
214 

J. Synchrotron Rad. (1997). 4, 214 -222  

Application of Energy-Resolved Measurements to Laue 
Diffraction: Determination of Unit-Cell Parameters, 
Deconvolution of Harmonics and Assignment of Systematic 
Absences 

Quentin S. Hanley,at  John W. Campbe lP  and M. Bonner Denton a* 

aDepartment of Chemistry, University of Arizona, Tucson, AZ 85721, USA, and bCCLRC 
Daresbury Laboratory, Warrington WA4 4AD, UK. E-maiL mbdenton@ccit.arizona.edu 

(Received 28 October 1996; accepted 25 February 1997) 

The use of energy-resolved area detection of Laue diffraction patterns for the determination of unit- 
cell parameters and systematic absences is demonstrated. Seven different crystals having previously 
known unit cells were re-examined using Laue diffraction methods. These crystals included four 
different crystal systems including cubic, orthorhombic, tetragonal and monoclinic cells. The crystals 
had cell sizes ranging from 179.4 to 4588.3 A~. Comparison of known and re-determined cells 
showed good agreement (ratio of known to measured cells = 0.987 _+ 0.18). A single procedure 
was suitable for all unit-cell determinations. The accuracy of the method is presently limited by the 
quality of the available energy measurements. Some of the crystals represent space groups containing 
systematic absences normally obscured by harmonic overlap when using the Laue method. These 
include absences due to 21 screw axes (h, k or 1 = 2n + 1) and cell centering (h + k = 2n + 1). 
All systematic absences were identified using a combination of multiple linear regression with either 
stepwise elimination or stepwise inclusion and an F test for assignment of systematic absence. The 
methods are discussed in detail and simulations are used to evaluate critical tolerances for future 
systems. 

Keywords: unit-cell determination; Laue diffraction; screw axes; foil-mask spectrometers; 
harmonic deconvolution; systematic absences; energy-resolved measurements. 

1. Introduction 

Two problems and their consequences have generally 
limited the Laue method to systems which have been 
pre-examined using monochromatic methods. Using solely 
Laue data it is difficult to determine unit-cell dimensions 
accurately (Ravelli, Hezemans, Krabbendam & Kroon, 
1996; Carr, Dodd & Harding, 1993; Carr, Cruickshank 
& Harding, 1992) and much information is hidden 
in the 10-20% of spots containing harmonic overlap 
(Cruickshank, Helliwell & Moffat, 1987). The multiple 
Laue spots contain information useful for the assignment 
of space groups (Amoros, Buerger & Canut de Amoros, 
1975). Further, spots containing harmonic overlap come 
disproportionately from low-order reflections and other 
planes of special interest making the separation of the 
intensity components in the spot of particular concern (Hao, 
Harding & Campbell, 1995). Absence of these reflections 
from structure refinement systematically under-represents 
the low-frequency coefficients in the Fourier synthesis 
(Duke et al., 1992; Bartunik, Bartsch & Qichen, 1992). 
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Early in the history of X-ray diffraction, methods were 
described whereby Laue photographs could be used to 
estimate unit-cell dimensions. These methods involved 
observing the low wavelength limit (~min) to the data and 
scaling the cell accordingly or assigning an energy to a spot 
and scaling the axial ratios to the energy of the spot. Bragg 
& Bragg (1924) described a method for single exposures. 
In their description the acceleration voltage on an X-ray 
tube was suggested as an estimate of Amin. An alternative 
approach was described by Davey (1934). In this variation 
a series of exposures were taken as the acceleration voltage 
on an X-ray tube was decreased. Spot energy could be 
assigned by noting the voltage on the tube as the spot 
disappeared from the pattern. 

A modern adaptation resembling the Braggs' method 
was described by Carr, Dodd & Harding (1993) and Carr, 
Cruickshank & Harding (1992), who define A,,lin by in- 
serting a metal foil into an incident 'white' beam from a 
synchrotron. The foil provides a sharp cutoff in the high- 
energy portion of the X-ray spectrum. This approach gave 
good results (within 0.5%) for monoclinic and orthorhom- 
bic cells having volumes in the range ,~5 000-1 000 000 A.3. 
The primary limitation of this method is that it works best 
with large unit cells. With small cells the diffraction pattern 
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is not well populated, making application of the method 
difficult. 

An alternative, which more closely matches that 
described by Davey (1934), is to measure the energy of 
many spots in a Laue pattern. If such data are available the 
position and energies measured can be converted directly 
into positions in reciprocal space. For ideal data, plotting 
the reciprocal space coordinates results in a recognizable 
lattice. Cell determination can proceed regardless of 
orientation and is suitable for small unit cells. This approach 
is explored here. 

Separation of multiply overlapped Laue diffraction spots 
has been the subject of several studies. The absorption 
of X-rays in film packs (Helliwell et al., 1989) or in 
the foils of a ten-element foil-mask spectrometer (Hanley, 
Dunphy & Denton, 1996), direct methods (Hao, Campbell, 
Harding & Helliwell, 1993), mathematical deconvolution 
of different crystal orientations (Campbell & Hao, 1993), 
and a real-space density modification method (Hao, Harding 
& Campbell, 1995) have all been used to deconvolve the 
components in multiple Laue spots. With the exception of 
the foil-mask spectrometer, each of these methods has been 
subjected to crystallographic tests and has achieved consid- 
erable progress toward making low-frequency information 
available in structure refinement. 

