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A coherent X-ray beam is obtained from the D2AM bending-magnet beamline (BM2) of the

European Synchrotron Radiation Facility. As this line has permanent convergent optics,

monochromated by an Si(111) double monochromator, coherence conditions are satis®ed by

selecting a part of the beam close to the focal point. Low intensity (106 X-rays sÿ1) is partially

compensated by a high degree of coherence and by the use of a high-resolution direct-illumination

CCD area detector. The stability of the small-angle set-up makes quantitative analysis possible. The

calculated and measured degrees of coherence are compared. The distributions of speckle intensities

are explained by a beam composed of two-thirds coherent and one-third incoherent parts. This

incoherent component is caused by Kapton windows, which will be removed in future experiments.
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1. Introduction

High-brilliance synchrotron radiation sources provide an

excellent tool for obtaining coherent X-ray beams (Sutton

et al., 1991). This makes it possible to carry out experiments

where short-wavelength X-ray beams are used like laser

beams, mainly for speckle and X-ray photon correlation

spectroscopy measurements in the Bragg peak region

(Brauer et al., 1995; Dufresne, 1995; Bley et al., 1995) and in

the small-angle domain (Dierker et al., 1995; Mochrie et al.,

1997; Mainville et al., 1997).

The basis of the improvements of third-generation

synchrotron radiation machines is the high quality of

electron optics at a few GeV. For instance, the initial ESRF

goals were to obtain emittances of 7 nm (H) � 0.7 nm (V)

for an intensity of 100 mA. Now (in 1997), one routinely

obtains 4 nm (H) � 0.04 nm (V), with a 200 mA (nominal)

intensity. This is an increase of a factor of 35 in brilliance,

and this can induce a corresponding increase in available

coherent beam intensities for undulator sources. In the case

of bending-magnet sources, the beam divergence (�10ÿ4) is

limited by the energy of the electrons (6 GeV), and only a

decrease of the source size (from 0.187 � 0.128 mm to

0.142 � 0.037 mm) improves the brilliance. The total bril-

liance increase for a bending-magnet beamline is close to

12. At the same time, the beam stability has been improved

in order that variations do not exceed 10% of the beam size

and divergence. With such source performances, a demand

exists for better X-ray optics and detectors.

For a monochromatic beam of wavelength �, the basic

technique for obtaining coherence is to ful®l the condition

"' � �; �1�

where " is the beam divergence and ' is the beam size. In

synchrotron radiation, the source size is ®xed, and the

simplest method can be to limit " using slits. The synchro-

tron radiation source is smaller in the vertical direction

('v ' 40 mm), and the corresponding transverse coherence

length, �t, for � ' 1.5 AÊ , at L ' 40 m, is L�/'v ' 150 mm.

This coherence length is about four times smaller in the

horizontal direction. If the whole coherent surface is

selected, detection of the speckle structure needs an

experimental resolution of the order of �/�t, here within

the microradian range. In the available experiment set-up,

the resolution is ten times larger. In this case, the size of the

coherent beam must be less than 10 mm. If no focusing

optics are used, only a small part of the coherent available

intensity is used, and the high quality of the source is

useless. For this reason, focusing optics are an ef®cient

improvement, provided that source degradation due to

optical elements is not too strong.

In this paper we report tests with the D2AM beamline at

the ESRF for coherent small-angle X-ray scattering

(SAXS) experiments. This beamline is located on a

bending-magnet source and has high-quality focusing

optics. In this case, it is possible to control " and ' simul-

taneously close to the focused image of the source. This

makes possible a quantitative comparison between calcu-

lated and experimental intensities and coherence. The

effect of inserting various devices into the beam is

discussed (windows, monochromators, mirrors). This study



provides new ways for improving X-ray optics and X-ray

detection, in order to take better advantage of the advances

in the synchrotron radiation sources. Results are compared

with the interpretation of experimental results (Abernathy

et al., 1998) from an undulator source beamline (Troika,

ID10).

