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A new approach to the extraction of dynamic information from extended X-ray absorption ®ne-

structure (EXAFS) spectra has been developed. With this method, a complete set of temperature-

dependent spectra are ®t simultaneously to one of a variety of pair-distribution functions.

Distributions are calculated in r-space using the appropriate absorber±scatterer pair potential. The

temperature-dependent EXAFS spectra are calculated by summing k-space models over a range of

distances and angles weighted according to the relative contribution of each geometry to the

distribution. This approach allows re®nement of data using a full multiple-scattering analysis with

only modest computational time.

Keywords: EXAFS; temperature-dependent analysis; anharmonicity.

1. Introduction

Over the last twenty years, extended X-ray absorption ®ne

structure (EXAFS) has come to be recognized as one of the

premier tools for determining local atomic structure. For

most applications, the information of interest is the static

structure. In this case, the EXAFS can be de®ned as
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where �(k) is the fractional modulation in the absorption

coef®cient above the edge, k is the photoelectron wave-

vector, F(k) is the theoretical backscattering amplitude, r is

the scatterer distance, �(k) is the photoelectron mean free

path, '(k) is the phase shift encountered by the photo-

electron on passing through the potentials of the absorber

and scatterer, and g(r) is the radial distribution function

(Teo, 1986).

The EXAFS equation can be simpli®ed by assuming

small disorder in the system (Beni & Platzman, 1976). This

allows the pair-distribution function to be approximated as

a Gaussian distribution, giving the more familiar
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where Ns is the number of scatterers, S2
0 is an inelastic loss

term, As(k) is the backscattering amplitude and �2
as is a

disorder term also known as the Debye±Waller factor, and

the sum is taken over every shell of scatterers.

In (2), the Debye±Waller factor gives a measure of the

disorder in the absorber±scatterer interaction. Disorder

can arise either from static disorder (i.e. from a range of

bond lengths within a single shell of scatterers) or from the

dynamics of the system (i.e. the motion of the absorber±

scatterer pair). From temperature-dependent EXAFS

measurements it is possible, at least in principle, to extract

information about the dynamics of a system.

In cases where the disorder (static, dynamic or both) is

large, analysis using the traditional EXAFS equation (2)

can lead to errors in bond length, coordination number and

�2
as as a result of breakdown of the small disorder

assumption (Hayes et al., 1978; Eisenberger & Brown, 1979;

Crozier & Seary, 1980; Balerna & Mobilio, 1986). Large

disorder can occur in a variety of situations but is parti-

cularly likely to be important in temperature-dependent

measurements where the temperature is high compared

with the characteristic energy of an absorber±scatterer

interaction. This frequently results in broad anharmonic

pair-distribution functions that cannot be described by (2).

As part of a study of dinuclear metal clusters, we have

developed a computational approach to extract dynamic

information from EXAFS in cases where anharmonicity is

important.

2. Previous analyses

2.1. Temperature dependence

Many approaches have been used to describe tempera-

ture-dependent effects in EXAFS. For in®nite lattice

systems, the temperature-dependent mean-square disorder

��2
as� is often calculated from the phonon distribution. Two

of the models commonly used to describe the distribution

of phonon modes are the Einstein model (one character-

istic phonon frequency, !E) and the correlated Debye

model (a distribution of frequencies from 0 to !D) (Beni &

Platzman, 1976; Sevillano et al., 1979). These approaches



require the somewhat arbitrary assumption of a particular

phonon mode distribution and can only account for

Gaussian distribution functions. These are most useful for

near-perfect crystal lattices and cannot model systems with

severe disorder.

A more involved approach for analyzing temperature

dependence in EXAFS is to include contributions from all

of the vibrational normal modes that cause relative motion

of the absorber and scatterer (Boland & Baldeschwieler,

1984). In this method, the disorder of the system is

described in terms of amplitude vectors and the mean-

square amplitude of vibration, and the sum of atomic

motion is taken over all normal modes. The equation used

in this derivation includes single scattering pathways as in

the familiar EXAFS equation (2), but can be expanded to

include double scattering pathways and higher-order scat-

tering processes as necessary, although the treatment

becomes increasingly complex. This approach readily

describes the scattering processes of simple systems and

distinguishes the effects of bond angle and temperature on

multiple scattering and EXAFS amplitude. In principle, this

could be extended to include anharmonic contributions to

one or more of the normal modes. However, only harmonic

distributions have been analyzed.