This paper describes the use of energy-resolved Laue 
data for the determination of unit-cell dimensions and sepa- 
ration of harmonically overlapped Laue spots. It consists of 
two approaches: (i) simulations are used to explore different 
limitations of the method and to define critical parameters 
for data acquisition, and (ii) data obtained from a foil-mask 
spectrometer system are used to measure unit cells and to 
separate harmonics. Further verification of the foil-mask 
spectrometer is included using the known cells. 

2. T h e o r y  

2.1. Unit-cell determination 

Energy-resolved Laue diffraction data give a direct view 
of the reciprocal lattice from which they came. The data 
can be converted directly to reciprocal space coordinates. 
The direction of any observed diffraction vector measured 
at a distance z from a crystal corresponds to the direction 
of a vector from the center of an Ewald sphere of radius 
1/,~meas. If ~meas is k n o w n ,  the position of the point in the 
reciprocal lattice responsible for producing the diffraction 
may be calculated using 

X t = X[[A(X 2 + y2 + Z2)1/2], 

y ,  = y / [A(x  2 + y2 + z2)1/2], 

Z t = Z / [~ (X  2 + y2 + Z2)1/2] _ flA. (1) 

These relationships are illustrated in Fig. 1. 
With ideal data the observed spots form a readily index- 

able reciprocal lattice. In practice, the foil-mask spectrom- 
eter system produces imperfect energy data. Data sets may 
include reflections containing harmonic overlap, or spots 

215 

for which the energy measurements are poor. The effect 
of such points may be minimized by selecting the best 
portions of the data set, but they cannot be completely 
eliminated a priori .  For this reason the indexing method 
of Duisenberg (1992) was adopted. Briefly, the method 
consists of generating triplets created by the end points 
of three reciprocal space vectors corresponding to three 
reflections. If the reflections belong to a single reciprocal 
lattice, the normal to the triplet is a direct lattice vector. 
Reflection vectors are then projected onto the triplet normal 
and the line projection searches for the one-dimensional 
lattice with the shortest period giving a t vector. The three 
t vectors best fitting the data are used to determine a unit 
cell. 

2.2. Separat ion of  harmonics  

Assignment of intensities to the components of multiply 
overlapped spots using a system of calibrated absorbers can 
be described by a multiple linear-regression model of the 
form 

Y = / ~ l X l  +/~2x2 +/~3x3 + . . .  + t~nXn + C, (2) 

where Y is the measured intensity, xi is the known value 
of the transmission efficiency, /~i is the ith component of 
the multiply overlapped Lane spot, and e is the error. This 
is a standard multiple linear-regression model except that 
the model is assumed to have zero intercept. This is due to 
the physical system in which no intensity is expected when 
all values of xi are zero. A least-squares solution exists for 
this overdetermined system of equations. Using the matrix 
notation (Hanley, Dunphy & Denton, 1996) developed for 
the foil-mask spectrometer the intensity components are 
given by (3). In this equation the subscript t refers to the 
matrix transpose and the superscript -1 refers to the matrix 
inverse. H is the colunm vector containing each of the 
intensity components in the harmonic, T is the transmission 

Reciprocal space 

1/2 
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~ X  ~ 

Z 
I 
Crystal-to-detector 
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Figure 1 
Illustration of the relationship between real and reciprocal space 
coordinates in a Laue diffraction pattern. Knowledge of the energy 
of the X-rays creating a spot in real-space coordinates (X, Y, Z) 
allows the reciprocal lattice coordinates (x, y, z) to be computed 
directly. The relationships shown in the picture are for illustration 
purposes and are slightly different than the convention used by 
the program ERLAI. 
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efficiency matrix, and Im is the measured intensity through 
each of the foil masks. 

Hx = ( T ' T )  -~ Ttl,,,. (3) 

The variance explained by the multiple linear-regression 
model is given by 

SSreg -- H x T t l m .  (4 )  

The total variance is given by 

s s t o ,  = ~-" ( i i )2 .  (5) 

Application of energy-resolved measurements to Laue diffraction 

The residual variance is given by 

SSre s = SSto t -- SSreg. (6) 

R 2 is the ratio of the variance explained by the multiple 
linear-regression model divided by the total variance. An 
adjusted R 2 value which takes into account the number 
of degrees of freedom in the model and the number of 
measurements made is given by 

Adj R 2 - 1 - (1 - R2)n / (n  - k),  (7) 

where n is the number of measurements (masks) and k is the 
number of intensity components in the harmonically over- 
lapped spot. Statistically rigorous errors can be assigned to 
each intensity component in the model by first computing 
the mean squared residual, 

msre~ = SSrJ(n - k). (8) 

The standard error of the ith intensity component in an 
overlapped spot can be computed from the mean squared 
residual, 

sei  = [ m S r e s ( T t T ) i i l ]  1/2 (9 )  

The quantity (TtT)i71 corresponds to the diagonal elements 
in the inverse matrix computed in (3). The significance of 
each intensity component is then tested using Student's t, 

ti = Ii/sei.  (10) 

If the value corresponds to a probability less than 0.025 the 
component is included, otherwise it is eliminated. 

The value of e in (2) is limited by three types of 
noise: detector noise, source flicker and Poisson noise. The 
Poisson, or shot, noise may be divided into components 
from the background and signal of interest. An ideal system, 
one with no detector noise, a perfectly stable X-ray source 
and negligible background, will be limited by the Poisson, 
or shot, noise of the detected X-rays. The critical property of 
Poisson noise is that the magnitude depends on the strength 
of the incident signal, 

O" I = 1112. (1 1) 

For this reason a component of a multiply overlapped spot 
having an intensity less than twice the standard deviation of 
the largest component should be assigned a value of zero. 