2. Characteristics of the beamline and the
experimental set-up

2.1. Source

The brightness of the bending-magnet source can be

estimated as (Elleaume, 1986)

B ' 1:5� 1013E2I �2�
in photons sÿ1 mradÿ2 �0:1% bandwidth�ÿ1. This formula

holds roughly for 0.8 < �/�c < 3.0, where �c is the wave-

length cut-off: �c = 0.64 AÊ for E = 6 GeV and for a bending-

magnet ®eld of 0.85 T. I is the electron beam intensity (I =

0.02 A). In our experiment, � = 1.56 AÊ , and we ®nd

B � 1:1� 1014 photons sÿ1 mradÿ2 �0:1% bandwidth�ÿ1:

�3�
The brilliance, b, of the source can be deduced from the

source dimensions given by ESRF data sheets (Roth et al.,

1997). In the case of �h = 142 mm and �v = 37 mm (r.m.s.),

we ®nd

b � B=�2��h�v� � 3:3� 1015 photons sÿ1 mradÿ2 mmÿ2

�0:1% bandwidth�ÿ1: �4�
From this result, one can roughly estimate the maximum

coherent intensity with an Si(111) double monochromator

(��/� = 1.4 � 10ÿ4), assuming "' = �, as

I0 � 0:14�1:56� 10ÿ4�2b � 1:1� 107 photons sÿ1: �5�

2.2. Optics

The D2 beamline has pseudo-symmetrical double-

mirror±double-monochromator optics (Roth et al., 1997).

The incoming vertically diverging beam is made parallel by

the ®rst curved mirror in order to obtain an excellent

monochromatization by the Si crystals. The second mono-

chromator crystal is sagittally curved in order to focus the

beam horizontally. As the dimensions of the beam can be

4 mm (V) � 80 mm (H), the second crystal is reinforced

with ribs (period 1.2 mm) in order to limit anticlastic

curvature. This results in a non-constant and periodic

curvature. This is observed for underfocused con®gurations

of the bent monochromator, where the image of the beam

close to the sample consists of a horizontal alignment of

spots, corresponding to the 1.2 mm period. One of these

spots is selected by closing the primary slits S1 (23 m from

the source) to 1� 1 mm in order to optimize the horizontal

focusing. The heat load becomes negligible and this

improves the experimental stability. The second mirror is a

vertically focusing mirror and, as only a small region of the

optics is used in this experiment, optical defects are less

probable.

The quality of the focusing optics was tested for small

beams. In this case, the ®nal limitation of the beam is

obtained by the S2 secondary slits, with an opening dh� dv.

The source-to-optics distance was 27 m and the 10 mm

pinhole was used for scans after optimization of focusing.

The pinhole was close to the sample position, 11 m after the

centre of the optics and 9.5 m after S2. The image dimen-

sions sh and sv (FWHM) were measured in two different

con®gurations: (i) 1/3 ®lling, 124 mA, dv � dh = 0.75 �
1.0 mm, sh = 112 mm, sv = 59 mm; (ii) 16 bunches, 90 mA,

dv � dh = 0.2 � 0.2 mm, sh = 90 mm, sv = 55 mm.

Focusing is better in the second con®guration. This is

mainly the result of closing the secondary slits S2, which

minimize optical defects. The (FWHM) area of the beam

can be a-priori estimated from the (r.m.s.) dimensions of

the source and from the ratio between the source-to-optics

distance and the optics-to-pinhole distance (2.5 here). This

area is �h � �v � (8 ln 2)/(2.5)2 = 4.7 � 10ÿ3 mm2, which

compares well with the best value given here, namely sh �
sv = 5� 10ÿ3 mm2. The focusing optics can be considered as

excellent.

2.3. Coherence

In this type of experiment, the number of optical

elements is usually minimized in order to limit distortions

of the beam. Each of these optical elements acts as a

secondary source, so that stable and reliable speckle

structures are dif®cult to obtain. In our case, as permanent

focusing optics are present, we take advantage of the large

distance (�10 m) between slits S2 at the end of the optics

and the SAXS camera. Coherence conditions will be

discussed by considering the square (dh = dv = d) beam

across slits S2 as a secondary source. The experimental set-

up is sketched in Fig. 1. The pinhole limiting the beam size,

of diameter ', is placed at the entrance of the SAXS

camera, at a distance D = 9.5 m from S2. Transverse

coherence will be obtained by choosing suitable values of

the ratio

z � �d'=2�D: �6�

This ratio will be essential for the quantitative discussion.
Figure 1
Sketch of the SAXS set-up.
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Due to excellent monochromaticity, the longitudinal

coherence length, �l = �/(��/�), is of the order of 1 mm. For

small-angle experiments (here 2� is less than 0.01 rad), with

pinhole diameters ' � 10 mm, and sample thicknesses e �
1 mm, it can be assumed that the conditions of coherence

are met (roughly '� << �l and e�2 << �l).

