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A numerical technique for deriving a conversion factor between the output pixel values from a

scanned imaging plate and the actual incident X-ray photon ¯ux is proposed. The technique requires

no external calibration by independent detectors, but uses the statistical information inherent in the

image. As a test case, this technique was applied to a Fuji BAS2000 imaging-plate scanner. The

calculation showed that, at 1.2 AÊ , 163 (8) photons pixelÿ1 were required to give one output unit of

pixel intensity on an image scanned 20 min after exposure. This conversion factor compared

favourably with the independently measured conversion factor of 171.1 (5) photons pixelÿ1 (output

unit)ÿ1 obtained from a high-quantum-ef®ciency Ge detector.
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1. Introduction

Over the last ten years the imaging plate (IP) has become

an important tool for X-ray data collection. It provides the

experimenter with all the advantages of photographic ®lm

such as unlimited count rate and two-dimensional

coverage. In addition to these bene®ts, the IP has a high

quantum ef®ciency at hard X-ray energies, a large dynamic

range, and is reusable. These qualities have made IPs

popular when measuring X-ray intensities simultaneously

over a comparatively large area of reciprocal space, espe-

cially in protein crystal diffraction and small-angle scat-

tering experiments. More recently, the high count rate and

sensitivity of IPs have been used to obtain short-exposure-

time `snap shots' of X-ray scattering patterns from samples

undergoing physical or chemical changes (Amemiya et al.,

1988).

IPs use a photostimulable phosphor such as

BaF(Br,I):Eu2+ where electrons excited from Eu2+ ions by

an incident X-ray are trapped in a metastable state by Brÿ

and Fÿ vacancies, forming temporary `colour centres'

(Sonoda et al., 1983). A trapped electron can be liberated

from its metastable state via photostimulated luminescence

(PSL). A latent image of colour centres generated from

incident X-rays can be scanned with a focused red laser

beam (� ' 632.8 nm), producing blue (� ' 390 nm) PSL

photons which can then be detected with a photomultiplier

tube (PMT). In this way, a virtual image of incident X-rays

can be read, digitized and stored as an array of pixel

intensities. Typically, an IP reader will be able to scan to a

pixel size of about 100 mm. The spatial resolution is limited

primarily by the scatter of red laser light within the IP

matrix, which causes neighbouring pixels to partially

¯uoresce, adding some of their measurable intensity to the

pixel being recorded. Recent developments have included

the use of blue dyes in the IP matrix to minimize the laser

light scatter and allow resolvable pixel sizes as small as

25 mm (Amemiya, 1995).

2. Measuring absolute intensity from imaging
plates

Although the spatial resolution of an IP is adequate for a

wide variety of X-ray scattering experiments (especially

when using long sample-to-detector distances), some

attention must be given to the accuracy and precision of the

intensity values assigned to each pixel. The temporary

colour centres decay spontaneously due to thermal

relaxation, causing the latent image to fade with time after

exposure (Mori et al., 1994). The fading rate is independent

of incident photon ¯ux and energy (Amemiya, 1995) but

changes with temperature and IP composition. In practice,

although the fading rate can be well characterized for a

given temperature and phosphor type, it is often dif®cult to

scan IPs at a perfectly reproducible time. In addition to

fading effects, individual scanners can differ in their cali-

bration of output signal versus incident photon ¯ux. This

can happen even between scanners of identical make and

model due to ageing of the scanning laser tube, for

example.

One way of relating the scanner output to absolute

incident X-ray intensity, without requiring external cali-

bration and perfectly reproduced time intervals, would be

to use the statistical information inherent in the scanned

image. As the fading rate is independent of incident photon

¯ux, the signal-to-noise ratio within an IP image should, to

a good approximation, remain constant for at least a few

hours between exposure and scanning.



On an ideal IP, where the pixel intensity output value,

Iout, is exactly proportional (with no instrumental or digi-

tization noise) to an average incident irradiation of

q0 photons pixelÿ1, the only ¯uctuation in neighbouring

pixel intensities will be due to spatial variations of q0 across

the IP. If the incident photons came from some scattering

event that obeyed Poisson statistics but was otherwise

spatially uniform, the standard deviation of the ¯uctuations

would be proportional to q
1=2
0 . For such an IP the absolute

intensity could be calculated from the output pixel value,

Iout, and the standard deviation of values across the pixels,

�out, using the equation

q0 � �Iout=�out�2: �1�
In reality, although there is good linearity between the

average incident X-ray ¯ux and scanned pixel values

(Miyahara et al., 1986), every process element in the

exposure and scanning of an IP is stochastic, and has either

a binomial or Poisson nature (Amemiya et al., 1988).