2.3. A s s i g n i n g  s y s t e m a t i c  a b s e n c e s  

Assigning systematic absences based on measurements 
of reflections in a monochromatic experiment is usually 
done using relationships between signal level and noise. 
A common procedure is to mark a reflection as absent 
if the intensity of the reflection is less than k times the 
noise.* This approach is statistically questionable since if k 
is set to two, reflections might be marked as 'systematically 
absent' which are 'statistically present' with 95% confi- 
dence. Although initial mis-assignments of space groups 
are encountered when using this approach, experience has 
shown such procedures to be useful. 

Assigning an absence to a reflection in a multiply over- 
lapped spot in a Laue pattern may proceed in a similar 
fashion. Considering reflections on an individual basis, the 
following criteria are proposed for assigning an absence 
when using a system of calibrated absorbers. A reflection 
is present if: 

(a) it has a regression coefficient with a significance level 
of 97.5% or greater when using (2); 

(b) it has a positive magnitude; 
(c) it has a magnitude greater than twice the square root 

of the intensity of the largest overlapped reflection. 
If the reflection does not meet these three criteria it is 

designated as absent. It should be noted that using these 
criteria may result in exclusion of some reflections that 
might be present and that all reflections present in a multiply 
overlapped spot are not equally weighted in the mea- 
surements of spot intensity. The wavelength normalization 
curve of the detection system inherently under-represents 
the reflections at some wavelengths. There is no way to 
correct for this prior to deconvolution of the harmonics 
using a system of calibrated absorbers. 

Assigning a 'systematic absence' to a set of reflections 
in a multiply overlapped spot or spots is slightly more 
complicated. Here the example of a 21 screw axis is treated. 
This may be done by considering two models: one is 
designated a complete model, the other a reduced model.t  
The complete model is given by (2). The reduced model, 
(12), consists of (2) except that all the coefficients having 
odd-numbered coefficients have been removed. 

Y = / ~ 2 x 2  + / ~ 4 x 4  + . . .  + fT~2nX2n + e.  (12) 

The hypothesis being tested is that of systematic absence 
(e.g. fll = f13 = /35 . . . . .  /:~2n + I = 0). The F statistics 
corresponding to this hypothesis, (13), may then be used to 

l/I 
confirm a systematic absence when F > F,,_-(~O, 

F = [ ( s s  I - ss-,)/(k - g)] /[ss2/(n  - k)], (13) 

where SSl is the sum of squared errors for the reduced 
model computed using (6), ss2 is the sum of squared errors 

* k here is a constant defining the desired significance level. Values of  

k vary somewhat depending on the researcher and the data set being 

confronted, but values of I, 2 and 3 are common. 
t This treatment is based on one given by Scheaffer & McClave (1982). 
¢. The F test used here is related to the Hamilton R ratio tests. For a 

discussion of this relationship see Hamilton (1965). 
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for the complete model computed using (6), k - g is the 
number of absent intensity components, k is the number 
of intensity components in the complete model, n is the 
total sample size, ul is k - g, the number of degrees of 
freedom in the numerator of (13), z)2 is n - k, the number 
of degrees of freedom in the denominator of (13), and ~ is 
the desired significance level. This F statistic tests whether 
the null hypothesis, that a systematic absence is present, 
may be rejected. 

3. Experimental 
3.1. Data collection 

The foil-mask spectrometer system has been previously 
described (Hanley, Dunphy & Denton, 1996). Data were 
collected using an indirect CID camera system (Hanley, 
True & Denton, 1995), an Enraf-Nonius FR571 X-ray 
source equipped with a Cu rotating anode, and a CAD-4 
goniometer. Images were processed using the image re- 
duction and analysis facility (IRAF). Within IRAF, spot 
positions were entered manually, centered, and intensities 
integrated. The integrated intensities are used to com- 
pute measured values of transmission efficiency, Tin. This 
requires that a satisfactory measurement of 10 be available 
for each spot for which energy determinations are made. 
Energies were computed as previously described and sorted 
using (14) as a figure of merit, 

F O M =  ( [  ~ (Z e - Tin)21//'/) 1/2, (14) 

where FOM is the figure of merit, Te is the calculated 
transmission efficiency at the energy measured, Tm is the 
measured transmission efficiency, and n is the number of 
masks used in the computation of energy. Only spots having 
measured energies with FOM < 0.05 were included in 
unit-cell parameter computations. The CID camera system 
crystal-to-detector distance and spatial distortions were 
calibrated using a sample of MoOC14PC24H20. 

Six crystals were selected for study: NaC1, KC1, 
C19H2802, MoOS4N4C28H40, CIgH31MoBN603 and 
MoOC14PC24H20. Crystals were mounted in a random 
orientation. 

3.2. Computations 
Several programs were written to evaluate the system 

and perform computations on the collected data. These 
programs are ERLAI, EMATCH, EINDEX, ESIMUL, ESEP 
and EAN. ERLAI is used for the determination of unit-cell 
parameters and orientation using a set of energy-resolved 
measurements. EMATCH rescales unit cells determined by 
ERLAI following refinement using LAUEGEN and reduc- 
tion by TRACER.* EINDEX assigns indices, multiplicity 
and harmonic increments to spots in a Laue diffraction 
pattern. ESIMUL generates a simulated energy-resolved 

* The version of TRACER used here is part of the MolEN analysis package 
supplied by Enraf-Nonius, Delft, The Netherlands. 
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data set given a Laue data module file. ESEP separates 
harmonics and tests for 21 (and related systematic absences) 
and 41 screw axes. EAN adds Gaussian noise to a set of 
energy-resolved Laue data for simulation purposes. 

