting surfaces of both crystals. In this case the crystals 
behave as mirrors (from the geometrical point of view only) 
and thus no aberration is observed. A real point source is 
here transformed into a virtual point source. 

As was shown recently (Hrd~', Busetto & Bernstorff, 
1995) the situation in the case of an inclined double-crystal 
monochromator  and horizontally divergent radiation is 
different (Fig. 1). The gap is equal to the projection go of 
the distance between the crystals onto the normal to the 
diffracting planes only for the central beam (X = 0). Let the 
horizontal deviation of a beam from the central beam be 
determined by a variable X. The corresponding angular 
deviation e may be determined from 

t a n e  = X / L  (1) 

where L is the distance of the monochromator  from the 
source S. From Fig. 1 it is seen that the gap gx corresponding 
to the deviated beam decreases with X. For X > 0 the gap 
gx < go and for X < 0 the gap gx > go. This variation of the 
gap with X (or e) is the main reason for the above- 
mentioned aberration because the change of gap causes the 
shift of the exit beam and consequently increases the vertical 
dimension of  the virtual source. 

The inclined double-crystal monochromator  discussed 
above has the same angles of inclination fl for both crystals, 
i.e. the diffracting surfaces of both crystals are parallel. Now 
we will decrease the inclination angle fl' on the second 
crystal to see how the variation of the gap will be affected 
(Fig. 2). (The angles fl and fl' shown in Fig. 2 are taken as 
positive.) It may be shown (see Appendix)  that 

A 
{X[A(k - k') - kgo] + goA} (2) 

gx = (a - kX )(a + k 'X ) 

where A = L sin 0, k = tan/3, k' = tan/3'  and 0 is the Bragg 

angle. 
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Figure 1 
Front and side view of horizontally divergent synchrotron radiation 
from a point source S impinging on an inclined double-crystal 
monochromator. (In contrast to the real situation, the picture is 
oriented in such a way that the diffracting planes are horizontal and 
thus the synchrotron beam is not horizontal.) 
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It is obvious that in all practical cases the absolute values 
of kX and k 'X are much smaller than A and thus the fraction 
in (2) is approximately equal to 1/A. Now it is clearly seen 

that if 

a(k  - k') - kg,, = 0 (3) 

or 

k' = k(L sin 0 - go) /L  sin 0 (4) 

the gap will be practically independent of X (or ~.'). 
Unfortunately, from (4) it follows that k' depends on 0 
and thus also on the wavelength 2. Fortunately, it also 
depends on go. This means that for a certain k', determined 
from (4) for some 0, the influence of the subsequent change 
of  the Bragg angle may be compensated by the change of 
go, i.e. the component of the distance of the crystals in the 
direction of the normal to the diffraction planes. In this way 
the inclined double-crystal monochromator  may be kept free 
of aberration for a certain 0 interval. For k' = k 

gx = A g o / ( A  + k X )  = g o s i n O / ( s i n O +  t a n / 3 t a n e ) .  (5) 

The previously detailed procedure may be illustrated by 
the following example. Let us suppose that L = 25 000 mm,  
/ 3 = 7 5  ° ( k = 3 . 7 3 2 ) ,  0 = 2 0  ~, g 0 =  100mm,  and X is 
changed from - 5 0  to + 5 0 m m .  Provided that k = k', the 
gap gx changes from 102.23 to 97.86 mm. If we change the 
angle of inclination of the second crystal according to (3) or 
(4) we get k' = 3.68835 (fl' = 74.83 '~) and the gap changes 
in the interval 99.996-100.072 mm, i.e. 57.5 times less than 
in the previous case. If we now wish to change the Bragg 
angle from 20 to 30 ~ (for the same k'), we will have to 

increase go to 146.2mm to keep the variation of the gap 
suppressed. This example is only a theoretical case because 
its realization would require very large crystals. Fig. 3 
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Figure 2 
Inclined double-crystal monochromator with different angles of 
inclination for the two crystals to compensate for aberration. 
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Compensation of aberration of inclined X-ray monochromators 

I shows a simulation of  the virtual source for the above 
example using the S H A D O W  ray-tracing program (Lai & 

Cerrina, 1986). 
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in the gap of  