2.2. Anharmonic distribution functions

One of the ®rst papers to recognize the importance of

anharmonicity was a study of Zn EXAFS near the melting

point of Zn (Eisenberger & Brown, 1979). An anomalous

decrease in the ZnÐZn distance was observed as the

temperature was increased to the melting point, in contrast

with the bond length increase that was expected based on

bulk thermal expansion. This apparent decrease in ZnÐZn

distance was attributed to the loss of low-k information

(k < 3 AÊ ÿ1, where near-edge effects prevented EXAFS

analysis). The low-k data contains much of the phase

information needed to describe the anharmonic ZnÐZn

distribution function. Near the melting point of Zn, the

ZnÐZn distribution function is strongly skewed to high r,

leading to incorrect ®tting results when modelled with a

symmetric distribution function. Using a simple correction

term for the scattering phase, it was possible to model the

data and extract limited information about the asymmetry

of the distribution.

An alternative approach for non-Gaussian distributions

is to analyze the data in r-space (Hayes & Boyce, 1980;

Hayes, 1984). Analysis in r-space allows the deconvolution

of scattering shells radially without having to re-Fourier

transform the data, thereby further introducing distortions

due to the transform windows. Analysis in r-space also

reduces the number of transforms necessary to compare

the data with model parameters. Most importantly,

however, is the freedom to utilize any type of atomic

potential to describe the absorber±scatterer interaction.

It is possible, in principle, to use anharmonic distribution

functions to model EXAFS. The Morse potential,

V�r� � D exp�ÿ2a�rÿ req�� ÿ 2 exp�ÿa�rÿ req��
� 	

; �3�
where D is the depth of the potential well, a = (8�2c�!x/

h)1/2, � is the reduced mass and !x is the anharmonicity

constant (Morse, 1929), is often used in vibrational spec-

troscopy to model anharmonic distributions (Wilson et al.,

1980). This can be expanded in a power series to give

(Miyanaga & Fujikawa, 1994)

V�r� � ÿD�Da2r2 ÿDa3r3 � �7=12�Da4r4: �4�
This expression has been used in combination with

displacement vectors to obtain anharmonic corrections to

harmonic displacements in terms of a, D and T for mon-

atomic and diatomic chains.

Many model-independent approaches have been used in

the analysis of anharmonic distributions (Babanov et al.,

1981; Bunker, 1983; Gurman & McGreevy, 1990; Yang &

Bunker, 1996), with use of cumulants being the most

common. The cumulant expansion (Bunker, 1983) of the

Fourier transform of a pair-distribution function isR �g�r�=r2� exp�ÿ2r=�� exp�i2k�rÿ req� dr �

exp
X1
n�0

��2ik�n=n!�Cn�req; ��
( )

; �5�

where � is the photoelectron mean free path and n = 0, 1, 2

etc. is the number of the cumulant. The even cumulants,

C2n, depend only on the amplitude of the EXAFS while the

odd cumulants, C2n+1, depend only on the phase. For a

Gaussian distribution, all cumulants of n > 2 are zero.

Cumulants can be used in combination with the ratio

method, in which the high-temperature data set of interest

is compared with data measured at low temperature

(Bunker, 1983). A plot of the natural log of the amplitude

ratio versus k2 is a straight line for a harmonic distribution

but will curve if higher-order cumulants, which arise from

anharmonicity, are important. Similarly, a plot of the

difference in phase between two data sets versus k can be

used to determine the importance of odd cumulants. The

cumulants derived in this way can be used to reconstruct

the radial distribution function using (5).

One of the dif®culties with the cumulant expansion is

that it often diverges at high k, and thus the cumulants are

only accurate at low k. One solution to this is the `splice'

method (Stern et al., 1992) in which the cumulants are used

to recreate the missing low-k data but are not used to

generate distribution functions directly. The low-k data are

instead `spliced' with the measured data at higher k (k > 3±

5 AÊ ÿ1), in principle giving a more accurate EXAFS func-

tion over the complete k range. This gives the low-k data

that are crucial for analysis of anharmonic distributions

without a loss of accuracy at high k. The data can then be

used to calculate the radial distribution function.

