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One of the most important figures of merit for third-generation sources is the brilliance. An intuitive 
physical picture of the diffraction properties of synchrotron radiation is presented in this paper. The 
consequences of these diffraction properties on the design of third-generation light sources is also 
discussed. 
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1. Introduction 

The aim when designing synchrotron radiation rings is to 
match the ring properties to those of the emitted synchrotron 
radiation. During the evolution of synchrotron radiation 
sources, that is the magnet structures emitting synchrotron 
radiation, these goals have changed. For the first generation 
of synchrotron radiation rings, which mostly consist of high 
energy physics rings, dipole magnets are used as synchro- 
tron radiation sources and the optimization is constrained by 
the existing design. The second generation of synchrotron 
radiation rings still use dipole magnets as main synchrotron 
radiation sources, but the electron (or positron) beam is 
optimized for synchrotron radiation uses. 

Third-generation sources use special insertion devices, 
undulators and wigglers as synchrotron radiation sources, 
and these devices introduce new challenges in machine 
design. 

We can only scratch slightly on the surface of machine 
physics in this paper. A more detailed description can be 
found in Courant & Snyder (1958), Wiedemann (1993), 
Jackson (1975) and Winick (1994). In this paper, a simple 
and intuitive picture of how accelerator physicists try to 
optimize storage rings to match the electron (positron) 
beams to the properties of light is given. 

2. Figures of merit 

There are mainly two properties characterizing a synchro- 
tron radiation source. The first is the flux defined as 

0. 1%, mrad 

where • is in photons s- l  (0.1% bandwidth)-l (mrad 
horizontally)-1 and Nf is the number of photons emitted 
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The brilliance B is the peak flux density in phase space 

B= Nf 
0.1%, mm 2 mrad 2 

The flux is a function of electron current and electron 
energy only. When calculating the brilliance we have to take 
into account the phase space defined by the diffraction 
properties and that given by the electron-beam emittance. 

Other figures of merit for a synchrotron radiation ring are 
electron-beam lifetime, spatial stability, ring reliability and 
ease of operation. 

3. Specification goals 
3.1. Spectra/region 

For a dipole source, the critical wavelength where 
intensity is close to maximum is given by ~.c = 18.6/E 2B 
(A), where E is the electron energy in GeV and B the 
magnetic field in T. 

We should thus choose the electron energy to cover the 
photon spectral region of interest, but an electron energy 
that is too high might induce unnecessary heat problems and 
a ring cost that is too high. We must also take into account 
the fact that a large bending magnet radius will put the 
optical elements further away, which will reduce the opening 
angle for a given optical element size. 

The use of insertion devices and then especially 
undulators puts even tighter boundary conditions on the 
electron energy. The spectral region is given by the 
undulator period and its magnet field. The total flux is 
proportional to the number of undulator periods. The latter 
is strongly dependent on the minimum undulator gap 
allowed in the machine. 

As a consequence of this, the optimization process of a 
third-generation storage ring for synchrotron radiation is 
heavily dependent on the evolution of the insertion devices. 
A ring optimized for an undulator minimum gap of 40 mm, 
which was a conservative value some years ago, is certainly 
quite different from a ring optimized for a 10 mm gap, 
which is used and discussed today. 

3.2. Matching 
From Fig. 1, we can see that an observer will see the light 

emitted from a thin line source as originating from a shining 
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disk, the apparent size of which is given by the diffraction 
relation. The line source could be a bending magnet which 
gives a short line source, or a longer undulator. The photon 
angular spread defined by the diffraction can generally be 
approximated for Gaussian distributions to O"ph = (X/2L) 1/2 
where or' is the r.m.s, angular spread, X is the emitted light 
wavelength and L the source length. 

The diffraction relation for Gaussian distributions 
t O'phO'ph : k/4n" yields the apparent source size O'ph : 

(1/:r)( k L/8 ) I/2. 
The electron-beam phase-space area or emittance e = 

O'eCY!e should thus preferably be less than X/4rr. if  this is the 
case, the source is called difffraction-limited. This demand is 
so far difficult to fulfil, especially for shorter wavelengths. 

Even if the electron-beam emittance is smaller than )J4zr, 
we need to match the phase-space form of the electron-beam 
emittance to that induced by diffraction. The mismatch 
between these phase-space forms for a dipole source is seen 
in Fig. 2, where L is in the mm range which gives aph in the 
Its range while the electron-beam size is orders of 
magnitude larger. 

For an undulator, with L in the meter region, O'ph is some 
order of magnitude larger that yields a better match to the 
electron-beam size. This fact plus the larger number of 
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Figure 1 
Light from a long light source. 
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Figure 2 
Photon and electron-beam emittances in phase space. 

Bri l l iance - an overv iew 

emitting sources explains the high brilliance attainable from 
an undulator in a low-emittance storage ring. 

4. Magnet lattice 

4.1. Betatron motion 
A ring magnet lattice consists mainly of dipole magnets 

which recirculate the electron beam and magnet lenses, 
quadrupole magnets. These lenses will force the stored 
particles to oscillate around a reference orbit. If we smear 
out the focusing evenly around the ring, we should 
obviously get a harmonic oscillation for a certain particle 

x(tP) = C sin(K~ + ~) 

where C is the oscillation amplitude, K is the wavenumber, 
t/, the azimuth angle in the ring and ~/, a phase angle. 