Binomial processes include the absorption of the photons

by the IP, the photostimulation of the colour centres, the

collection of the blue photons and the emission of photo-

electrons from the PMT photocathode. Poisson processes

include the creation of the colour centres, and each

successive stage of the cascade ampli®cation of photo-

electrons in the PMT. In addition to the necessary

stochastic processes, there are also other unwanted

elements that affect the ¯uctuation of measured intensity

from pixel to pixel. These include creation of colour centres

from cosmic rays, non-uniformity in IP composition,

incomplete photostimulation of colour centres, non-

uniformity in PSL collection, ¯uctuations of laser power

and dark-current noise in the PMT. As a result, any attempt

to model pixel variation against absolute incident X-ray

intensity must allow for these effects.

Relating the actual pixel noise to the Poisson or `shot'

noise inherent in the input signal is an established tech-

nique for characterizing the performance of CCD imaging

chips (Blouke et al., 1983). For CCDs the noise versus signal

curve has three regions: the `read-noise' region at the low-

signal end which de®nes the minimum `dark-current' noise,

the middle `shot-noise' region dominated by the Poisson

noise inherent in the input signal, and the high-signal

region where small differences in sensitivity between indi-

vidual pixels dominate. Although the detection processes at

work in an imaging-plate system are quite different, some

analogies can be drawn with CCDs when it comes to noise

generation. An example of this is the `dark current' of the

PM tube in an IP system which behaves similarly to the

`read-noise' of a CCD chip, providing a baseline noise in

the system. In IP scanners, systematic errors resulting from

¯uctuations in laser power, supply voltages and scanning

geometries result in variations of effective detection ef®-

ciency from one pixel to another. This dominates the noise

production at higher signal levels, not unlike the pixel

sensitivity variations seen in CCDs. It should be noted,

however, that while pixel-to-pixel differences in detection

ef®ciency can be compensated for quite effectively in CCD

images, this is only partially possible for IP images. IP pixel

variations due to conditions that remain constant from one

scanned IP to another (such as the scanning geometry) can

be at least partially corrected for (Ito & Amemiya, 1991);

however, this is not possible for transient variations in

voltage and laser power ¯uctuations as well as inhomo-

geneities in IP composition.

3. Approximating the statistics of imaging-plate
processes

For q0 incident monochromatic photons on one IP pixel,

the total number of photoelectrons, qT, that eventually

enter the ®nal electronic ampli®er (whose noise is negli-

gible compared with ¯uctuations due to other elements in

the system) can be written as (Amemiya et al., 1988)

qT � K�4�3�2�1�1q0; �2�
where �1 is the mean number of colour centres produced by

the absorption of one X-ray photon (a Poisson stochastic

elementary process) and �j is the ef®ciency with which the

jth binomial stochastic elementary process operates. The

cascade ampli®cation of photoelectrons is represented by K

which, although made up of individual Poisson elementary

processes, cannot be assumed to follow a Poisson distri-

bution in its entirety. The total charge, qT, results in a signal

which is digitized with a ®nite resolution to a pixel value in

a data memory array.

It can be shown (Akimov, 1965) that if a primary quanta

(such as an absorbed X-ray) results in an average of �
secondary quanta, then for n primary quanta the relative

variance (RV) in the total number of secondary quanta is

given by

RV�nk� � �2
n�=�n��

2 � �2
n=n2 � �2

�=n�2: �3�
The second term in this equation gives the amount of

variance that is added to the variance of the input signal as

a result of the cascade ampli®cation. For energies above

5 keV, between 150 (Amemiya et al., 1988) and 400

(Amemiya, 1995) colour centres will be produced by a

single absorbed X-ray. This means that for the �1 process

the cascade contribution to the noise will be negligible

compared with the Gaussian noise resulting from inho-

mogeneities in colour-centre distribution and X-ray

absorption. A similar argument can be applied to the

photomultiplier stage where again the second term in (3) is

made small, this time because n (the number of incident

photoelectrons) is relatively large (Amemiya, 1995).