Cumulant analysis has been widely used in the study of

disordered systems. The method, however, has several

limitations. Cumulants do not provide a good description of

systems with large noise (Stern et al., 1992), and accurate
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extraction of phase and amplitude information can be

overshadowed by uncertainties in the analysis procedure

(Monti, 1996). As the disorder increases, the number of

cumulants needed to describe the data increases and the

usable data range for ®tting decreases. Most importantly,

cumulant analysis is impossible to use in systems with

mixed coordination shells and systems displaying multiple-

scattering effects (Dalba & Fornasini, 1997).

All of the approaches to anharmonicity that have been

described thus far give correction terms that can be plotted

versus temperature to extract information about the

temperature dependence of the asymmetry. This is useful

for describing anharmonicity, but fails to provide a

complete description of the temperature dependence. A

comprehensive treatment of both temperature dependence

and anharmonicity has been given by Mustre de Leon et al.

(1992). In this work, a double-well potential,

V�r� � a�rÿ req1�2=2 for r � req;

�6�
V�r� � b�rÿ req2�2=2 for r � req;

where a and b de®ne the depth of the two potential wells

and req is de®ned by requiring the distribution to be

continuous, was used to describe the motion of an O atom

relative to two Cu absorbers, where req1 and req2 are the

centres of the two possible O positions. Empirical EXAFS

parameters for As(k) and 'as(k) were used in (1) to model

the data. A quantum-mechanically derived radial distri-

bution function, g(r), was ®t to the data with the constants a

and b and the distances req1 and req2 being re®ned to give

the best ®t to the EXAFS. This method can be readily

extended to an arbitrary potential. More importantly for

the present purposes, this method can accommodate

simultaneous analysis of multiple temperature data sets by

re®ning g(r,T) rather than g(r), although this has not

previously been reported.

We have developed an approach to the analysis of

dynamic information from EXAFS that builds on that

reported by Mustre de Leon et al. (1992). We use k-space

analysis to facilitate calculation of multiple-scattering

effects and to avoid introducing artifacts into the data

during Fourier transformation. We have adopted a model-

dependent approach in order to allow re®nement of all

data measured at different temperatures simultaneously. In

order to speed up computation, all of the necessary k-space

multiple-scattering calculations are performed at one time

and this library of spectra is used to construct the EXAFS

during the curve ®tting. A brief account of this program has

been given (Daly & Penner-Hahn, 1997). In the following

we provide a more detailed description and evaluation of

the approach.

3. Program method

The EXAFS simulations are based on FEFF 6.01 calcula-

tions for the amplitude and phase (Rehr & Albers, 1990). In

contrast with traditional simulations, which typically use a

single FEFF calculation to de®ne 'as(k,r) and As(k,r) and

then re®ne r, Ns and �2
as in using (2), we calculate the FEFF

simulations for a range of r. For systems where multiple

scattering is important, the bridging angle, �, can also be

varied. These are weighted according to an r-space distri-

bution function to give k-space EXAFS. This amounts to

replacing the integral in (1) with a summation,

��k� �
XNmod

i�1

F�k�
k

Z ri��r=2

riÿ�r=2

g�r� exp
ÿ2r

��k�
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sin�2kri � '�k��
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i

; �7�

where Nmod is the number of models with spacings of �r =

ri + 1ÿ ri. This type of integration by summation calculation

of EXAFS is the same as that used in the methods by

Mustre de Leon et al. (1992) and originally used by

Benfatto et al. (1989) in multiple-scattering calculations.

The r-space distribution function, g(r), is re®ned so as to

optimize the k-space simulation relative to the measured

EXAFS. A ¯ow chart summarizing the computation is

shown in Fig. 1.

There are four principal advantages to this approach.

First, this method provides the advantages of r-space

re®nement without the need for Fourier transformation

Figure 1
Flow chart of the program method.
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during the ®tting. Second, this approach gives a slight

increase in accuracy by handling the 1/r2 weighting

appropriately. It has previously been noted (Brouder, 1988)

