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An efficient, finite temperature, recursion method (RM) is intro- 
duced for calculations of the mean-square relative displacements a 2 
in multiple scattering (MS) XAFS Debye-Waller factors. Instead of 
calculating total projected densities of modes, the calculations are 
based on a double (f-function representation. Results for the Debye- 
Waller factors are found to be in agreement with equation-of-motion 
(EM) method to within about 10% percent for all MS paths. 
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1. Introduction 

In the weak disorder limit, or harmonic approximation, the mean 
square variation a~ = ((rj  - Rj)9) in the effective MS path length 
R~ = (r~) controls the XAFS Debye-Waller (DW) factor. This 
damping parameter is crucial to the success of the modem theory 
of XAFS (Crozier et al., 1988). We have shown in a previous pub- 
lication (Poiarkova & Rehr, 1999) that a~ for a general MS path j 
can be calculated in terms of the local projected vibrational density 
of states (VDOS) p~ (to), 

2 h f d w  /3hw 
aj (T) = 2#j -w -pj(tO)c°th 2 ' (1) 

d 

where/3 = 1 / k B T  and #j is an effective reduced mass for path j 
that ensures normalized VDOS pj,  

( ) 1 __K--- 1 / ~ ' i - + / ~ ' i +  2 

#J i=1 ~ 2 (2) 

Here i +  = i + 1, i = nj + 1 corresponds to site i = 1, nj is the 
number of scattering legs in the path, and /~ i+  is the directing unit 
vector between scattering sites i and i+ .  

A number of techniques are being used for VDOS calcula- 
tions. These include correlated Einstein (CE) and EM methods. 
The first one is an isotropic approach and requires knowledge of 
Einstein temperature (or frequency) for a given material. The CE 
model approximates the vibrational spectrum with a single delta- 
function centered at a path dependent effective vibrational fre- 
quency tOE (Rj  ), pj (to) = (i(to -- toE(Rj ) ). The traditional single 
frequency CE approximation does not differentiate between acous- 
tic and optical modes and can lead to poor agreement with experi- 
mental data. The EM approach (Rehr & Alben, 1977) is based on 
solving 3Nat equations of motion in real time given a few local 
force constants in an Nat-atom cluster. The EM method provides 
good agreement with experiment (e.g. 4% error for the first three 
shells in Cu crystal) but can be time consuming. 

The purpose of this report is to present an improvement to the 
traditional CE model by using the recursion or Lanczos method 
(Haydock et aL, 1975) with a given set of microscopic force con- 
stants. We discuss our results in comparison with the CE and EM 
calculations. Further details will be presented elsewhere. 
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2. Formalism 

The RM is a technique for determining local physical behavior 
by successive approximations, which involve more and more of 
a given system. We are interested in the projected density pj (to), 
but it is more convenient to deal with the distribution with respect 
to 0, 2 = x, 

g~ (z )  - ( Q ~ l ( i ( x -  D ) I Q j )  - PJ(to) (3) 
2to 

Here D~,B(I , m) = ~I,,~,~(/, m ) / M ~ t M ~  is the dynamical ma- 
trix of order 3Nat x 3Nat with ¢t,~,,m~ denoting the second 
derivatives of the potential energy V of the lattice deformation 
with respect to the atomic displacements uz,~ and u~a  taken in 
the equilibrium configuration, and IQJ) = I ~ ( & l , , ~ j - +  
R1,2)/2,... ~ ( ~ i -  +/~ i+) /2, . . .0)  (i = 1,...nj) is 
a normalized initial displacement state for MS path j .  If only the 
central interaction between the nearest neighbors is taken into ac- 
count, V = (1/2))-~klm((irlm) 2 for bond stretches (irtm = 
( U l  - -  U r n )  " Rlm and the matrix of the second derivatives can be 
written in the form 

Nm 

Or,,a (l, m ) = Z kim eq'am k~ira (ilm -- klm ]{~m kffm, 
i = 1  

(4) 

where ktm is a bond-stretching force constant for nearest neigh- 
bors I and m, Nm is a number of the nearest neighbors of atom m, 
and/~',,~ is the ath cartesian component of the directing unit vector 
between atoms I and m. 

The RM yields a continued fraction representation of gj (x), i.e. 

1 Im 1 - -  m 

9j (X) = 7r bo (5) 
X - -  a o  - -  

X -- al  -- 
X -- a2 -- . . .  

in which Im x ---r 0 +. The coefficients an and bn determine a 3- 
term recursion relation which defines new orthogonal basis states 
In), 

In + 1) = (D - a.)ln) - b,,-lln - 1), 
10) - IQJ) ,  I -  1) - 0. (6) 

One can picture these states roughly as "shell states" since their 
largest components are typically on the nth shell of neighbors to 
the atoms in the path. If one truncates the fraction after N tiers, the 
continued fraction can be unfolded as an [ N / N  + 1] Pad6 approx- 
imate, QN (x)/PN+x (x), the polynomials in which may be gener- 
ated by recurrence relations similar to Eq. (6). Taking the imagi- 
nary part then yields an N-point (i-function representation, 

N 

p~(w) .~ y ~  w~(i(w 1/2, 
- x i ), (7) 

i = 1  

where wi and xi are respectively residues and poles of 
QN(x) /PN+I(x ) .  This approximant yields exactly the leading 
2N power moments mr, of the spectrum g~ (x), and also gives an 
N-point Gaussian quadrature formula for a~, 
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~ coth (8) 
2/zj i : x  Xi 2 

From the leading term of the continued fraction (Eq. 3), the result 
for a single tier is g j (x)  = 1/(1 - ao) which corresponds to the 
CE approximation with w~ -- ao = (Qj IDIQj ) which is equal to 
the second moment rr~2. 