2.4. Windows

Transmission through windows has strong effects on the

beam coherence. There are two 500 mm-thick Be windows

on the beam; the ®rst is before the optics and the second is

between the ®rst mirror and the monochromators. There is

a 50 mm-thick Kapton window just before slits S2. For

vacuum security, two thin Kapton windows (thicknesses

20 mm and 50 mm), separated by 1.5 cm of air, are placed

41 cm before the pinhole.

2.5. SAXS camera

The SAXS camera is housed in an evacuated cell. The

pinhole holder is followed, after 21 cm, by guard slits (S4).

Samples can be placed just after these slits. The beam stop

is at a distance of 2.1 m from the sample, just before the end

of the evacuated tube. A ®lter holder is inserted before the

detector.

2.6. Detection

A `deep depletion' CCD area detector from Princeton

Instruments was used in direct X-ray illumination. The

pixels are squares of size r0 = 22.5 mm. At 2.2 m from the

sample, the pixel resolution of the CCD (10 mrad) is suf®-

cient to resolve the speckle structure (�/' = 15.6 mrad for

' = 10 mm). For a 576� 384 pixel area, the detector surface

is of the order of 1 cm2. The absorption of an X-ray on the

surface of the CCD creates very locally about 2000 elec-

tronic charges which, as the detector is cooled at 213 K, is

more than 100 times larger than the noise. It is easy to

calculate the position (Livet et al., 1998) of isolated X-rays

with an accuracy of 1 pixel. A custom-designed `droplet'

program has been developed that extracts the position of

individual photons from images obtained by frequent

readings of the detector. With this program, the analog

CCD device is transformed into an area photon-counting

detector. The overall detection quantum ef®ciency (DQE)

of the detector is estimated to be 55% at the 7.95 keV

photon energy used here.

3. Results

3.1. Diffraction of the pinholes

One of the standard methods for checking coherence

properties of the experiment is to observe Fraunhofer

fringes from the pinholes used for the selection of the

coherent beam.

In these tests, electron microscopy pinholes were used.

The advantage of these is the high quality of their edges, as

can be veri®ed by scanning electron microscopy. For their

use in X-ray beam selection, these pinholes have relatively

thin edges (here, close to 10 mm). The hole is at the centre

of a conical hollow in a Pt0.95Ir0.05 80 mm-thick sheet. Simple

calculations show that at 7.95 keV the fraction of X-rays

crossing the edges of the aperture is less than 3% for the

10 mm pinhole diameter, and we neglect this effect. This

contribution will, however, increase rapidly with photon

energy.

The pinhole±detector distance is L = 2.41 m, and the

measured intensity is strongly localized at the centre of the

detector. For that reason, an attenuation by a factor of 103

to 104 is necessary, and the recorded region of the detector

is limited to an area of 100 � 100 pixels. This reduces the

total time for ADC conversion and for disk-saving to about

0.1 s with a 430 kHz ADC unit and a standard Pentium-

based PC computer.

In practice, 2000 frames of 0.03 s each were recorded,

each one corresponding to a few hundred detected X-rays.

Our `droplet' program was then used. For each frame, the

position of each X-ray was registered. Frames were then

deleted and a new measurement started.

For studies where time resolution is not required, the

number of detected X-rays for each pixel is eventually

accumulated. The centre of the pattern (x0, y0) is calculated

from the ®rst moment of the distribution. The distance R of

each pixel to the centre of the pattern can be deduced.

A series of results obtained with the 10 mm pinhole are

plotted in Fig. 2 with various values of d, the aperture of the

secondary slits S2: for (a), (b), (c), (d) and (e), d = 50, 100,

150, 200 and 300 mm, respectively. Averages have been

taken along right and left half-circles, and R was incre-

mented by 0.25 of a pixel. In Figs. 2(a) and 2(b), Fraunhofer

fringes are clearly visible, and there is no signi®cant

difference between the two images. Only the different

number of accumulated X-rays [3.4 � 105 and 7.5 � 105 for

Figs. 2(a) and 2(b), respectively] accounts for the greater

noise in the case of Fig. 2(a). The dynamics of the observed

intensities is close to ®ve orders of magnitude. Plots of IR3

[Figs. 2(f)±2(j) corresponding to Figs. 2(a) to 2(e)] allow a

detailed discussion of the results. The asymptotic behaviour

of our measurements can be compared with the asymptotic

shape of the diffraction pattern of a pinhole of diameter '
at a distance L from the detector plane,

