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The difference between ®rst-order and second-order coherence of synchrotron radiation is discussed

in relation to how they can be measured and how they affect the noise characteristics of future free-

electron lasers.
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1. De®nition of coherence of light

1.1. First-order coherence

First-order coherence is related to whether a light

source is regarded to be identical or not. Here, the identity

is related to the modes of electromagnetic waves. When

emitted light is always con®ned to a particular single mode,

this light has perfect ®rst-order coherence. This coherence

has nothing to do with the intensity (Bose degeneracy) of

light. Therefore, it is always possible to extract a part of

light with 100% ®rst-order coherence using a small colli-

mator by sacri®cing the intensity, which is often called van

Cittert Zernike's theorem. In fact, observation of light

through a collimator or a slit is to project a linear

combination of modes into another basis set of modes,

because the de®nition of a mode, and consequently the

de®nition of a basis set of modes, depends on the

boundary conditions of the electromagnetic wave, and the

existence of a collimator or a slit means a change of

boundary condition. The above projection is described by

a matrix. The matrix expressing the above projection due

to the observation is an example of a density matrix for a

pure state in quantum mechanics. For the general case,

including a mixed state, the degree of ®rst-order coherence

is written as

C1 � Tr��E�r; t��E�r; t��=hE�r; t��E�r; t�i; �1�
where the electric ®eld is de®ned by

E�r; t� � i�h�=2"0V�1=2 P
j

�
exp�i�kjrÿ !t��aj

ÿ exp�ÿi�kjrÿ !t��a�j
	
: �2�

aj and aj* are the annihilation and the creation operators

of a photon with mode j, and � is the density matrix. C1

actually gives the ®rst-order coherence within a certain

region of space±time coordinates. When we have a ®nite

region of r and t, (1) should be integrated in terms of r and

t. In a fermion system a similar expression holds for the

®rst-order coherence, where the many-body wave func-

tions should be used instead of the electric ®elds because

an eigenstate of a fermion system plays the role of a mode

of a boson system.

1.2. Second- and higher-order coherence

Second-order coherence of light is related to the ques-

tion of whether two photons have a tendency to come

together or to avoid each other. Because a photon is a

Bose particle, two photons have a tendency to come

together when they are in a thermal equilibrium state

described by Bose±Einstein statistics. Here it is convenient

to describe the light in terms of a linear combination of

photon-number eigenstates such as |0i, |1i, |2i etc. Each

photon-number state has a phase oscillation term,

exp(i
t), as the de Broglie oscillation. The phase differ-

ence can be de®ned only relatively. In fact, the relative

frequency of the phase oscillations between |ni and |mi
states is written as 
 = (n ÿ m)!, where ! is the classical

frequency of the electromagnetic wave.

It is well known that the appropriate superposition of

photon-number states gives the totally coherent state

(Glauber, 1963), called the `Glauber state', where the

expectation value of the electric ®eld has an exact single

frequency, !, which is identical to the classical frequency

of the electromagnetic wave. Under this condition the

number of photons observed ¯uctuates as described by the

Poisson distribution. The coherent state is a pure state

because it is composed of a linear combination of well

de®ned quantum states. It is seen from (1) that the matrix

element of the electric ®eld with a single mode does not

vanish only between |ni and |n � 1i number states, which is

the origin of the frequency !.

For a general superposition of number states the time

dependence of the expectation value of the electric ®eld is

also sinusoidal with frequency !, because it is still a pure

state, but the quantum `¯uctuation' of the number of

photons observed is more complicated according to the

coef®cients of the superposition. However, there is also an
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origin of true (not quantum) ¯uctuation due to random

modulation of the phases of the de Broglie oscillation,

which causes a mixed state. Therefore, to characterize both

¯uctuations of number of photons observed, a higher-

order observation by correlation measurement of more

than two photons is required. The second-order coherence

is de®ned as

C2 � Tr��E�r1; t1��E�r2; t2��E�r2; t2�E�r1; t1��
=hE�r1; t1��E�r1; t1�ihE�r2; t2��E�r2; t2�i: �3�

This has the form of the two-photon correlation. We need

two photon detectors to measure the second-order

coherence, where integration with respect to r1, t1, r2 and t2
should be performed for a ®nite detection area of the

detectors. Usually the above measurement is performed

for spatial separation X � |r1 ÿ r2| >> |r1|, and |r2|, which is

the case for the famous experiment by Hanbury-Brown

and Twiss. Third- or higher-order coherence can be de®ned

in a similar way as (3). It is to be emphasized that lower-

order coherence is a necessary but not suf®cient condition

of higher-order coherence.