The method of Duisenberg (1992) was adopted and 
coded in the program ERLAI. The program first converts 
the spot positions and energies into reciprocal lattice coor- 
dinates. The auto-indexing procedure is then carried out. 
All triplets (the end points of three reflection vectors) 
are generated for the selected input reflections and the 
origin reflection. The normals to such triplets define direct- 
lattice vector directions if the three reflections belong to 
the same reciprocal lattice. Taking each triplet in turn, 
all the selected reflections are projected onto it and the 
line projection is searched for the one-dimensional lattice 
with the shortest period above a minimum value (defined 
by twice a user-entered variable CELL MAX) that fits the 
maximum number of the reflections within a requested 
tolerance (FIT LEVEL and FIT INDEX) giving a t vector 
which is stored. In ERLAI, all triplets are examined from the 
start rather than taking a random selection initially as done 
by Duisenberg. The t vectors list is sorted in descending 
order of NFIT (the number of fitting reflections) and the 
determined reciprocal distance vector d*. The first vector 
in the sorted list is chosen to be the first direct-lattice vector. 
The list is then searched to find the next vector which is at 
least a user-defined minimum angle (default 30 °) from the 
first selected vector. This defines the second direct-lattice 
vector. The search continues to find a third vector which 
is at least a user-defined minimum angle (default 30 °) 
from the first two vectors. The three selected t vectors are 
then refined as described by Clegg (1984). The reflections 
which index well using the three vectors are found and if 
there are a sufficient number of these (e.g. at least half 
of the starting set of reflections) then the three selected t 
vectors are re-refined using only the fitting reflections. If 
the vectors form a left-handed set then they are converted 
into a right-handed set. During processing with ERLAI, an 
estimated maximum cell length was obtained by an iterative 
procedure. Typically, the largest number of spots fitting the 
computed cell was observed when CELL MAX is set to half 
of the longest unit-cell dimension. The half value reflects 
the computation algorithm used by ERLAI. In the region 
of rapid increase a series of estimated values were entered 
in 0.5 A increments until the lowest maximum cell length 
with the largest number of fitting spots was selected for 
cell determination. The cell and crystal orientation are then 
determined and output to a file in a suitable format for 
input to the LAUEGEN program. 

The programs EMATCH, EINDEX and ESIMUL make 
use of the Laue data module routines (Campbell, Clifton, 
Harding & Hao, 1995) from the Daresbury Laboratory Laue 
Software Suite. EMATCH predicts the reflection positions 
on an image and their energies given the current crystal 
and orientation parameters. For each observed reflection 
the program finds the predicted reflection which is closest 
to the observed position. It is treated as a match if the 
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distance between the observed and predicted position is 
less than a user-defined number of rasters (default = 2) and 
the fractional wavelength difference is less than another 
user-defined value (default 20%). The user may choose to 
include spots believed to be multiples if  desired. Using 
the matching spots a least-squares calculation determines 
the scaling factor to apply to the cell to give the best 
match between the predicted and experimentally determined 
energies. Details of the spots found and matched are listed 
and the rescaled cell values are output. EINDEX works in a 
similar fashion except that all the data in the list, rather than 
only those with low FOMs, are processed. In assigning a 
match only the distance between the predicted and observed 
position is used. ESIMUL generates the position and energy 
of spots in a Laue pattern based on an Laue data module 
file. The first 249 of these are written to a file in ERLAI 
input format. 

The program ESEP is an adaptation of the constrained 
multiple linear-regression procedures outlined in §§2.2 and 
2.3. The matrix manipulation was performed using pub- 
lished algorithms (Embree & Kimble, 1991). F and t tests 
performed by the program are based on published algo- 
rithms (Vetterling, Teukolsky, Press & Flannery, 1988). The 
program constructs the T matrix using the data produced 
by EINDEX for the number, type and increment of the 
harmonics. The regression performed by ESEP is forced 
to include the origin and negative coefficients are rejected. 
When the predicted number of harmonics is less than or 
equal to four, a backward elimination procedure is used 
to eliminate components with P values greater than 0.025. 
When the predicted number of components exceeds four, 
a forward inclusion procedure is used to iteratively select 
components whose coefficients have P values less than 
0.025. The program was verified against the SPSS program 
using data from selected spots. 

The program EAN was used to validate ERLAI. EAN 
operates on files in ERLAI input format and adds user- 
specified amounts of Gaussian noise to the xy positions or 
energies contained in the file. EAN is based on a published 
random-number generator (Vetterling, Teukolsky, Press & 
Flannery, 1988). 

3.3. Data analysis 

The procedure for obtaining unit cells from the measured 
energies and positions consisted of five steps. First, the 
positions and energies were measured. Second, the mea- 
sured positions and energies were submitted to the program 
ERLAI to obtain cell dimensions and orientation matrices. 
Third, the cell dimensions and orientation matrices were 
entered into LAUEGEN and both sets of parameters were 
refined. Fourth, the refined unit cell was submitted to 
TRACER to obtain a reduced cell. If necessary, the third 
and fourth steps were repeated until a good correspondence 
between the Laue pattern and the predicted pattern was 
obtained. Finally, predicted and observed energies were 
compared using the program EMATCH to ascertain whether 
the final cell needed rescaling. This last step is necessary 

measurements to Laue diffraction 

Table 1 
Detector parameters for the CID system. 