IR3 / 1ÿ sin�2�R'=�L�: �7�
In Fig. 2, the distances R are expressed in pixel units: n =

R/r0. From the period of the oscillations, a precise estimate

of ' can be given: ' = 9.35 (5) mm, which is close to the

nominal 10 mm diameter. Many oscillations can be

observed in Figs. 2(f) and 2(g). This means that the

diameter is well characterized and that the edges of the

hole are of good quality. Moreover, the curves are very

symmetrical, showing that, in the region of the CCD shown

in Fig. 2 (60 pixels diameter, i.e. 1.3 mm on the CCD),

scattering from the surface of the hole is negligible. Irre-

gular intensity tails are observed for larger R values, and

closing of the guard slits (S4) to 70 mm suppresses this

parasitic scattering.
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Although the oscillations in Figs. 2(f) and 2(g) are not

damped, their amplitudes are about 40% of the predicted

value. One of the reasons for this is the lack of resolution

due to the pixel size. The period of the oscillations is

1.79 pixels. If one approximately calculates the amplitude

of the oscillations from the pixel resolution, one obtains

IR3 / 1ÿ 0:56 sin�2�R'=�L�: �8�
This partly explains the small amplitude of the oscillations.

In Figs. 2(c), 2(d) and 2(e) the Fraunhofer oscillations

become indistinguishable and the FWHM of the beam

increases. A simple formula for that width is

sR � L���='�2 � �d=D�2�1=2: �9�
This equation is a ®rst approximation for the beam coher-

ence. Pinhole refraction effects are dominant when the

dimensionless ratio z in equation (6) is small: z = 0.5 and 1.0

for Figs. 2(a) and 2(b), respectively.

A similar discussion may be applied to the 5 mm pinhole.

In Fig. 3(a), d = 100 mm and z = 0.5, and the oscillations are

visible with a larger period as expected. In Fig. 3(b), d =

300 mm, and z = 1.5, and the oscillations are dif®cult to

observe.

Table 1 shows the observed beam FWHM and the results

of equation (9), as a function of ' (and z). Agreement is

satisfactory, if account is taken of the 22.5 mm pixel reso-

lution.

From ®lter transmission, the beam intensity for the

10 mm pinhole and d = 200 mm is about 106 X-rays sÿ1, for a

200 mA electron beam in the storage ring. As the product

"' is here close to � (1.5�, in fact), this value is to be

compared with that calculated from the source character-

istics, 1.1 � 107.

The coherence of the beam is dif®cult to estimate

quantitatively from these patterns. Better estimates are

obtained from test samples.

3.2. Quantitative study of coherence

3.2.1. Sample. In order to discuss the beamline capacity

for obtaining SAXS speckle patterns, scattering from a

Figure 3
Same as Fig. 2 for the 5 mm pinhole (z varies from 0.5 to 1.5).

Table 1
Characteristics of the beam across pinholes for various beam
divergences.

Passage from diffraction-dominated width (z � 1) to mixed mode (z > 1).
sR is taken from equation (9)

' (mm) d (mm) z FWHM (mm) sR (mm)

10 50 0.5 49 40
10 100 1.0 51 45
10 150 1.5 59 54
10 200 2.0 71 63
10 300 3.0 81 85

5 100 0.5 83 79
5 300 1.5 108 107

Figure 2
Images on the CCD area detector of the beam crossing the 10 mm
pinhole. Intensities have been averaged on semicircles around the
origin, with 0.25 pixel steps. Results are left/right symmetrical, and
the oscillations are stronger with better coherence conditions: z
(see Table 1) varies from 0.5 to 3 from top to bottom. On the right-
hand side, IR3 is plotted, showing asymptotic behaviour. See text.
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0.5 mm-thick Te¯on test sample was measured. The

sample-to-CCD distance was L = 2.2 m. The guard slits

were closed to 70 mm so that, with a 2 mm diameter

beamstop located 10 cm before the CCD, the X-ray back-

ground was negligible.

The whole detector area was used, and the `droplet'

algorithm was applied to 1000 or 2000 frames of 1 s or 2 s

each. For such times, the maximum intensity was of the

order of 10ÿ2 X-rays pixelÿ1 frameÿ1.

In a standard (incoherent) experiment, Te¯on has an

isotropic scattering pattern. This intensity, hI(q)i, can be

obtained from a circular average of the intensity across the

area detector.