In the present study we limit the continued fraction to the sec- 
ond tier. Thus, the vibrational spectrum is approximated with two 
&functions centered at the effective frequencies w~,2 = 
with the corresponding weight factors w l  = (al  - 372)/(xl  - x2)  

a n d  '//32 - "  (371 - - a l ) / ( 3 7 1  -- x2), where 

1[ ] 
x l , 2 = ~  a o + a 1 4 - ~ / ( a o - a l )  2 + 4 b o  . (9) 

In this, case the lowest frequency represents an effective acoustic 
mode whereas the highest one corresponds to an effective optical 
mode. 

3. Calculation and results 
The model structure used in the calculation is a 225-atom clus- 
ter (11 shells, /:~m~Lx = 8.47 A) of fee Cu crystal without peri- 
odic boundary conditions. Following the model of Rehr and Alben 
(Rehr & Alben, 1977), only a single central interaction between 
the first nearest neighbors with force constant k = 27.9 N/m was 
taken into account. The MS 0 .2 at 295 K calculated using the RM in 
comparison with results obtained from the EM method and a single 
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Figure I 
2 MS XAFS aj for Cu at 295 K as calculated with a single force constant 

(k = 27.9 N/m) with RM, RM corrected with the 9/8 factor (RMc), EM 
and CE methods vs MS path index. Two experimental values (Stem et 
al., 1980) corresponding to the first and second shell SS are given for 
comparison. 

Table 1 
Values of MS o-~ x 10-3~ 2 at 295 K for a 225-atom cluster of Cu as 

calculated with a single force constant (k = 27.9 N/m) model using RM 
(aRM) and CE (a~E) approximation vs MS path index j .  Two experi- 
mental values (Stem et al., 1980) corresponding to the first and second 
shell SS are given for comparison. Also, given are Einstein frequen- 
cies we, effective frequencies Wl,2 (all in THz), and the corresponding 
weight factors wl,2 (dimensionless). 

J ~ ,~  ~ E  ~xo we wl w2 wa w2 
1 7.34 6.26 7.93 36.4 27.5 41.9 .434 .566 
2 9.67 7.72 11 .08  32.5 24.9 41.2 .592 .408 
3 7.26 6.45 38.1 28.9 42.2 .349 .651 
4 8.76 7.22 35.5 26.3 41.7 .458 .542 
5 9.39 7.72 32.5 25.0 39.8 .550 .450 

frequency CE model with we based on the second moment of the 
dynamical matrix are presented in Fig. 1 versus scattering paths 
index j listed in order of increasing path length as generated by 
FEFF7 (also see Table 1). For example, path number 1 corresponds 
to first shell single scattering (SS), 2 to second shell SS, 3 to 111 
triangular MS path, 4 to triangular 211 MS path, 5 to third shell SS, 
12 to double scattering from the first neighbor (a122 = 4o'12) etc. 

The a~ calculated via the RM appear to be within about 9% of 
the corresponding EM values which are in a good agreement with 
experiment (2.7 % for the 1st shell and 4.4 % for the 2nd), whereas 
the CE values are typically 15-27% off in comparison with EM. 
These results indicate that the RM provides a much better agree- 
ment with the EM method and experiment than the CE model for 
all MS paths. 

Typically, the RM somewhat underestimates the o "2 values for 
Cu due to insufficient weight at the lower part of the spectrum. 
In cases when VDOS contains low frequency acoustic modes (e.g. 
in crystals), in order to account for these modes it is sufficient to 
multiply the weight of the lowest effective frequency by a factor 
of 9/8. This factor is calculated in such a way that it weights low 
frequency modes as they would be in the correlated Debye model. 
For example, in case of Cu at 295 K this correction brings a12 and 
ag up to 7.91 and 10.62 x 10-3.~t 2, in closer agreement with EM 
method and experiment. 

4. Conclusion 

The RM presented in the paper provides an efficient and gen- 
eral approach for the calculation of MS XAFS DW within the 
harmonic approximation from a few local force constants. This 
approach takes into account both effective optical and effective 
acoustic modes which is an improvement over the traditional CE 
model. Although, the RM yields accuracy comparable to the EM 
method, it requires less computation time and can be easily used 
for ionic crystals, in which case EM approach can be unstable un- 
less proper boundary conditions applied. Additional temperature 
dependence from anharmonic and other corrections will be consid- 
ered elsewhere. 
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