that in conventional analyses the 1/r2 term in (2) is held

constant at 1=r2
eq. For narrow distributions, the use of 1=r2

eq

has no effect on the ®t. However, for broad distributions, it

leads to a slight over-weighting of the high-r portion of the

distribution. This can result in small (typically 0.010±

0.015 AÊ ) errors in distance and 2±5% errors in amplitude.

A third advantage of our approach is that r-space re®ne-

ment allows us to model several temperature-dependent

data sets simultaneously, optimizing only a single pair

potential function. Any type of radial distribution function

or, equivalently, any pair potential function can be used to

describe the atomic interactions. In particular, asymmetric

distributions are straightforward to handle. Finally,

multiple-scattering re®nements require far fewer compu-

tational resources in the present re®nement scheme. Scat-

tering pathways with greater than two legs are highly

dependent on the geometry of the system. In traditional

re®nements (either k- or r-space) it is necessary either to

assume that the multiple scattering does not change, and

thus that a single amplitude and phase function can be used

throughout the re®nement, or to repeat the multiple-scat-

tering simulation at each step of the re®nement. The latter

is a computationally intensive process. In contrast, the

present approach requires only one time calculation of the

complete multiple scattering for a relatively small number

of geometries (typically 20±30).

The ®t is optimized using a modi®ed Levenberg±

Marquardt non-linear least-squares algorithm (Garbon et

al., 1979) with a standard goodness-of-®t parameter

F �
XN

i�1

�k3�obs�ki� ÿ k3�calc�ki��2=N

( )1=2

; �8�

where N is the number of data points. In simultaneous

re®nements of multiple temperature-dependent data sets, it

is the high-temperature data sets that contain the most

information concerning the distortion of the radial distri-

bution function. Unfortunately, these data sets have the

lowest EXAFS amplitude and thus contribute the least to

the goodness of ®t, equation (8). In this case we have found

it advantageous to use the weighted goodness-of-®t para-

meter Fw in (9), in which each data set contributes equally

to the optimization, and the overall goodness-of-®t para-

meter is summed over each of the M data sets,

Fw �
XM

j�1

W2
j

XNj

i�1

�k3
i �obs;j�ki� ÿ k3

i �calc;j�ki��2=Nj

( ) 
�XM

i�1

W2
j

!1=2

: �9�

The weight, Wj, for the jth data set is taken as the reciprocal

of either maximum EXAFS amplitude or the integrated

EXAFS amplitude for the data set,

RNj

i�1

j�jk
3
i j:

Both methods of weighting were effective at increasing the

importance of the high-temperature data sets. This

weighting is necessary for accurate modelling. In some

systems, asymmetry only becomes evident at temperatures

above 100±150 K where EXAFS amplitudes are often

reduced by 50% or more relative to the low-temperature

data. Without weighting, these systems are best ®t with

symmetric distributions, since the more symmetric low-

temperature data sets contribute most to the goodness-of-

®t parameter in (8).

4. Radial distribution functions

A variety of distribution functions have been implemented

with this ®tting approach. All of the distributions that we

have used are in the form of effective pair potentials for a

diatomic system. This is, of course, only an approximation

of the motion that is possible for a polyatomic system.

However, this is expected to be a good approximation for

molecular systems in which the temperature-dependent

motion is dominated by a single low-frequency normal

mode.

4.1. Individual data set analysis

In order to validate our program and to determine the

necessary r-space grid for acceptable re®nement, we

performed initial tests using a symmetric Gaussian distri-

bution function. The Gaussian width, �2, is equivalent to

the Debye±Waller factor, �2
as, in a traditional k-space

calculation, equation (2). A simple, albeit crude, approach

to asymmetry is to allow the width of the Gaussian to vary

independently on each side of the equilibrium value

g�r� dr � exp�ÿ�rÿ req�2=2�2
1 �=����2

1 � �2
2��1=2 if r < req

�10�
g�r� dr � exp�ÿ�rÿ req�2=2�2

2 �=����2
1 � �2

2��1=2 if r > req

where req is the equilibrium bond distance, �2
1 is the width

on the low-r side and �2
2 is the width on the high-r side.

More strongly skewed asymmetric distributions as

described by Teo (1986) can also be incorporated.

4.2. Temperature-dependent analysis

Given an absorber±scatterer pair potential function, it is

possible to calculate the pair-distribution function, g(r), at

every temperature. If the spacing of energy levels is small in

comparison with kbT, a simple Boltzmann factor can be

used to convert from potential energy, V(r), to the prob-

ability of ®nding an arbitrary absorber±scatterer distance,

g(r), using

g�r� � exp�ÿV�r�=kbT�=P
r

exp�ÿV�r�=kbT�: �11�

This is an appropriate distribution within the classical

approximation but is expected to be a poor description of
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real systems, especially at low temperatures. It is necessary

to consider the quantization of the energy levels in order to

accurately compare data sets measured at different

temperatures. In this case, a harmonic oscillator and a

Morse potential function are among the easiest distribu-

tions to model.