For example, in Fig. 4 hI(q)i is plotted for the q-region

discussed here. The units are counts pixelÿ1, and the results

correspond to an accumulation of 1000 frames of 2 s each,

with d = 100 mm and a 10 mm pinhole. The electron beam

intensity was 80 mA (16-bunch mode). The averages were

carried out over circular bands 3 pixels wide. This provides

a reasonable number of pixels (from 1000 to 2000), and the

incoherent intensity varies negligibly across these regions.

The average number of photons per pixel is low (from 2 to

20 for a total counting time of 30 min), and Poisson

statistics have to be taken into account for a quantitative

discussion.

3.2.2. Coherence and statistics. Among regions of

constant hIi, coherence leads to strong variations of

measured intensity. For full coherence, the intensity prob-

ability distribution is

p�I� � exp�ÿI=hIi�=hIi: �10�

In the case of partial coherence, it can be assumed that the

scattering observed corresponds to a set of � (� need not be

an integer) identical `coherence volumes' scattering inde-

pendently (ICV assumption). The usual methods of statis-

tical convolution (Brown, 1993) lead to the distribution

p��I� � I�ÿ1 exp�ÿI=I0�=�ÿ���I�0 �; �11�
where I0 = hIi/� and the global degree of coherence of the

experiment is � = 1/� < 1.

3.2.3. Calculated coherence from experimental geometry.

In order to test the ICV hypothesis, � has to be calculated.

The result will be compared with experimental estimations.

We have to consider two averaging processes leading to

� < 1. First, we use Young's technique, where a small

angular region of an incoherent source (here the beam

across S2) is selected. This always leads to partial coher-

ence. Second, the speckle structure is somewhat averaged

by the ®nite size of the CCD pixel. As ' < (r0, d), we will

consider these two averages as statistically independent.

The beam coherence, �b, can be obtained from the

complex mutual coherence, �(r), between two points at

distance r in the pinhole plane. �(r) corresponds to the

beam radiated by slits S2, acting as a secondary source. The

average over the pinhole surface has to be calculated: �b =

h|�(r)2|i. The intensity across S2 must be assumed to be

uniform, but the shape of the wavefront is not planar: the

beam is convergent. On the other hand, as the beam is

focused, it can be considered to be planar close to the

pinhole. For this reason, �b is calculated in the reverse

manner: the pinhole is considered as a planar incoherent

secondary source, and mutual coherence is obtained

between two points in the plane of S2, separated by a

distance x (Mandel & Wolf, 1995),

��x� � 2J1��x'=2�D�=��x'=2�D�; �12�
and �b is estimated by averaging |�(x)2| across slits S2,

�b�z� � 1ÿ z2=6� 7z4=432ÿ z6=960� : : :; �13�
where z is de®ned in equation (6).

The intensity radiated by the sample is averaged by the

detector. This contribution, �d, can also be obtained by

averaging |�(x)2| over the pixel size. The values of �(x) are

also calculated by considering the beam across the pinhole

as a planar incoherent secondary source. The pinhole±

sample distance can be neglected. From detector resolution

(r0 = 22.5 mm), z = �'r0/2�L ' 1 and, from (13), �d = 0.85.

The global degree of coherence of the experiment can be

expressed as the product of the two averages, i.e. �0 = �b�d.

This assumes that no correlation occurs, on average,

between the two calculated values of �(r). The result of the

calculation is given in Table 2 for the set of values of d

where scattering from Te¯on has been measured. As d

varies from 100 to 250 mm, and as only the 10 mm pinhole

was used, z lies between 1 and 2.5.

In the case of low z, the result of the calculation depends

only weakly on the exact shape of the beam. It is not

necessary to know precisely the intensity and phase across

the incoherent source S2. For instance, �b was also esti-

mated for a planar source across slit S2,

Figure 4
Circularly averaged intensity from a Te¯on sample. Here, z = 1,
and d = 100 mm, ' = 10 mm, 2000 s acquisition time for an 80 mA
electron beam intensity.
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�b�z� � 1ÿ z2=6� 17z4=1080ÿ 29z6=30240 � : : :: �14�

This expansion is very similar to (13).

3.2.4. Simple estimation of coherence from the experiment.

The coherence can be estimated from the mean square

deviation (MSD) of the intensity around circles,

hI2�q�i ÿ hI�q�i2 � �ahI�q�i2 � hI�q�i: �15�

As the Poisson counting statistics are independent of

electromagnetic ®eld ¯uctuations, its corresponding

contribution is added to the MSD estimate. In this equa-

tion, �a is an apparent coherence.