Fig. 1 shows three typical cases of second-order coher-

ence with parameter X, where A, B and C correspond to

totally coherent radiation, thermal radiation and an

example of squeezed radiation. It is well known that the

probability of coincidence of n photons is n! times larger in

thermal radiation than in totally coherent radiation such as

lasers. It can be seen from Fig. 1 that the probability for

thermal radiation with X = 0 is twice as large as that of

totally coherent radiation. It should be noted that the

totally coherent radiation has a ¯at response for any

higher-order coincidence.

A partially squeezed state, such as case C, is a state

where two photons avoid being in the same state, like

fermions. This state can be achieved only through the

interaction of radiation with a fermion system, such as

by ¯uorescence or non-linear absorption. Strictly

speaking, it is useless to de®ne the second- or higher-

order coherence of a fermion system because a fermion

does not have any chance of occupying the same state

as another fermion due to Pauli's exclusion principle.

Therefore, second- or higher-order coherence could be

largely changed when photons interact with a fermion

system. There is, however, an apparent exception, in

which higher-order coherence seems to be de®ned even

for a fermion system, where quasi-Bosons are formed

by combination of fermions.

2. Measurement of coherence of synchrotron
radiation

2.1. First-order coherence

A Young's interferometer was constructed to measure

the transverse spatial coherence of synchrotron radiation

in the soft X-ray region. The apparatus included a grating

monochromator to keep the temporal coherence as good

as possible. Using this apparatus, the ®rst-order spatial

coherence of synchrotron radiation was measured at

BL12A and BL28A of the Photon Factory, KEK. Fig. 2

shows examples of the Young's interference pattern

observed, from which the visibility corresponding to the

®rst-order coherence is clearly de®ned. Because the

spacing between the two slits and the wavelength can be

changed as parameters, we can estimate the emittance of

the stored electron beam by observing the turning point at

which the emittance of light is equal to that of the stored

Figure 1
Three typical cases of two-photon correlation. A is the case of
thermal radiation, where the peak at X = 0 is twice as large as
case B, which is for totally coherent radiation. C is the case for a
partially squeezed state.

Figure 2
Examples of the Young's interference patterns of synchrotron
radiation. The photon energy is ®xed at 180 eV, while the spacing
of the double slit is changed from 30 to 200 mm.
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beam. This is a by-product of the measurement and it turns

out that the apparatus has the ability to measure emit-

tances as low as 0.1 nm rad. A detailed description is

presented elsewhere in these proceedings (Takayama et al.,

1998).

2.2. Second-order coherence

The second-order coherence for a stationary light source

was ®rst measured by Hanbury-Brown and Twiss by two-

photon coincidence (Hanbury-Brown & Twiss, 1956). They

adopted a very elaborate method of extracting the two-

photon correlation by photoelectric measurement. For

synchrotron radiation, however, there is a dif®cult problem

due to the time structure of the stored beam caused by

bunch formation. In fact, when we have two photon

detectors, and one detector detects photons with a high

probability due to the peak intensity of a bunch, then the

other detector also has a high probability of detecting

photons because the latter also sees the same bunch

structure. This is not a true correlation but an accidental or

trivial correlation. This is regarded as accidental because it

could happen even when there is no ®rst-order coherence.

In order to ®nd a way of extracting only the true

correlation we consider the effect of the time structure of

the light source. The correlation, including both true and

accidental, measured by the correlator electronics with DC

cut ®lters is calculated as

h�N1�1� f1� ÿ hN1i��N2�1� f2� ÿ hN2i�i
� hN1N2i�1� f1 � f2 � f1 f2� ÿ hN1ihN2i� f1 � f2 � 1�
� �hN1N2i ÿ hN1ihN2i��1� f1 � f2 � f1 f2�
� hN1ihN2if1 f2; �4�

where N1 and N2 are the numbers of photons detected by

two detectors, D1 and D2, respectively, and h . . . i means

the statistical average. The time structures, f1 and f2, of the

stored beam observed by the two detectors are so de®ned

by

f1 � f1�t�; f2 � f2�t�; �5�
where h f1i = h f2i = 0, that the constant terms normalized

to unity are subtracted from the time structures in (4).

Apparently, f1 and f2 are periodic functions of t, at least

with a period of the revolution frequency of the stored

beam. Actually, f1 and f2 have very high frequency

components associated with the bunch length.

If the light source is stationary, and thus f1 and f2 vanish,

it is relatively easy to measure the correlation. However,

the dif®culty for a non-stationary light source is that the

®rst term of the third line of (4) is much smaller than the

second term, though we want to abstract the true corre-

lation Ct included in the ®rst term as

Ct � hN1ihN2i�C2 ÿ 1� � hN1N2i ÿ hN1ihN2i: �6�
In (6), C2 ÿ 1 is roughly equal to nB�/Tm, where nB is the

Bose degeneracy of the light source, � is the coherence

time of a photon determined by the monochromator

resolution, and Tm is the response time of the detectors.