For the harmonic oscillator (Noggle, 1989), the wave

functions are given in terms of the Hermite polynomials,

and the energy is E = (v + 1/2)!, where v = 0, 1, 2, . . . are

the vibrational levels and ! = (2�c)ÿ1/2(k/�)1/2 is the

vibrational constant for each mode. The populations of

each vibrational level can be calculated from the Boltz-

mann factor

B�v� � �1ÿ exp�hc!=kbT�� exp�ÿhc!v=kbT�: �12�

The Boltzmann weighted sum of the squares of the indi-

vidual wave functions gives the temperature-dependent

g(r). The normal mode parameters are calculated using

Gaussian 94 (Frisch et al., 1995).

The Morse potential, equation (3), gives a similar

expression, but incorporates asymmetry in the distribution.

Solving the SchroÈ edinger equation for (3) gives wave

functions based on the associated Laguerre polynomials

(Morse, 1929). The energy of the vibrational levels is given

by E =ÿD + !(v + 1/2) ÿ !x(v + 1/2)1/2, where !x = a2h/

8�2c� is the anharmonicity constant and ! = (4D!x)1/2.

It is instructive to compare the temperature-dependent

analyses for a one-shell traditional optimization, where

only two or three parameters are varied, to the ®t of a series

of seven temperature data sets where a minimum of 14

parameters would be required (r and �2
as at each tempera-

ture). The present approach provides a much better

description of the potential distribution function by relating

all temperatures to a single set of parameters.

5. Results

The program is relatively memory intensive. For example, if

50 FEFF models are used to de®ne the EXAFS at 200

points for each of ®ve shells of scatterers, a total of

�1 Mbyte of storage is required. The bene®t of large

memory usage is that the optimization is simpli®ed to a

straightforward summation with shorter re®nement times.

For single-shell non-multiple-scattering ®ts, the current

approach ranges from 30±60% faster than conventional

re®nements (see Table 1). Much larger improvements

would be observed for full multiple-scattering re®nements.

For each shell, FEFF models are calculated for a range of

distances. The number of model calculations, Nmod, and the

Figure 2
Description of the parameters used in the calculation for a
Gaussian distribution with width � centred at req. Model
calculations are performed for a grid of Nmod, represented by
circles, at R values from reqÿ�R to req + �R with a spacing of �r.

Figure 3
Comparison of EXAFS simulation with this method using a
Gaussian function. (a) Logarithm of the root-mean-square (r.m.s.)
percent error versus the width of the distribution in units of � for a
model spacing interval of 0.25�. (b) Logarithm of the root-mean-
square (r.m.s.) percent error versus the spacing of the models in
units of � for a distribution width of 4�.

Table 1
Comparison of computation times.

Time per iteration (s)
Type of ®t Traditional This paper % Faster

One shell 0.153 0.110 28
Three shell 0.410 0.140 66
One shell, 8 data sets 8 � 0.153 = 2.05 0.825 60
Two shell, multiple

scattering
0.138 + 2.19 min 0.195 99.9
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r-space grid, �r, required to accurately represent the

distribution is dependent on the breadth, �R, of the

distribution function to be modelled. Fig. 2 is a generalized

distribution function showing the de®nition of these para-

meters. We simulated EXAFS scattering using a simple

Gaussian damping factor as in equation (2) and modelled

these data using a Gaussian distribution as in equation (7).

As seen in Fig. 3(a), the root-mean-square percent error

drops as �R increases relative to � and is less than 0.1% for

�R � 4�. In Fig. 3(b), the error remains less than 1% as

long as �r � �. In the absence of static disorder (Teo, 1986),

distribution widths as small as � ' 0.033 AÊ could be found

for a shell of scatterers strongly bonded to the central atom

(estimated for a metal±ligand stretch with � = 50 a.m.u. and

� = 300 cmÿ1). In practice, the � values that we have found

have ranged from 0.05 to 0.12 AÊ . To provide a margin of

safety in simulations of experimental data, we have kept

�r < 0.5�min and �R > 4�max, giving models spaced every

0.025 AÊ and �0.5 AÊ from req.

As an illustration of the bene®ts of this analysis protocol,

preliminary results for a rhodium chloride dimer are

described below. Complete results for this system will be

published later (Daly et al., 1998). The system consists of

two Rh(I) cations bridged by two chloride anions forming a

four-membered ring. Each Rh atom is also bonded to two

ethylene molecules in a pseudo square-planar environ-

ment. The system exhibits signi®cant temperature depen-

dence in the EXAFS scattering, especially in the Rh� � �Rh

interaction (Barnes et al., 1995).