�a is usually obtained from a plot of {hI2(q)i ÿ [hI(q)i]2}/

hI(q)i versus hI(q)i. The constant slope of the plot gives an

estimate of �a, the error of which is close to 0.01 here, and

which provides a test of the experimental stability. Such a

plot is shown in Fig. 5 for the same results as in Fig. 4. Here,

�a = 0.31 (1) and the calculated value of � is 0.72. Such a

discrepancy is observed for all the results: all �a are about

2.5 times lower than �0. Obviously, �a is large enough to

observe speckle patterns. This nevertheless leads to a

strong decrease in the signal-to-noise ratio and, for the

same intensity, it takes 2.5 times longer for the same

speckle contrast measurement. Moreover, if the shape of

the incoming electromagnetic waves is not fully under-

stood, improvements in the beam and sample stability can

be dif®cult, as well as the interpretation of static

measurements.

3.2.5. A detailed statistical study of intensity distribution.

One of the origins of the low value of �a can be mechanical

instabilities. In fact, after a few hours a non-linear shape is

observed on the curves as in Fig. 6. For low intensities,

corresponding to large angles (q ' 8 � 10ÿ3 AÊ ÿ1), after

some hours the slope of the plot decreases indicating long-

term drift of the experiment. This is the only evidence of

instability observed, and an intensity decrease is simulta-

neously observed. This intensity decrease can be compen-

sated by a�30 mm vertical movement of the second mirror,

indicating that instabilities are related mainly to ¯uctua-

tions in the optics alignment. An approximative daily cycle

was observed. The SAXS experiment (including pinholes

and detector) is itself mounted on a monolithic granite

optical bench and is very stable. This type of support can,

however, experience vibrations with a period shorter than

the time resolution of 1 s. The main effect of vibrations is to

increase the number of coherence volumes (McKechnie,

1975). As in this case, equation (11) should hold with � =

1/�a; this hypothesis can be tested by studying the intensity

distribution.

In order to compare equation (11) with the observed

intensity probability distribution, it is necessary to take

account of Poisson counting statistics, and the probability

of obtaining a discrete value of k for I is calculated by a

Poisson transform (Mandel formula),

p��k� � ÿ�k� ���1� 1=I0�ÿ�k���=�ÿ�k� 1�ÿ���I�0 �: �16�

Figure 5
Plot of �2I/hIi versus hIi. The slope (0.31) gives an estimate of the
apparent degree of coherence �a.

Figure 6
Intensity distributions (circles) observed for the six larger average
intensities (q varies from 2.1 � 10ÿ3 AÊ ÿ1 to 2.8 � 10ÿ3 AÊ ÿ1) of
Fig. 4. Dashed lines show the standard model of partial coherence
and continuous lines show the hybrid model described in the text.

Table 2
Various estimates of coherence.

' = 10 mm. �0 = �b�d from geometry of experiment, �a from MSD, and �
and � from hybrid model.

d (mm) z �0 = �b�d �a � � z2�b

100 1.0 0.719 0.31 0.37 0.72 0.85
150 1.5 0.590 0.28 0.37 0.60 1.56
200 2.0 0.456 0.19 0.37 0.47 2.15
250 2.5 0.348 0.15 0.37 0.35 2.56
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Fig. 6 compares the observed and calculated distribu-

tions for various angles for the same results as Fig. 4. The

six curves correspond to the six upper points of the ®gure.

The dotted curves are obtained from (16), with � = 1/� =

3.2, as discussed earlier with reference to Fig. 5. As has

been already observed (Abernathy et al., 1998), the calcu-

lated distribution does not ®t the results: the number of low

counts is too small, and the observed distribution is more

peaked than that calculated. Only the tail of the curve ®ts

well.

The shape of the distribution can be better discussed in

terms of moments. Fig. 7 compares the calculated second-

order moment of the distribution [equation (15)] (same

results as Fig. 4) with the right-hand side of equation (15)