By justi®ably neglecting the non-Gaussian noise gener-

ated by the cascade processes in the IP system we can

approximate every stochastic process as a random variable

with a Gaussian distribution. This way, although we have no

detailed information regarding each separate process, it

should be possible to model the ¯uctuations of output

signal as a function of q0 given actual intensity versus signal

¯uctuation data for a particular image. Using equation (2)
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we can write, for the linearized output per pixel, Iout, in PSL

units,

Iout � K�4�3�2�1�1q0 � Aq0; �4�
where  is the scalar multiplier that converts the output

current of the PMT into a linear pixel intensity value, and A

represents the �1, K and �i factors. For N independent

random variables �x1 : : : xN� with standard deviations

��1 : : : �N�, the product

f �x1 : : : xN� �
YN

i�1

xi

will have a standard deviation given by

�2
f � �df=dx1�2�2

1 � : : :� �df=dxN�2�2
N: �5�

Using equations (4) and (5) and assuming q0 obeys Poisson

statistics (i.e. �2
0 = q0), we obtain

�2
out � 2q0K2�2

4�
2
3�

2
2�

2
1�

2
1 � 2q2

0��2
K�

2
4�

2
3�

2
2�

2
1�

2
1 � : : : �

� 2q0A2 � 2q2
0B; �6�

where B � �2
K��

can be thought of as the combined variance

of all the stochastic processes linking one incident X-ray

photon to a number of photoelectron pulses from the PMT.

If we assume that the standard deviation of each binomial

process will scale linearly with q0, then A and B become

parameters that we can ®t to actual IP data. Background

noise caused by such random processes as power supply

¯uctuations, cosmic rays and dark currents can be repre-

sented by Gaussian distributions with ®xed standard

deviations to give the following numerical model,

Iout '  �q0A2 � q2
0B�1=2G1 � cG2

� �
; �7�

where G1 and G2 are independently generated sets of

normally distributed random numbers with a mean of zero

and a standard deviation of unity. The G1 term represents

the noise resulting from the ampli®cation processes while

the G2 term represents the baseline noise sources such as

PMT dark current.

Using a `Monte Carlo'-style approach when dealing with

noise generation in imaging devices is not new. In work

performed more than a decade ago, the phenomena of

charge-splitting between pixels in CCD chips was modelled

using random number simulations (Janesick et al., 1987)

where the trajectories of individual photoelectrons were

followed through the bulk of a CCD pixel array. Our work

has a qualitative similarity to these models in that the

progress of quanta are traced using random number

generation. Our model differs in that it follows individual

quanta through a conceptual space made of independent

stochastic processes rather than some real physical space.

Other ways of characterizing imaging devices from the

image statistics have been reported more recently

(Dufresne et al., 1995; Zannella & Zannoni, 1996). These

methods, however, concentrate more on detector perfor-

mance rather than calibration.

Of considerable importance when considering the

statistical ¯uctuation of pixel values is the point spread

function (PSF) in two dimensions. In a CCD chip, a narrow

PSF pro®le results in a high pixel resolution. Unfortunately,

this has to be traded against ef®ciency of charge transfer

(Allinson, 1989) which will often compromise the detective

quantum ef®ciency (see x10) of each pixel. A similar trade-

off also holds true for imaging-plate systems, where effec-

tive collection of PSL entails a certain amount of cross-talk

between pixels, depending on the scanning optics and

scatter of the laser (Amemiya et al., 1988). This cross-talk

will have the effect of smoothing out ¯uctuations between

neighbouring pixels. The smoothing process can be simu-

lated using some pro®le P to approximate the PSF which,

when convoluted with G1, effectively reduces its standard

deviation, giving

Iout '  �q0A2 � q2
0B�1=2G1 
 P� cG2

� �
: �8�

As the degree of cross-talk between pixels is represented

by the width of the PSF, the choice of a realistic pro®le for

P is crucial for a successful numerical model.