Parameter Value 

Crystal-to-detector distance 77.57 mm 
X center position 234 rasters 
Y center position 264 rasters 
X center offset 0.052 mm 
Y center offset 0.051 mm 
Detector twist 4.761 (× 0.01 °) 
Detector tilt 22.748 (x 0.01 °) 
Detector bulge --106.195 (x 0.01 °) 

because the position of spots is unaffected by rescaling a 
unit cell by a constant factor. If successive refinements and 
cell reduction are performed, the cell axis lengths begin 
to lose fidelity to the original data. Rescaling the cell 
following refinements and cell reduction guards against this 
and against the possibility of spurious cell-axis doubling 
during data reduction. Once a rescaled unit cell is found, 
the energy-resolved data list is indexed using EINDEX and 
separation of harmonics proceeds using ESEP. 

Simulated data were treated using a slightly different 
procedure. When image data were not available, simulations 
1 and 2, the output from ERLAI was submitted directly to 
TRACER. Simulation 3 was refined against real Laue data. 

4. Results 

4.1. Calibrations 

A sample of the MoOC14PC24H20 crystal was placed 
into the beam of the instrument and a standard Laue 
photograph was taken. The crystal orientation was found 
using LA UEGEN and the known cell parameters. A total of 
227 spots were used, refining to a final r.m.s, of 0.093 mm. 
The resulting parameters for the CID camera system are 
given in Table 1. 

All energy data for all crystals meeting the criteria for 
inclusion in unit-cell computations are plotted in Fig. 2 
against the predicted energy based on orientations found 
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Correspondence between predicted and measured energies for the 
spots used for the determination of unit cells. The line in the 
figure is for ideal 1:1 correspondence. 
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S i m u l a t i o n  N o .  

I n i t i a l  P a r a m e t e r s  o b t a i n e d  P a r a m e t e r s  o b t a i n e d  P a r a m e t e r s  o b t a i n e d  P a r a m e t e r s  o b t a i n e d  

p a r a m e t e r s  w i t h  0 %  a d d e d  n o i s e  w i t h  1% a d d e d  n o i s e  w i t h  2 %  a d d e d  n o i s e  w i t h  3 %  a d d e d  n o i s e  
(A, o) (,~, o) (,~, o) (~,, o) (~,, o) 

1 - C u b i c  a = 6 . 0 0  

2 - T r i c l i n i c  a = 1 0 . 0 0  

b = 2 7 . 1 1  

c = 9 . 0 0  

~ = 9 8 . 2 7  

i:t = 9 2 . 0 0  

-~ = 8 5 . 7 1  

3 - M o n o c l i n i c  a = 3 0 . 3 7  

b = 8 . 3 7  

c = 1 9 . 6 5  

.;t = 1 1 3 . 2 8  

a = 6 . 0 0  a = 5 . 9 9  

a = 1 0 . 0 0  a = 1 0 . 0 7  

b =  2 7 . 1 1  b =  2 6 . 3 0  

c = 9 . 0 0  c = 9 . 1 2  

o = 9 8 . 2 6  c~ = 9 8 . 7 9  

:3 = 9 2 . 0 0  ,3 = 9 0 . 1 3  

"~ = 8 5 . 7 0  ~ = 8 7 . 1 9  

a = 3 0 . 3 7  a = 2 9 . 2 0 *  

b = 8 . 3 7  b = 8 . 4 5  

c = 1 9 . 6 5  c = 1 9 . 5 3  

¢:t = 1 1 3 . 2  :3 = 1 0 8 . 7 7  

a = 6 . 0 2  a = 5 . 9 5  

a = 3 0 . 6 6  a = 3 0 . 5 7  

b = 8 . 4 2  b = 8 . 4 3  

c = 1 9 . 8 0  c =  1 9 . 7 9  

,3 = 1 1 3 . 4 1  .4 = 1 1 3 . 4 2  

* No re f inement  in LAUEGEN was  used  for this  de te rmina t ion .  

using the known cell parameters. Of the 783 spots measured 
in the Laue patterns, 207 (26.4%) met the criteria for 
inclusion. Fig. 2 includes data in which multiples were 
predicted to be present. From this data it appears that 
applying the inclusion criteria selects spots that are either 
singles or multiples in which only one harmonic dominates. 

4.1.1. Unit-cell determination - simulations. Table 2 
presents three simulations. Simulation 1 consisted of a 
cubic system with a 6/~ unit cell with all mis-setting 
angles set to zero. Simulation 2 consisted of a triclinic 
system viewed in a random orientation. Simulation 3 was 
an idealized case corresponding to C 1 9 H 3 1 M o B N 6 0 3 .  The 
simulation was run using the orientation of the known cell, 
allowing refinement in LAUEGEN. 

In all cases a combination of ERLAI and TRACER 
found the cell parameters of the simulated pattern without 
subsequent refinement in LAUEGEN. When 1% random 
noise was added to the idealized data a cell resembling 
the original cell was obtained. To obtain the cells reported 
after addition of 1% noise in Table 2 sometimes required 
increasing the fit-level parameters and the value of DEL 
used in TRACER. The agreement between the parameters 
used in the simulations and those recovered was degraded 
somewhat with the lower symmetry cells relative to the 
cubic cells. 