(dotted line, with �a from Table 2). Obviously, the ®t with

�a = 0.31 is excellent. From the third and fourth moments,

the skewness is calculated (Mandel & Wolf, 1995) from the

integer values of I(q),

h�I�q� ÿ hI�q�i�3i=h�I�q� ÿ hI�q�i�2i3=2 '
2=�1=2 �O�1=hI�q�i2� � : : :; �17�

and from the curtosis, from which we subtract the Gaussian

constant 3,

h�I�q� ÿ hI�q�i�4i=h�I�q� ÿ hI�q�i�2i2 ÿ 3 '
6=��O�1=hI�q�i2� � : : :; �18�

where Poisson counting statistics introduce correcting

second-order terms {O[1/hI(q)i2]}, which are calculated

numerically. Results of these two calculations are given in

Figs. 8 and 9. Open circles correspond to the results of Fig. 4

and closed circles correspond to a second measurement

under identical conditions. The comparison between the

results of the two measurements (dotted line) and the

results of equations (17) and (18), with � = 1/�a (Table 2),

clearly shows a discrepancy. In both cases, the experimental

results are larger than calculated. Moreover, extrapolation

towards low angles (large intensities) should provide an

estimate of 2/�1/2 ' 1.6 [equation (17)] and 6/� ' 3.8

[equation (18)]. This is consistent with � = 0.64, much larger

than �a = 0.31, and closer to �0 = 0.72 of Table 2. Skewness

and curtosis are independent of the average value of a

distribution. This means that a constant shift of the origin

of I gives a distribution that is in better agreement with the

predicted distribution.

3.2.6. Two beam components. A more realistic statistical

model can be deduced from this discussion. Following

Abernathy et al. (1998), we assume that the incoming beam

can be decomposed into two different contributions. The

®rst, of relative intensity �, is completely incoherent and

gives incoherent small-angle scattering with only Poisson

statistics. The second contribution, of relative intensity

1 ÿ �, is partially coherent with a degree of coherence �.

Qualitatively, this model explains why low counts are rarely

observed (see Fig. 6). The corresponding distribution has

been calculated taking account of Poisson counting statis-

tics contributions. Typical results are shown in Fig. 6

(continuous lines) for the distributions and in Figs. 8 and 9

for the moments, with � = 0.37 and � = 0.72. The hybrid

model explains the observed distribution. In Fig. 7, the

continuous line corresponds to the two-beam model, and it

is observed that the second-order moment cannot distin-

guish between the two models discussed here: they both ®t

the experimental results.

This model was applied to all the measurements of

Table 2. All the results agree well with a constant inco-

herent component, �' 0.37, of the beam. In this case, � is in

agreement with our estimates (�0) from the geometry of the

experiment. Although standard coherence theory cannot

Figure 7
Observed (circles) and calculated angular mean square deviations.
Same results as Fig. 4 and same symbols as Fig. 6.

Figure 8
Experimental (open and ®lled circles) and calculated skewness.
Same conditions as Fig. 4. Two results are shown in order to
estimate standard deviations. The hybrid model (continuous line)
is more consistent with the data than the classical model (dashed
curve).
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explain the presence of the incoherent beam, this latter has

an intensity that is proportional to the incoming beam. It

seems obvious that there is a secondary source that re-

emits X-rays under irradiation. This explains the reduction

of �: �a ' �0(1 ÿ �)2 ' �0/2.5.

3.2.7. Windows. The only possible secondary source is the

two thin Kapton windows (20 and 50 mm). These are close

to the focus, and one can consider that the irradiated area is

100 mm (H) � 50 mm (V) (FWHM). These windows are

about 41 cm before the pinhole. Normally, such windows

have only a low absorption, and Kapton is not usually

considered as a strong scatterer. In fact, the SAXS intensity

is relative to the q-region considered. In the case of these

windows, if they scatter strongly in a cone of angle 10ÿ4 rad

(in 2� units), they give a strong contribution to the intensity

crossing the pinhole. This intensity has very poor coherence

(the corresponding value of z is close to 10). Conversely, a

signi®cant part of the beam travelling towards the pinhole

is slightly deviated and lost from the experiment.

Obviously, this picture is simpli®ed: the whole beam

wavefront is distorted on passing through the windows.

This incoherent component of the beam crossing the

pinhole can also contribute to the low amplitude of the

intensity oscillations in Figs. 2(f) and 2(g).

3.3. Intensity/coherence optimization

If no incoherent scattering is observed, a high value of �
can be obtained by closing slits S2. This is obviously at the

expense of intensity, and practical criteria for the experi-

ment can be brie¯y discussed.