4. Digitization of pixel values

Assuming that the logarithmic ampli®er is effectively

noiseless with respect to all the other processes taking place

in the scanner, the actual binary integer value obtained for

each pixel as a result of digitization in the BAS2000 IP

scanner is given by the binary pixel value, Ibin, where

Ibin � Integer �2N=L� log10�SIout=4000� � L=2
� �� 	

; �9�
where `Integerf : : : g' means the integer part of f : : : g, S is

the scanning sensitivity, L is the scanning latitude and N is

the number of bits used for digitization (8 or 10). In the

BAS2000 scanner, the integer range of Ibin is 0±255 for 8-bit

resolution or 0±1023 for 10-bit resolution. It should be

noted that this equation shows how the scanning para-

meters affect the digitization for the BAS2000 scanner, and

would not necessarily hold true for other scanners. One

Figure 1
Experimental con®guration, showing how the IP is masked from
the air scatter by a stainless-steel Weissenberg screen. Uniform
exposure in each strip is achieved by translating the IP at a
uniform rate past the slit.
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virtue of this particular conversion formula is that Iout = 1.0

always represents the middle of a digitization range de®ned

by S and L.

If we momentarily disregard the `integer part of'

operator in equation (9) and allow the function to vary

continuously, its gradient can be written

dIout=dIbin � Iout�L=2N� ln 10: �10�
Using this gradient we can determine that the resolution of

digitization should give rise to an additional component of

random noise with a variance �2
dig given by

�2
dig �

R1=2

0

�dIout=dIbin�I0
� �2

dI0 � �1=12��dIout=dIbin�2; �11�

and hence a standard deviation, �dig, given by

�dig � Iout �12�ÿ1=2�L=2N� ln 10
� � / Iout: �12�

This noise term, like the B term in equation (6), increases

linearly with the output signal, and could be easily incor-

porated as an explicit term in the model. In this work,

however, the digitization noise was simulated numerically

by using equation (9) to convert intensities generated from

equation (8) to rounded binary logarithmic integers, and

then back again to linear ¯oating-point values. This allowed

us to model both the digitization noise and the effect of

approaching the extremes of the digitization range.

5. Experimental method ± collection of imaging-
plate data

To obtain IPs with suf®ciently large regions of uniform

irradiation, the Australian diffractometer (Barnea et al.,

1992) was used with a Weissenberg screen and a transla-

table IP holder as shown in Fig. 1. Air scatter was used with

a monochromatic (� = 1.2 AÊ ) X-ray beam to give a range of

incident X-ray intensities most intense at 2� = 0, decreasing

with increasing 2�. Fig. 2 shows an IP image with three

strips of exposure. Along the 2� (long axis) direction of

each strip the degree of exposure smoothly varied while the

irradiation perpendicular to this was nominally uniform

within each strip. A wavelength of 1.2 AÊ was chosen

because it lay in the energy region below the Br K edge

(1.04 AÊ ) where the Fuji IP shows its greatest sensitivity.

Uniformity of exposure was achieved by translating the

IP past the 5 mm Weissenberg slit in steps of 0.1 mm. At

each step, the IP was held for a ®xed number of monitor

counts to compensate for the effect of intensity decay in the

synchrotron beam. Each of the three strips on the IP

represented a different number of monitor counts per

translation step, in order to cover as wide a range of inte-

grated irradiation intensities as possible. After 20 min

exposure, each plate was scanned. As any model of pixel

value versus incident X-ray intensity would have to be valid

for an arbitrary set of scanning parameters, a number of IPs

were exposed and scanned with a variety of sensitivity,

latitude and bit resolution (S, L and N) combinations on

the Fuji BAS2000 scanner.

6. Data extraction from imaging plates

Each exposed strip in Fig. 2 had a width in the translation

direction of 400 pixels and a length in the 2� direction of

4000 pixels. To avoid edge effects, a width of 50 pixels was

discarded from the top and bottom edges of each strip,

reducing the effective strip width to 300 pixels in the

translation direction. Prior to averaging and statistical

analysis, every pixel on the IP was converted from a binary

integer to a linear ¯oating-point number using the inverse

of equation (9).

After conversion to linear ¯oating-point numbers, each

strip yielded 4000 columns of 300 pixel intensity values

from which 4000 means and standard deviations were

calculated. In this way, each IP produced a set of 12000

pixel intensity versus intensity ¯uctuation data points. Fig. 3

shows �I/I (also known as the relative standard deviation or

RSD) plotted against intensity I from one IP data set. The

straight dashed line represents the theoretical RSD of an

ideal detector described by equation (1). Note that the

`ideal detector' was given an arbitrary scaling factor of

1 PSL unit per 300 incident X-rays.

An additional problem arose from the fact that although

the initial irradiation of each strip was transversely

uniform, the length of time between exposure and scanning

varied continuously across each strip in the translation

direction. This resulted in a discernible slope on what

should have otherwise been a ¯at intensity pro®le. To

prevent this from erroneously increasing the measured

standard deviation of pixel intensities, each column pro®le

was ¯attened with a second-order polynomial, preserving

the higher-frequency statistical noise.