Without refinement in LAUEGEN it was difficult to 
recover the original cells when the noise level reached 
2%. With refinement, agreement within 1% of the original 
parameters was readily obtained, even after addition of 3% 
noise. 

4.1.2. Separation of harmonics - simulations. Three 
simulations of a harmonic consisting of four Poisson 
intensity components were performed. Initially, the 
intensity components are 1 x 102, 1 × 103, 1 × 1 0 4  

and 1 × 105, having standard deviations of 10, 31.6, 100 
and 316, respectively. The intensity of the spots is then 
modeled as each intensity component grows by an order 
of magnitude. This corresponds to the case of increasing 
the length of exposure by factors of ten. In each simulation 
the intensity components are summed after attenuation by 
a T matrix to obtain I. In the first simulation only two 

harmonics could be separated. As the magnitude of the 
intensity components increases, the number of harmonics 
which could be separated and the significance associated 
with those components also increases. As the intensity of 
the I vector increases, the ability to separate the intensity 
components in the spots also increases. When insufficient 
signal is present the weaker components become lost in the 
noise from those of high intensity. 

4.1.3. Unit-cell determinations - real data. A total of 
six crystals were examined. Each of these crystals have 
been previously characterized using monochromatic meth- 
ods. A summary of each crystal is presented in Table 3. 

The Laue pattern from NaC1 had 29 spots. Of these, ten 
spots had FOMs < 0.05 and were submitted to the program 
ERLAI. The pattern from KC1 had 21 spots. Twelve of 
these had FOMs < 0.05. Three orientations of the crystal of 
C 1 9 H 2 8 0 2  w e r e  viewed. Each orientation was submitted to 
energy analysis. Orientation 1 (0k0) had 102 spots. Of these, 
34 had FOMs < 0.05, and 50 were harmonics. Orientation 2 
(h00) had 109 spots with 20 having FOMs < 0.05, and 
50 were harmonics. Orientation 3 (00l) had 91 spots of 
which ten had FOMs < 0.05, and 48 were harmonics. A 
cell could not be refined for orientation 3. Examination of 
the ten spots meeting inclusion criteria showed that only 
one was a true monochromatic reflection; the remainder 
contained harmonic overlap. The values in Table 3 are for 
orientations 1 and 2. The pattern from M o O S 4 N a C 2 8 H 4 0  had 
121 spots. 26 had FOMs < 0.05, and 39 were harmonics. 
The pattern for C19H31MoBN603 had 122 spots with 51 
having FOMs < 0.05, and 39 were harmonics. The pattern 
from MoOClaPC24H20 had 188 spots of which 44 had 
FOMs < 0.05, and 38 were harmonics. 

4.1.4. Separation of harmonics. The NaC1 and KCI 
data sets contained no spots with harmonic overlap and 
were not analyzed further. Of the remaining data sets, 260 
spots contained harmonic overlap. The number of predicted 
spots contained in these harmonics ranged from 2 to 12. 
The maximum number of intensity components into which 
any given spot was separated was four. 

4.1.5. Assignment of systematic absences. Although 
the harmonics containing information for assigning screw 
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Table 3 
Summary data for cells used in this study. 

Crystal Space Known cel l  
C o m p o u n d  sys t em group parameters (,~,, ° )  Measured cel l  parameters (,~, o) 

Measured to 
k n o w n  cel l  axes  

NaCI*  C u b i c  Fm3m a = 5 .6402  a = 5 .60  -4- 0 .09 
KCII" C u b i c  Fm3m a = 6 .2929  ( I )  a = 6 .16 -t- 0.10:1: 
C I 9 H 2 8 0 2 §  O r t h o r h o m b i c  P212t21  a = 11.333 (3) a = 11.30 -t- 0 .23 

b = 12.813 (4) b = 12.72 -t- 0.25 
c = 11.290 (2) c = 11.22 -t- 0 .22 

M o O S 4 N a C 2 8 H 4 o ¶  M o n o c l i n i c  P21/n a = 8.911 (3) a = 8.87 -t- 0 .15 

b = 10.211 (6) b = 10.16 -4- 0 .17 
c = 15.414 ( I )  c = 15.38 -4- 0 .26  
3 = 103.42 (3) /3 = 103.58 

MoOClnPC24H20  Te t ragona l  P4/n a = 1 2 . 7 3 7 9 ( 4 )  a = 12.11 -4-0 .43 

b = 12.7379 (7) b = 12.11 -t- 0 .43 
c = 7.6871 (3) c = 7.31 4- 0 .26 

C I g H 3 1 M o B N 6 0 3 * *  M o n o c l i n i c  C2/c a = 30.365 (4) a = 30.1 -k- 1.0 

b = 8.373 (1) b = 8.29 -t- 0 .30  
c = 19.646 (2) c = 19.50 4- 0 .70  
.3 = 113.28 (1) ,~ = 113.25 

a = 11.62 -4- 0 .30  
b = 12.79 -t- 0 .33 
c = 11.38 + 0 .30  

0 .993 
0 .979  
1.01 
0 .995 
1.00 
0 .995 
0 .995 
0 .997 

0.951 

0.95 I 
0.991 
0 .990  
0 .992  

M e a n  = 0 .988 
Standard deviation = 0 .018  

* Data from Donnay & Ondik (1972), error assumed to be -t-I in final decimal place. "1" Data from Donnay & Ondik (1972). :1: The weak spots in the KCI pattern were 
not observed in the Laue patterns. The cell was determined as primitive cubic with a = 3.08 ,~. This has been doubled and reported in the table. § Data from Bruck 
(1997). ¶ Data from Bruck (1996). ** Data from Xiao et al. (1995). 