The experimental speckle contrast is of the order of

hI(q)i�(z)1/2. Because it depends on the number of coher-

ence areas, �(z) decreases as zÿ2 for large z, and hI(q)i

increases as z2. We are interested in the square of the

signal-to-noise ratio (s/n), where

�s=n�2 � ��hI�q�i2�=hI�q�i ' z2�b�z�; �19�
where the square of the Poisson counting noise is hI(q)i.
Starting from the calculated coherence [equation (13) gives

the ®rst terms of the series expansion], the product z2�b(z)

is � for z =1. Results for the z values of interest are given

in Table 2. The values of the product still show a signi®cant

increase for z > 2. For instance, the condition z = 2 means

�b = 0.53, and the product is 2.15, which is signi®cantly

smaller than �. For z = 3, �b = 0.28, and the product is 2.6.

For these values, pinhole Fraunhofer oscillations are dif®-

cult to observe (see Fig. 2). This means that the observation

of these oscillations is not necessary for the experimental

study of speckle contrast. In practice, z cannot be very

large. In our case, z is varied by opening slits S2, and

inhomogeneities or instabilities of the beam may also have

a strong in¯uence. As a 25% speckle contrast is often

considered to be excellent, z may range from 2 to 3 in

practical experiments, if incoherent scattering is eliminated.

3.4. Beam intensity

The quality of the source is in agreement with the ESRF

data sheets, and no signi®cant degradation is observed after

the focusing optics. This latter was originally designed to

obtain a stable focus size of 300 mm � 300 mm (1/10 mm2)

and, provided that only a small fraction is used, we obtain a

stable FWHM area of 1/200 mm2.

The beam intensity was observed to be about

106 photons sÿ1 for "' ' 1.3� (z ' 2). The intensity esti-

mated from the source characteristics is 1.1 � 107 photons

sÿ1. Some losses have been neglected: for beryllium

windows (�0.1 mm), for which we calculate a transmission

of 0.75, the re¯ectivity of each mirror is roughly 70%,

yielding a total loss factor of 3. This leaves a residual factor

of about 4. As the focus is excellent, the mirror and the

monochromator optical elements are clear of suspicion.

The main explanation for this intensity loss can be found

in the above discussion. There are two unpolished beryl-

lium windows prior to the monochromator and a Kapton

window after the optics, before slits S2. The intensity

diffracted at very small angles by these windows is

completely eliminated in the case of the very high experi-

mental resolution needed here. Qualitatively, this means

that a large fraction of the improvements in synchrotron

radiation source performance are lost because of these

windows.

4. Discussion

We can now brie¯y compare these results with those

obtained on an ESRF undulator beamline (TroõÈka), as

discussed by Mainville et al. (1997) and Abernathy et al.

(1998). In the latter paper, the degree of coherence is

estimated for a very different set-up: (i) by means of plane

mirrors, a wide energy bandwidth (��/� = 1.3%), corre-

Figure 9
Curtosis (with the Gaussian constant 3 subtracted). Same symbols
and results as Fig. 8.
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sponding to the third harmonic of the undulator, is selected,

and the beam intensity is three orders of magnitude larger

(109 photons sÿ1); (ii) the main causes of loss of coherence

are the windows which decrease � by a factor of 10

(Abernathy et al., 1998), and the energy bandwidth which

decreases � by a factor of 3 for q ' 0.01 AÊ ÿ1. This also

explains the elongated shape of the speckles observed.

The brilliance of an undulator is 103 times greater than

that of a bending-magnet beamline, and this is suf®cient to

explain the observed intensity difference.

Apart from this obvious difference, we have here chosen

to improve the degree of coherence and to have a better

control of its value and stability. This is partly at the

expense of intensity, but a smaller intensity can be

compensated by greater coherence in a speckle experiment.

Low intensity and high coherence are also more compatible

with the use of a CCD area detector, at least with the

droplet algorithm. Currently, CCDs are read at a low rate

(less than 1 MHz conversion frequency for Princeton

Instruments), and our algorithm works if individual

photons are easily identi®ed (in practice, the intensity must

be less than one-tenth of an X-ray per pixel in the main part

of the detector).

Windows introduce strong degradation of the synchro-

tron radiation source properties. Here, the brilliance is

decreased because the windows act as secondary sources in

the beam trajectory.

5. Conclusions

In this paper, we have shown that excellent results can be

obtained in static coherent experiments with the D2AM

beamline. The discussion clearly shows that the optical

performance is at a high level. Moreover, the set-up is

stable for several hours and for q smaller than 0.01 AÊ ÿ1.

Removal of the Kapton windows will increase the degree of

coherence and make its measurement more precise. The

arrangement provides a tool for the study of slow processes,

of small spatial extension (from 100 to 2000 AÊ ).

For the future of such measurements, focusing and

monochromated beamlines from window-free undulators

will be very ef®cient.
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