7. Determining the PSF of the imaging plate and
scanner

It is theoretically possible to effectively determine what the

`real' pixel variances would be without the smoothing effect

of a PSF using spatial autocorrelation functions. This has

been performed successfully for real CCD data (Dufresne

Figure 2
IP showing irradiated strips of smoothly varying intensity in the
long axis and uniform intensity across the width of each strip.
Irradiation wavelength = 1.2 AÊ .

1378 Calculation of absolute intensities from X-ray imaging plates



et al., 1995), and eliminates the need to separately deter-

mine the PSF. Unfortunately, in order to obtain good

statistics this method requires thousands of evenly irra-

diated pixels, impractical for IPs where large pixel sizes and

image fading make the homogeneous irradiation of many

pixels relatively dif®cult. Thus, for our purposes, an inde-

pendent determination of the PSF was necessary.

To calculate the PSF in the direction of pixel averaging, a

single IP was exposed with a sharp shadow produced by a

straight edge of lead in contact with the IP, running along

the 2� direction. The Lorentzian pro®le which gave the best

approximation of the resulting edge image when convo-

luted with a step function was taken to be the PSF in the

pixel-averaging direction (Fig. 4). From this analysis the

FWHM of the Lorentzian of best ®t was found to be

1.26 (2) pixels. Direct measurement of the PSF pro®le by

previous authors (Bourgeois et al., 1994) gave an experi-

mental FWHM of 1.42 (5) pixels and a FW@0.1% of

11.1 (5) pixels at 1.2 AÊ . This implied that our Lorentzian

pro®le approximation to the true PSF was reasonable.

To check further this estimation of the PSF width, a

Fourier transform was calculated for each column of pixel

intensities and averaged over all the columns in a strip

(Fig. 5). If the pixel intensity ¯uctuations in each column

were truly random, the average normalized power spec-

trum would be ¯at as shown by the dashed line in Fig. 5.

Convoluting pseudo-randomly generated pixel intensities

with Lorentzian PSFs of different width would result in

transform pro®les as shown by the solid curves. In general,

the experimental data deviates markedly from all of these

curves but, at the highest spatial frequency of 0.5 pixelÿ1,

shows reasonable agreement with the theoretical curve

derived from a 1.26 pixel FWHM Lorentzian. As the

primary purpose of the Lorentzian in our model was to

simulate the suppression of the higher-frequency pixel

¯uctuations, this was seen as further con®rmation that an

appropriate PSF had been chosen for the numerical model.

An explanation for the shape of the curve derived from the

experimental data may lie in the algorithm used by the

BAS2000 scanner to compensate for optical distortions

caused by the scanning geometry (Ito & Amemiya, 1991).

8. Fitting of numerical model parameters

To reduce computing time, all sets of intensity versus

intensity ¯uctuation data were condensed from 2000

separate points to 100 points with associated error bars.

Each of the condensed points was an average of all the

points lying within its proximity on the intensity axis. Fig. 3

shows a high density of data points in the low-intensity

region which become scarcer at higher values of pixel

intensity. As a result, the condensed data points at low

values of pixel intensity could represent an average of

hundreds of measured data points while those located

further along the intensity axis may only represent a few.

Thus the error bar associated with each condensed data

point re¯ects not only the scatter of all the averaged points

but the number of points in each average.

The numerical ®tting was achieved using a program

written in the image-processing language IDL (Research

Systems Inc., 1995). Equations (6), (8) and (9) formed the

basis of the program, where 300 element vectors of pseudo-

randomly generated normally distributed ¯oating-point

numbers were used for G1 and G2. Two new vectors for G1

and G2 were generated at every intensity for which the

model was calculated. Each sub-plot in Fig. 6 shows the

experimental values of �I/I (RSD) versus I for a different

strip-exposed IP using different BAS2000 scanning para-

meters (S, L and N). The solid lines show the RSD versus I

relationships calculated from the numerical model using

the four ®tted parameters. The dashed line in each sub-plot

shows the behaviour of the same ideal detector shown in

Fig. 3.