Independent ®ts to each of the different data sets were

suf®cient to model the low-temperature data but did not

work well at high temperatures. The ®ts to the 4 K and

300 K ®ltered Rh� � �Rh interaction using a symmetric

Gaussian function are shown in Fig. 4. Slightly better ®ts

could be obtained for the 300 K data by using the ad hoc

asymmetric Gaussian. However, even these ®ts were not

particularly good. Worse, the widths of the two half

Gaussians did not vary monotonically with increasing

temperature, thus illustrating the dif®culty of this approach

for modelling temperature-dependent data.

When simultaneously ®tting all temperatures, the Morse

potential is signi®cantly better than the harmonic oscillator

potential as shown in Fig. 5. The need for a weighting

factor, equation (9), is evident in Fig. 5 where the amplitude

of the EXAFS at 300 K is an order of magnitude smaller

than that at 4 K. The Morse potential gives a ®t to the 4 K

data that is comparable with, and perhaps slightly worse

than, the corresponding symmetric Gaussian ®t [compare

Figs. 4(a) and 5(a)]. The slightly worse Morse potential ®t

re¯ects the fact that this Morse potential ®t has been

Figure 4
The ®ltered Rh� � �Rh interaction (full line) for Rh2Cl2(ethylene)4

and the symmetric Gaussian ®t (dashed line) at (a) 4 K and
(b) 300 K.

Figure 5
The ®ltered Rh� � �Rh interaction (full line) for Rh2Cl2(ethylene)4,
the weighted harmonic oscillator ®t (dashed line) and the
weighted Morse potential ®t (dotted line) at (a) 4 K and (b) 300 K.
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optimized against seven different data sets simultaneously.

The Morse potential has a slightly larger amplitude than

the experimental data, but continues to ®t the phase and

amplitude up to k = 17 AÊ ÿ1 where the symmetric Gaussian

(Fig. 4) and the harmonic oscillator (Fig. 5) both fail. Fitting

statistics show that the Morse potential, which models all

seven data sets at once, describes the motion of the system

better than individual ®ts using symmetric Gaussians.

These results highlight two of the main advantages of the

®tting protocol: asymmetric distributions can be used to

accurately describe molecular systems and multiple

temperature data sets can be analyzed simultaneously to

allow the extraction of dynamical information.

We are currently exploring the ability of the tempera-

ture-dependent EXAFS analyses to distinguish between

different bridging geometries (Daly, 1998). Possible appli-

cations include the Mn site in the oxygen-evolving complex

of Photosystem II. EXAFS data collected at 10 K show a

�3.3 AÊ Mn� � �Mn interaction (Yachandra et al., 1996;

Penner-Hahn, 1998) that was not seen with data collected

at 150±190 K (Cole et al., 1987) suggesting that the 3.3 AÊ

interaction may show pronounced temperature depen-

dence. Temperature-dependent studies of this system may

be helpful in elucidating the nature of the MnÐMn brid-

ging ligands.

6. Conclusions

An EXAFS analysis method that permits rapid complete

analysis of asymmetric and temperature-dependent

systems has been described. The protocol has been imple-

mented using a Morse potential, but could be readily

generalized to other pair-distribution functions. The

calculation handles multiple scattering more effectively and

optimizes in a shorter period of time than conventional

analyses.

Some other systems of interest for future applications

include dinuclear iron±sulfur centres, such as those found

in feredoxin where the FeÐSÐFe bridges exhibit

temperature dependence, the dinuclear Fe site of hemer-

ythrin, which shows different Fe� � �Fe distances at different

temperatures (Riggs-Gelasco et al., 1995), and the Mn

cluster in the photosynthetic oxygen-evolving complex,

where the long-range Mn interactions show temperature-

dependent behaviour.
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