Table 4 
Assignment of systematic absences. 

Systemat ic  absence 
Type of  Reflection Range o f  Harmonics  Harmonic  found* Correct 

C o m p o u n d  symmetry  condit ion harmonics  found type 2n + 1 4n  + 1 a s s i g n m e n t  ? 

C I g H 3 1 M o B N 6 0 3  C e n t e r i n g  h + k = 2n 2 - 4  2, 4 (0,1,3)  Yes No  Yes 
C I 9 H 3 1 M o B N 6 0 3  Sc rew I = 2n 3 - 1 4  4, 8, 10 (0,0,1)  Yes~" N o t  Yes 
C I g H 3 1 M o B N r O 3  C e n t e r i n g  h + k = 2n 2 - 8  2, 6, 8 ( I , 0 ,2 )  Yes No  Yes 
C I 9 H 3 1 M o B N 6 0 3  C e n t e r i n g  h + k = 2n 2 - 4  2 (0 , / , 0 )  Yes No Yes 

Screw k = 2n 

C I 9 H 2 8 0 2  o r i en ta t ion  ! Sc rew k = 2n 1 -6  2, 4 (0 , / , 0 )  Yes No  Yes 
C I 9 H 2 8 0 2  o r i en ta t ion  1 Sc rew ! = 2n 2 - 1 0  4, 6 (0,0,1)  Yes No Yes 
C 19 H2802 orientation 2 Screw I = 2n 1 -6  2, 4 (0,0, i ) Yes No Yes 
C I 9 H 2 8 0 2  o r i en ta t ion  3 Screw k = 2n I - 7  2, 4 (0,1,0)  Yes No  Yes 
MoOCI4PC24H20 N o n e  N o n e  2 - 7  3, 4 (0,0, I ) No No  Yes 

* Systematic absence was assigned if either the F test or the stepwise regression method revealed an absence of the type indicated, t F test |or this set of harmonics 
could not be made. Number of coefficients exceeds available data. 

axes were of most interest, only a very small number of 
spots of this type were observed. As a result, spots predicted 
to have systematic absences due to unit-cell centering were 
also examined. These results are presented in Table 4. 

5. Discussion 

5.1. S i m u l a t i o n s  - un i t - ce i l  d e t e r m i n a t i o n  

The simulations indicate that the determination of unit- 
cell parameters using energy-resolved data is applicable to a 
wide range of cell sizes and types. It allows all three axes to 
be determined in any orientation. The previously described 
methods (Carr, Dodd & Harding, 1993; Carr, Cruickshank 
& Harding, 1992) fail under some rare conditions. With the 
exception that the energy measurements must be of suffi- 
cient quality, the unit-cell determination methods described 
here are general. The simulations indicate that the toler- 
ances required for the energy-resolved method are relatively 

loose. A 1% random error in energy measurements is easily 
tolerated and does not require refinement. If a refinement 
step is introduced, higher noise in the data may be present. 
These simulations indicate that a system capable of making 
energy-resolved measurements with less than 1% error 
should be suitable for most applications. More can be 
tolerated, but this represents a good design goal, regardless 
of the method by which the measurements are made. 

The results of  the simulation of non-random errors 
such as inaccurate determination of the crystal-to-detector 
distance or the x y  position of spots indicate that these sorts 
of errors propagate almost linearly into inaccuracies in cell 
parameters. Consideration of equation (1) suggests why this 
occurs. If there is an inaccuracy in the determination of the 
square-root term in the denominator, it will result in an error 
in the reciprocal space position of the spot position. The 
exact magnitude of the inaccuracy depends on the relative 
magnitudes in the errors of the measurements of the X, Y 
and Z coordinates. Under special conditions, such as the 
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case where X, Y and Z are each off by a factor of two, the 
inaccuracies will cancel out. 

5.2. Simulat ions - harmonic  separation 

The separation of the intensity components in a har- 
monically overlapped spot is limited by Poisson noise in 
the collected X-ray photons. The simulated harmonic sep- 
aration illustrates that while a limitation exists, separation 
of harmonics is favored by high beam intensity. Like the 
energy measurements from a foil-mask spectrometer system 
(Hanley, Dunphy & Denton, 1996), the ability to separate 
harmonics improves with the total number of X-ray photons 
measured. The theoretical limitation is imposed once the 
intensity level is set. 

As noted in §2.2 the error e in the multiple linear- 
regression model also may contain contributions from 
detector dark-current noise, read noise and source 1/f 

(flicker) noise. Read noise in the measurement of X-rays 
varies depending on the system of measurement used. Use 
of photographic film can result in a large amount of read 
noise during digitization of the image. In this context it 
is interesting to compare the U N S C R A M  procedure using 
stacked film (Helliwell et al., 1989) with the foil-mask 
spectrometer system. Film will have greater uncertainty 
associated with the digitization of the image; however, 
a unique feature of the U N S C R A M  approach is that the 
images are coincident in time, effectively eliminating 
source flicker noise. In contrast, the foil-mask spectrometer 
collects a series of images which are separated in time, 
making it sensitive to source instability during data 
collection. In environments where the X-ray source is not 
stable, corrections may be necessary. If it were possible 
to construct an image plate which, like film, was semi- 
transparent to X-rays and could be stacked, the U N S C R A M  

approach could become a method of choice for both energy 
determination and harmonic separation. It would also have 
the advantage of simultaneous acquisition of the multiple 
required images and, unlike film, could be calibrated once 
and reused repeatedly. A demonstration of the stacking of 
two image plates to record synchrotron protein crystal Laue 
patterns has been made by Helliwell (1991) in experimental 
trials at CHESS. 

