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analysis of EXAFS measurements E° = h v -  h2kE/2m and the mean free path ~. being the same in Error I I1~ II 

each term of the sum. 
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The parameter set of the EXAFS formula is separated into two 
vectors, the vector x with components to be defined by the fit to 
the experimental data, and the vector y with components given 
by the model. Thus, the EXAFS formula is written as 
x(k)= g(k;x,y) with 

A method to analyze EXAFS data is proposed which follows the 
error propagation from the measured input data to the output of 
the physical parameters taking into account experimental and 
systematic errors. The Bayesian approach is used to describe the 
modification of the a priori  expectation for the model parameters 
due to the measurement. A description is discussed to determine 
the relative weight of the a priori  information compared to the 
experimental information in their impact on the results for the a 
posteriori expectation values and their variances. Computer 
generated data above the Ta L3-edge are used to demonstrate the 
robustness of the method. 

Keywords: error analysis; Bayesian approach; FEFF code. 

x=(S2,E0,R1,. . ,Rp,O'I , . . ,~p,N1,. . . ,Np) ; 

y = (X(k), fefr, i (k, R1) I,..,I feff, i (k, Rp) [,¢, (k),..,¢p (k)) .  

In a typical case some estimate of x is known a priori (x°)), 
though with large uncertainty perhaps. To get dimensionless fit 
variables, we redefine the components of x as 

Xn:'(Xn X'n0')/'Xn 
with Ax. being in the order of magnitude of the range of (x,-x~(°)). 
The uncertainty of x is modeled by a Gaussian probability 
distribution 

l 2 

Pprior oc e -~'Xpri°r(x) 
N 

with 2 )~prior = Z Ann'  XnXn' " 
n,n'=l 

1. Introduction 

Like most of the data analysis procedures in physics the EXAFS 
analysis requires the inference of model parameters from 
measured data. Generally a large parameter space is needed in 
order to make the model sufficiently flexible, which usually is in 
conflict with the limited information contained in a finite set of 
data. The ill-posed nature of this problem is treated by 
introducing a priori  information. To avoid an a priori  restriction 
of the number of model parameters, an algorithm is needed a) to 
construct a subspace of the whole model parameter space where 
the data determine the fit, and b) to define rules to associate a 
priori  values with the remaining parameters. 

We assign statistical errors and an estimate of systematic errors to 
the input data and introduce an uncertainty estimate for the model 
employed. The output of the fit then consists of probability 
distributions for the model parameters depending on the 
experimental uncertainties, the reliability estimate of the model, 
and the width of the a priori  probability. 

For the matrix Ann, we make the simplest ansatz setting it 

proportional to the unit matrix: Ann, = O~Snn,. 

After the measurement of L values d e of the EXAFS signal at 

wave numbers k e with experimental errors Adethe conditional 

probability distribution for a specific model parameter set (x, y) 
is given by 

L 1 2 
P(dlx,y)= I-'[(2nAd2) -1'2 e -)-xm' with 

e=l 

X exp = / 
t=l 

Integration over the parameter vector y weighted with the 
corresponding systematic errors Psyst(Y), also assumed to be 
Gaussian, yields the conditional probability distribution P¢o.d(d[ 
x). According to Bayes' theorem the a posteriori probability to 
find x is defined as 

2. Formulation of the Model 

The discussion will be based on the standard formula for X-ray 
absorption in a polycrystalline or amorphous sample 

~i=~ 1 Ifdr'i(k' Ri)l e-Zk%~ -2Ri/~'(k' sin(2kRi + ~bi (k)) x(k) = - -  N i 2 
Ri 

Ppost = 
eprior (x) 

fPp.or(')Poon,(  I') d"" 

which expresses the modification of the a priori  expectation of 
the model parameters x as the result of the experiment. 

A linear expansion of g(k;x,y) in x and y_y(O) yields 

Gaussian probability distributions for 
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Pcond oc e -~-X~p and Ppost oc e - ~ - ~  

2 2 ,2 
Zpost = Zprior + ~exp • 
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than 1%.  The corresponding values for the variances c~i z are 
with 3,10-s .~z and less then 63 %. The regularization parameter 

et=a t*) defining the dimension of subspace P yields Np=48, 
which is less then the usual definition of 
Nef f ~ 2 .Ak .AR/ rc=  66. 

The  a poster ior i  expectation value of the model parameters 

Y:=(X)post = ~xPpost(X ) dNx follows from the normal equations 

2 
0)Cp°st=0 for n=l...N, 

Ox n 

or, in terms of the information matrix Q, the a prior i  information 
matrix A = c c I ,  and the inhomogenity b one obtains 

( Q + c t l ) Y = b .  The error correlations between x n and x n, as 

well as the a pos ter ior i  errors of x are defined by the variance 

matrix (Q+ot l )  -1 . 

4. Summary 

A new method for an EXAFS analysis was presented which takes 
into account the error propagation from the measured input data 
to the output of the physical parameters. The method uses Bayes' 
theorem to introduce a pr ior i  knowledge on the parameters. A 
procedure first given by Turchin was applied to ensure that the 
information contained in the data is not distorted by a pr ior i  
input into the fitting procedure. Its functioning was demonstrated 
for a computer-generated data set for Ta above the L3-edge. 

The strength factor a determines the weight of the a pr ior i  
information for the solution of the a pos ter ior i  probability and 
the expectation value. Following Turchin's suggestion (Turchin 
et al. (1971)) we choose ct" satisfying the condition 

N 
XeZp(Y)=Lef t = L - ~  q_n • . 

n=lqn +co 
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Where q, are the eigenvalues of the symmetric matrix Q. The 
sum on the r.h.s, generalizes the concept of the 'number of free 
parameters' to the present case of an ill-posed problem. In 
general the a pr ior i  guess of x and y is not close enough to the 
final solution to justify the linear expansion of the model 
function g(k;x,y) used above. One therefore has to use a 
regularized Newton iteration scheme first to come sufficiently 
close to the final solution x ('). 

3. Application 

The model is tested for a computer generated EXAFS function 
above the Ta L3-edge using the codes ATOM and FEFF and the 
known bcc structure with a=3.3 A. The curved wave amplitude 
filter of FEFF was set to 4% and the variances ci 2 for the 
resulting 47 paths were set to 0.003 ,~2. The iteration started with 
an a pr ior i  data set (N=96 parameters) using values with a 
distinct offset relative to the true values 

2 = So 2 0.1 = E 0 - 2 eV, Ri,prio r = R i - 0.05 2~0 ( S0,prior - , E0,prior 

or.2 . = g2 -0 .001  A2). The coordination numbers were left l,prlor 

unchanged. We chose such a large model space and rather 
unrealistic a pr ior i  values for the model parameters to show the 
robustness of the method. We further assume unrealistically 
small values for the experimental and systematic errors 

A~exp = 10 -4 , A~i = 10-2 tad,  A Iforr, i]/lfeff, i[ = 0 . 1 % ,  

A t / t  = 0.1% ) in order to obtain a reasonably large dimension 

for the subspace P of the total model-parameter space, in which 
the data, rather than the a pr ior i  assumptions determine the fit. 
The deviations of the a pos ter ior i  expectation values from the 
true values come out to be 0.002 and 0.03 eV for S02 and Eo, 
respectively. The first three single scattering path lengths deviate 
by less than 10 .4 ~ and the deviation of all path lengths is less 