In this model the A and  parameters are highly corre-

lated, so in order for the re®nement to proceed, a number

of values of A were chosen in the range 100±500 while the

, B and C parameters were allowed to vary for a best ®t.

Figure 3
Plot of pixel RSD versus pixel intensity for one scanned IP using a
BAS2000 scanner with S = 4000, L = 3 and N = 8. Dashed line
shows RSD versus I for an `idealized' IP system with a scaling
factor of 300 X-ray photons per PSL unit.

Figure 4
(a) Lorentzian PSF (FWHM = 1.26 pixels) convoluted with step
function (b) to give a best ®t (c) of the experimental edge pro®le
shown by crosses. Curve (d) shows the error between data and
pro®le of best ®t.

David J. Cookson 1379



Table 1 shows these values and the associated R-factor for

each ®t. It is important to stress that for the purposes of this

investigation the ®tted value for A was not as important as

the product A. In this work, A was chosen to be 300

(based on the R value) while the value of A which gave

the best ®t to experimental data was found to be

0.009 (1) PSL units per photon. This number can be

thought of as the linear conversion factor between incident

X-ray photons and PSL output immediately after exposure.

As there will always be some image fading before the IP

can be scanned, it is necessary to use the curves shown in

Fig. 6 to convert an observed RSD from the IP image to an

equivalent `immediately scanned' or `t = 0' PSL value. The

method for obtaining an absolute X-ray calibration on a

previously scanned IP can be summarized as follows:

(a) measure the average RSD in some `evenly' exposed

region on the IP image; (b) convert the measured RSD to a

`t = 0' PSL value using the ®tted RSD versus PSL curves;

(c) divide the `t = 0' PSL value by the ®tted value of A to

give the `true' X-ray count for that region; (d) scale the

entire image to the analyzed region, assuming a linear IP

response.

9. Comparison of absolute imaging-plate
intensities with a single-photon counter

As a ®nal check of the ef®cacy of the IP calibration

procedure described in the previous section, a single-

photon counting detector was used to provide a separate IP

calibration check at a single X-ray energy.

Using a Camberra germanium detector with no energy

discrimination, the ¯uorescence from a copper foil placed

in the path of a monochromatic (1.2 AÊ ) X-ray beam was

measured for approximately 1 min (18000 monitor pulses)

at a distance of 180 mm. This distance was chosen to ensure

that the total detector count rate was kept below

10000 counts sÿ1 in order to preserve linearity and keep

the quantum ef®ciency close to 100%. Over a period of

1 min, the average count collected by a detector surface

area of 100 � 100 mm was 40.9 (1) photons.

After counting to a ®xed number of incident beam

monitor counts, the detector was replaced by an IP at the

same distance from the ¯uorescence source and exposed

for an identical number of monitor pulses (�1 min). 20 min

after the exposure, the IP was scanned (S = 4000, L = 3, N =

10) and the average pixel intensity and intensity ¯uctuation

were calculated over the area corresponding to the former

position of the Ge detector. The average intensity in this

image region was found to be 0.239 PSL units with a

standard deviation of 0.0247 PSL units, yielding an RSD

value of 0.103. This corresponded to a `t = 0' RSD of

0.32 (2) which, when divided by A, gave an absolute

intensity of 39 (2) X-rays per 100 � 100 mm pixel. This

compared well with the absolute X-ray count obtained

from the Ge detector.

The calibration for this particular image was therefore

163 (8) incident X-rays per PSL unit. This calibration factor

would also apply to other IP images as long as they were

allowed to fade for 20 min at the same ambient tempera-

ture prior to scanning on the same scanner. Images with

different fading times could be calibrated using the same

®tted curves assuming a reliable RSD value could be

determined from some area of the image. For different

scanners using similar transport and optics it should be

possible to use the same model with different ®tted para-

meters. All that would be required is a representative range

of pixel intensity versus pixel ¯uctuation data and some

knowledge of the pixel PSF.