5.3. Rea l  data se t s  - unit-ceil determination 

Analysis of the real data sets indicates that the foil-mask 
spectrometer gives energies that are suitable for unit-cell 
determination. In all cases moderate agreement with the 
known cells was obtained while requiring a minimum of 
operator intervention. A single procedure was suitable for 
all data sets suggesting that many steps could be automated. 
The combination of the programs ERLAI ,  L A U E G E N  and 
E M A T C H  analyze the data from energy-resolved measure- 
ments of Lane patterns efficiently. The cells obtained using 
these programs fit the data almost as well or better than 
the known cells. This indicates that the measurement of 
cell parameters using this method is presently limited by 
the quality of the energy measurements. This conclusion is 
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corroborated by the facility with which E R L A I  was able to 
obtain cells using simulated data with low noise. 

In comparison with previous work with Laue meth- 
ods the energy-resolved measurements result in unit-cell 
dimensions of similar quality. The demonstration on small 
unit cells provides a complement to previously described 
methods (Can, Dodd & Harding, 1993; Carr, Cruickshank 
& Harding, 1992). In addition, the previously described 
methods, which are based on the use of the gnomonic pro- 
jection, can be difficult to carry out in practice. The required 
triangles and zone lines are often not easily identifiable from 
the experimentally determined gnomonic projections. Using 
either method it is clear that measurements obtained using 
Laue methods are of a lower quality than those made with 
monochromatic methods. However, another order of mag- 
nitude increase in the quality of the energy measurements 
may be possible in the near future and the present level of 
accuracy is certainly within the range of utility. 

Additionally, this method may be a useful complement to 
previously described studies of very small crystals (Kariuki 
& Harding, 1995). The dimensions of the alkali halide 
crystals used here are in the range of many crystalline 
minerals. A single orientation was sufficient for the deter- 
mination of the cell dimensions. Moreover, laboratory-scale 
instrumentation was sufficient for the present work. 

5.4. Real data - harmonic separation 

The use of the foil-mask spectrometer allows for identifi- 
cation of the most important intensity components in a har- 
monically overlapped spot. Careful attention to the residual 
variance after extracting the most significant components 
allows an upper bound to be placed on the magnitude 
of the harmonics which are not significantly present. For 
example, if the significant components explain 99.9% of the 
variance, all remaining components combined can account 
for no more that 0.1%. This is of particular importance in 
light of the systematic loss of low-frequency components 
in refinements which do not use data from harmonically 
overlapped spots. Using the foil-mask spectrometer data, at 
least the most important of these will be identified. 

It is also of interest that in the data sets collected 
and analyzed here it was usually found that the num- 
ber of harmonics predicted by reciprocal space geometry 
alone exceeded the number separated. Usually, one or two 
intensity components dominate. Some of this is due to the 
theoretical limitation discussed previously. It will never 
be possible to separate reliably harmonics in which the 
intensity of a weak harmonic is much less than the Poisson 
noise of a dominant component using a system of absorbers. 

5.5. Sys t ema t i c  a b s e n c e s  

The data in Table 4 demonstrate that Laue data can be 
used for assignment of systematic absences corresponding 
to screw axes. There has been little speculation in the 
prior literature about how this type of analysis could be 
performed. In the data sets examined here the combination 
of the F test and stepwise regression correctly identified 
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the known systematic absences in all cases. In one case 
the number of harmonics predicted to be present, 12, 
exceeded the number of masks, 11. Under these conditions 
the F test cannot be performed and successful assignment 
of systematic absences appears to be quite sensitive to 
the scaling of the unit-cell dimensions. Two approaches 
can be used to minimize the possibility of mis-assignment 
of systematic absences in future systems. First, as with 
the energy measurements and the separation of harmonics, 
assignment of systematic absences will also be favored by 
an increase in the number of X-ray photons measured. 
Second, the foil-mask spectrometer system used here is 
still a first-generation instrument. Improvement of both the 
foil sets used and the detection system should be able 
to improve its performance substantially. Finally, in cases 
where a large number of harmonics may be present, there 
is a statistical multiple comparisons problem which may 
influence the outcome of the separation procedure. In cases 
which are statistically marginal, initial refinements using a 
space group of lower symmetry may be advisable to provide 
additional support for the procedures described here. 

6. C o n c l u s i o n s  

The use of energy-resolved measurements for the determi- 
nation of unit cells, separation of harmonics and assignment 
of systematic absences has been demonstrated. The toler- 
ances required for the measurement of energy are relatively 
loose; in simulations as much as 3% random error in energy 
still resulted in satisfactory measurements of the unit cell. 
When used with a foil-mask spectrometer, all aspects of the 
method improve with the intensity of the measured X-rays. 
The method complements methods previously described in 
the literature and is of similar quality. 

Copies of the programs ERLAI, EMATCH, 
EINDEX, ESIMUL, ESEP and EAN may be obtained 
through arrangements with the authors; contact 
qhanley @ mpc 186.mpibpc.gwdg.de. 
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