Virtual source generated by the ray-tracing program S H A D O W  for 
a real point source and horizontally divergent radiation. (a) The 
virtual source created by the inclined double-crystal monochro- 
mator with/3 --- 75 °, 0 = 20 °, go = 100 mm, L = 25 000 mm and 
- 5 0  mm < X < +50 mm. (Here the aberration is not compen- 
sated.) (b) The virtual source of the same monochromator with a 
slightly different angle of inclination on the second crystal 
calculated according to (4) to compensate for the aberration. (c) 
The virtual source for two inclined double-crystal monochromators 
creating the ( + , - , - , + )  arrangement and with the same 
parameters as in (a) but the angles of inclination on the second 
monochromator have opposite signs with respect to the first 
monochromator (see Fig. 4). The curvature, the horizontal 
dimension and the horizontal displacement of the virtual source 
are due to the refraction. All three diagrams are drawn to the same 
scale: the horizontal length of the diagrams corresponds to 0.4 mm 
and vertical length to 12.5 ram. 

3. Two inclined double-crystal monochromators 

The gap in an inclined double-crystal monochromator  with 
I3 -- 13' is given by (5). As the absolute value of  kX is very 
small when compared with A, the relation (5) may be 

approximated by a line and it holds that 

(gx - go) - -  - ( g - ~  - go). (6) 

Let us suppose that the beam, determined by a parameter 
X, passes through the first inclined double-crystal mono- 

chromator cut as shown in Fig. 4(a) and then through the 
second inclined double-crystal monochromator  cut accord- 
ing to Fig. 4(b). (The first monochromator  has an angle of  

inclination fl and the second one - f t . )  The beam with 
parameter X in the first monochromator  is, in the second 
monochromator,  in the same situation as a beam with 
parameter - X  in the first monochromator.  Thus, from (6) it 
follows that the change in the gap caused by the first 
monochromator  is almost completely compensated in the 
second monochromator  for any 0. Here we suppose that 

both monochromators form a so-called non-dispersive or 
( + , - ,  + , - )  setting, i.e. all the diffracting planes are 

parallel and the beam impinges first on the lower crystal and 

then on the upper crystal. 
The first monochromator  (k~ = k) causes a change in the 

gap of  

Ag]  = go - A g o / ( A  + k X )  (7) 

Ag2 = go - A g o / ( A  - k X ) .  (8) 

(b) 

(In fact A and X are slightly larger on the second 
monochromator  when compared with the first monochro- 
mator but the value of  the fraction remains the same.) 

(a) 
Figure 4 
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(a), (b) Schematic diagram of two inclined double-crystal 
monochromators with opposite angles of inclination. 
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The resulting gap change is given by 

Ag = Ag I + Ag 2 = 2go[1 -- A2/(A 2 - k2X2)]. (9) 

The absolute value of the term in square brackets is of the 
order of 10 -3 in the worst extreme, or much smaller, which 
means that the resulting change in the gap is insignificant. 
Both monochromators may be also arranged in such a way 
that they create the so-called dispersive (+,  , , + )  
setting having a high resolution. However, in this case the 
beam diffracted from the upper crystal of the first 
monochromator impinges first on the upper crystal of the 
second monochromator and then on the lower one. To 
compensate for the influence of gap variation on the 
position of the exit beam it is necessary that both 
monochromators be cut in the same way as in the previous 
(+,  - ,  + , - )  case. 

APPENDIX 

For a given X the gap gx may be determined as the 
difference Y2 - YI, where YI and Y2 are the y coordinates of 
the points B and C, respectively (see Fig. 2). The point 
B[X~,Y~] is the intersection of the horizontally deviated 
beam with the surface of the first crystal. Its coordinates 
may be determined by solving the system of equations 

y = - ( a / X ) x  + a (10) 

y =  -kx ,  (11) 

where the first equation describes the beam impinging on 
the first crystal and the second equation describes the 
projection of the diffracting surface of the first crystal. This 

gives 

Y~ = - k A X / ( A - k X )  and X 1 = A X / ( A - k X ) .  (12) 

The coordinates of the point C[X 2, Y2], i.e. the intersection 
of the beam diffracted from the first crystal with the surface 
of the second crystal, may be determined by solving the 
system of equations 

(y - YI) = ( A / X ) ( x -  X~) (13) 

y = - k ' x  + go, (14) 

where the first equation describes the beam diffracted from 
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the first crystal and the second describes the projection of 
the diffracting surface of the second crystal. 

One of the authors (JH) would like to thank the Grant 
Agency of the Czech Academy of Sciences for grant 

support. 
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