Usually, � is much smaller than Tm and nB is much smaller

than unity, which gives C2 ÿ 1 of the order of 10ÿ4 in the

case of an undulator beamline BL28A of the Photon

Factory.

Therefore, we have designed two methods of over-

coming the above dif®culty. One is to modulate � by

modulating the width of the entrance slit of the mono-

chromator, inducing a change in the spectral resolution.

Then we can extract the true correlation using lock-in

ampli®ers. The other is to use special notch ®lters in the

electronics after the two detectors to suppress the effect of

f1 and f2 in (4) by sacri®cing the signal intensity. If the

suppressed Fourier components are 10ÿ4 times smaller

than the case without the notch ®lters, then we can regard

the light source as a `stationary' source. A detailed

description will be presented elsewhere (Takayama et al.,

1998).

3. How the second-order coherence of synchrotron
radiation appears

For the general description of the photon statistics,

including the squeezed state, a quantum mechanical

description of the system is necessary to satisfy the

uncertainty principle in measuring photon occupation

numbers and their phases. However, there are two extreme

cases, totally coherent radiation and thermal radiation,

which can be described by classical electromagnetism with

a couple of assumptions for photons. The assumptions are

as follows.

(i) Each mode of electromagnetic wave acts as a `vessel'

in which any number of identical photons can be included.

(ii) The number of photons is proportional to the square

of the amplitude of the electromagnetic wave.

We start by de®ning the Gaussian wave packet in ! ÿ t

space, where the standard deviations �! and �t satisfy the

uncertainty condition, �!�t = 1/2. This wave packet is

regarded as a single mode if the other remaining part in

the four-dimensional phase space is in a single mode. Thus,

the wave packet is regarded as occupying the minimum

volume in six-dimensional phase space. Obviously the

above wave packet is not a simulation of a photon but a

vessel for photons.

First, the radiation emitted by a single electron running

on a de®nite orbit is regarded as totally coherent because

the phases of the radiated electromagnetic wave have no

ambiguity or statistical ¯uctuations. This means that when

the electromagnetic wave is decomposed into many

Gaussian wave packets, their phase relation is uniquely

determined. In this situation the two-photon correlation

shows a ¯at response against any of the six parameters

de®ning the phase volume, as indicated by B in Fig. 1. This

is just due to random coincidence obtained when a

coherent beam is split into two beams on which the
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correlation is measured. Thus, the time sequence of

incoming photons obeys the Poisson distribution and the

corresponding ¯uctuation is often called the `particle

noise'.

Next, consider an ensemble of electrons which `inde-

pendently' radiate the totally coherent electromagnetic

wave. Here we assume that the phases of the electro-

magnetic waves radiated by different electrons are random

and these electromagnetic waves interfere with each other.

The important thing is that as a result of interference the

photon occupation number, n, can be changed, because n

is proportional to the square of the amplitude of the

electromagnetic wave. This means that two sets of radia-

tion emitted by two electrons are not independent but

correlated. Suppose two identical wave packets, each

having n photons, are separated by a time interval t. When

t << �t and these waves interfere positively, the resultant

photon number is 4n, which is twice as large as the original

total photon number 2n. However, when the interference

is negative, the photon number almost vanishes. Therefore,

when positive and negative interference occurs randomly,

it gives 100% ¯uctuation in the number of photons, which

is the main feature of thermal radiation and is often called

the `wave noise'. When � increases, the interference

becomes more and more incomplete and converges to the

¯at background with t >> �t. Consequently, the Poisson-

like time sequence of the wave packets emitted by many

electrons gives the two-photon correlation as indicated by

A in Fig. 1.

The above discussion leads to two important conclu-

sions.

(i) The wave packets described above never simulate the

corresponding photons because they are not quantum

mechanical wave functions. On the contrary, when the

phases of the wave packets do not ¯uctuate at all, the

photon statistics obey the Poisson distribution, and when

the former obeys the Poisson distribution, the latter obeys

the Gaussian distribution with a Poisson-like background.

(ii) Noise consideration for future FELs is important

when their operation is not perfect. Obviously the

`particle' noise for coherent radiation is equal to n1/2 while

the `wave' noise for thermal radiation is n. When we

consider the case where spontaneous emission with n

photons is ampli®ed with gain g, the `particle' noise and

the `wave' noise are of the order of (gn)1/2 and n,

respectively. In order to have the condition where the

thermal noise is negligible, we should satisfy the condition

g >> n1/2, because otherwise radiation due to imperfect

FELs would still be noisy compared with totally coherent

radiation.
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