10. Detective quantum ef®ciency

The detective quantum ef®ciency (DQE) is a fundamental

measure of detector quality that can be used to specify

detector characteristics at various dose rates (Gruner et al.,

1978). It is de®ned by the equation

DQE � (output signal/output noise)2

(input signal/input noise)2 ; �13�

where an ideal detector will have a DQE of unity over all

count rates. The numerator of equation (13) can be

obtained directly from the curves shown in Fig. 6 while the

denominator depends on the ®nal calibration, which in turn

Figure 5
Fourier transform of pixel ¯uctuation noise from a uniformly
irradiated area on a BAS2000 IP. Diamonds indicate experimental
data, solid lines represent the transforms of theoretical ¯uctuation
noise obtained by convoluting numerically generated noise with
Lorentzian pro®les of differing widths (FWHM = 1.0, 1.26, 1.5).
All transform pro®les have been normalized to bound equal areas.

Table 1
Fitted parameters for numerical model relating pixel intensity to
pixel intensity noise.

The asterisk marks the row containing parameters of best ®t.

A  B C A R

100 0.000092 (5) 3.0 (5) 0.016 (1) 0.0092 (11) 0.803
200 0.000045 (3) 6.0 (5) 0.015 (1) 0.0090 (11) 0.764

*300 0.000031 (2) 8.0 (7) 0.015 (1) 0.0092 (11) 0.741
400 0.000022 (1) 12.0 (8) 0.015 (1) 0.0088 (11) 0.765
500 0.000018 (1) 15.0 (8) 0.017 (1) 0.0090 (11) 0.794
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depends on the length of time between IP exposure and

scanning. For the IP images used in this study (20 min delay

between exposure and scanning), some derived DQE

versus incident count rate curves are shown in Fig. 7.

In general, the DQE curves calculated from the numer-

ical model showed little variation for different combina-

tions of S, L and N. The greatest discernible difference seen

was between the DQE curves calculated for 10-bit resolu-

tion (solid line) and 8-bit resolution (dashed line), both

calculated at the maximum sensitivity (S = 10000) and

latitude (L = 4). The calculated DQE curves show

reasonable agreement with experimental values (points)

and also bear a good qualitative resemblance to experi-

mentally derived DQE data published by previous authors

(Amemiya, 1995).

For shorter time lags between exposure and scanning,

these curves would be unchanged in shape, but would have

maxima closer to unity. The DQE of an IP system decreases

with increasing fading time due to the reduction of active

colour centres that can be stimulated. This is conceptually

equivalent to putting an absorber in front of the detector

(Zannella & Zannoni, 1996), which effectively changes the

signal-to-noise ratio of the input signal without affecting

the noise-adding processes taking place inside the detector

system.

It would seem to be a good idea to minimize the delay

time between the exposure and scanning of IPs, to maxi-

mize the effective DQE. This is primarily limited by the

undesirable possibility of the latent image fading signi®-

cantly during the scanning process, which typically takes 2±

3 min to complete. Approximately 15±30 min provides a

reasonable compromise between these requirements,

although scanning IPs some hours after exposure usually

results in perfectly useable images.

11. Conclusions

Using the Australian National Beamline Facility's BAS2000

IP scanner with Fuji IPs, and a 20 min delay between IP

exposure and scanning, the formula for converting PSL

units to incident X-ray photons was found to be

incident photons � 163 �8� � Iout;

where Iout is given in BAS2000 PSL units. This compared

well with a conversion factor of 171.1 (5) obtained by using

an independent single-photon counting detector.

Using the numerical model described in this work with

the same four ®tted parameters, it is practical and

straightforward to derive a conversion factor for any IP

scanned at some arbitrary time after exposure on this

machine, using only the statistical data inherent in the

image. Furthermore, this numerical model with a different

set of four ®tted parameters should be applicable to other

scanners using similar optics and transport mechanisms,

Figure 7
Experimentally obtained DQE versus incident X-ray photon
count for IPs (dots) using a range of scanning parameters. The
DQE calculated from the numerical model is given by the thick
solid line (S = 10000, L = 4 and N = 10) and the thick dashed line
(S = 10000, L = 4 and N = 8). An ideal detector would have a DQE
of unity for all incident photon count rates.

Figure 6
Comparison of numerical model (solid lines) using parameters of
best ®t (A = 300, B = 8, C = 0.015 and  = 0.000031) with
experimentally obtained RSD values (vertical bars with length =
estimated error). Each sub-plot represents data measured and
®tted using the S, L and N BAS2000 scanning parameters shown
in the bottom left-hand corner of each sub-plot. The dashed line
on each sub-plot represents the behaviour of an `ideal' IP detector
with a scaling factor of 300 X-ray photons per PSL output unit.
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given suf®cient knowledge of the system's point spread

function.
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