Ifi a real machine, we have piecewise constant focusing 
lenses. A solution to the particle motion can then be 
described as 

x(s) = C[~(s)] 1/2 sin[Q~(s) + qq. 

fl(s) is now a modulating function, s the coordinate in the 
reference-orbit direction and Q is the betatron wavenumber 
defining the number o f  oscillations the particle will execute 
during one turn in the machine. ~ is now not exactly the 
azimuth angle but is generally close to it. 

The angle between the particle motion and the reference 
orbit is achieved by differentiating x with respect to s 

x'(s) = dx ( s ) /d s .  

In phase space xx' the particle will now describe an ellipse 
when moving in the ring. The oscillation amplitudes for the 
particles in the beam will have a Gaussian distribution. The 
particle with the r.m.s, amplitude will have its motion 
described by 

X(S) - -  [eft(S)] 1/2 sin[Qqt(s) + ~] 

where e defining the oscillation amplitude is the area 
(divided by rr) of the phase-space ellipse and is called the 
electron-beam emittance. 

We have two directions of oscillations, radial and vertical, 
so we now have two fl functions. 

4.2. Dispersion 
We see in Fig. 3 the basic building block of a storage ring. 

The electron beam enters from the lett. Particles of higher 
energies are bent less than those of nominal energy, but are 
focused back by the middle lens. 
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Figure 3 
Double-bend achromat. 
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The function, describing the position of an off-energy 
particle with a momentum deviation AP/P = 1, is called the 
dispersion function 17 and this is also seen in Fig. 3. 

5. Radiation damping and beam emittance 

As we have seen above, the particles stored in the ring 
execute oscillations around a reference orbit. Let us first 
look for the radiation damping in the vertical direction as 
seen in Fig. 4. 

An oscillating particle will emit a photon in a dipole 
magnet. The recoil of the photon will have one longitudinal 
component retarding the particle and one vertical compo- 
nent damping the vertical oscillation. The longitudinal recoil 
will be replaced by the accelerating cavity while the vertical 
recoil component will damp the oscillation. 

The situation is somewhat more complicated in the radial 
direction. Let us look at Fig. 4 where we assume that a 
particle of nominal energy on the reference orbit emits a 
photon in a bending magnet. Apart from the damping 
mechanism described for the vertical case above, the particle 
will now suddenly have another equilibrium orbit introduced 
by its changed energy and the present non-zero dispersion. 
The introduced oscillation amplitude equals the particle 
distance to the new equilibrium orbit. 

This mechanism is in fact responsible for the equilibrium 
emittance in a storage ring. We can also see that a large 
dispersion in the bending magnets introduces large oscilla- 
tion amplitudes and thus a larger emittance. 

6. Decreasing the electron-beam emittance 

The chase is now on for smaller dispersion functions in the 
bending magnets in order to decrease the particle-beam 
emittance and thus increase the brilliance. The first step is of 
course to enlarge the number of achromats to obtain a small 
dispersion in the bending magnets. The smaller the bending 
angle of the bending magnet, the smaller the dispersion. We 
can also lower the electron-beam energy and get a smaller 

Photon 
Long recoil 

4( ~ ~Electron 
Transverse 
recoil 

Vert'.'cal damping Photon 

Radial damping 

Figure 4 
Vertical and radial damping. 

recoil. The emittance scales in fact like 

EE2/N 3 

where E is the electron energy and N the number of  bending 
magnets. 

We can, however, not push this scheme too far. The 
reason for this is chromaticity corrections. A particle of 
higher energy will experience a weaker focusing in the 
quadrupole lenses and should thus have a lower betatron 
wavenumber Q. The chromaticity 

~ - - d Q / ( d P / P )  

will then be negative which will excite head-tail instability. 
We correct the chromaticity by introducing nonlinear lenses, 
sextupole magnets, at positions with non-zero dispersion as 
seen in Fig. 3. The particle position is here energy 
dependent and the nonlinear sextupole lens can then 
compensate the betatron Q value. 

For small dispersion functions, we need stronger sextu- 
poles and this will make the lattice more unstable, as the 
dynamic aperture is reduced. This mechanism is one factor 
limiting the possibility of reaching small remittances. 

7. Performance limitations 

Even if in principle we know the way to diffraction-limited 
emittances, there are a number of  problems blocking this 
approach. 

One is money. Decreasing the particle emittance means a 
larger number of magnets are required to decrease the 
dispersion. The machines tend to be big and costly. 

A second is dynamic stability. As we increase the 
sextupole strengths, we reduce the dynamic aperture. This 
causes a reduction of beam lifetime and increases the 
alignment problems. 

A third is the possibility of effectively keeping the beam 
position inside a fraction of the beam size. As we reduce the 
beam size, we have to position the beam more exactly. If the 
experiments should be able to benefit from the smaller beam 
size, then the effective emittance seen by the user should not 
be diluted by beam motions. 

We are also aiming at high mean currents. This means 
high maximum current and a lifetime that is long compared 
with the injection time. 
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