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Figure 1 
Windowed Fourier transform of Cu K-edge XAFS spectrum observed 
at Photon Factory in KEK. 

The basic XAFS equation given by Sayers, Stern and Lytle is 
solved by a linear inverse problem method instead of usual Fourier 
transform. The Wavelet-Galerkin discretization is utilized in our 
formulation for efficient calculations. As a result of model 
calculations, sufficiently exact solutions for radial distribution 
function are obtained with expansion by a small number of 
wavelets within the range of description of the basic XAFS 
equation. 
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1. Introduction 

Since the proposition of the basic equation for the analysis of 
XAFS, or X-ray absorption fine structure by Sayers, Stern and Ly- 
tie (Sayers, Stern and Lytle, 1971; Lee and Pendry, 1975; Ashley 
and Doniach, 1975), structural informations are obtained mainly 
by the method of Fourier transform based on the assumptions that 
the approximation of phase shift by a linear function of wavenum- 
ber k and the utilization of a window function to limit the range 
of wavenumber k in the Fourier transform are justifiable. Even for 
some pure substances, the phase shift is an undulatory function of 
wavenumber k (Teo and Lee 1979) and Fourier transform is not 
adequate. As a typical example of usual XAFS analysis, the imag- 
inary part of the windowed Fourier transform of Cu K-edge XAFS 
spectrum observed at Photon Factory in KEK is shown in figure 1. 
In the figure 1, there are corresponding peaks up to the third shell 
at approximately exact locations of each neighboring shell atoms. 
However, many pseudo peaks are also emerged and as an inherent 
characteristic of Fourier transform, the plot has impractical minus 
part. Moreover, proportions between the height of each peak do not 
reflect the correct number of atoms in each shell. In such cases, it is 
desirable to treat the basic XAFS equation from the point of view 
of the linear inverse problem to obtain more optimized solutions. 

Sayers Stern and Lytle formulated the basic XAFS equation by 
considering only single scattering in which the scattered electron is 
described by plane wave. In continuous form, for one kind of atom 
pairs, that equation is given as follows (Lee et al., 1981), 

f 0  ° 
x(k) = I f (k ,~ ) l  g(r)e-~-~Y s in(2kr  + ¢(k))dr, (1) 

k 

Here, x(k) ,  If(k, 7r)l, A(k) stand for the observed XAFS spec- 
trum, the backscattering amplitude from neighboring atoms, and 
the electron mean free path, respectively. ¢(k) is the total phase 
shift for the photoelectron, r and k are the distance from the cen- 
ter of excited atom and the wave number for the scattered elec- 
tron. 9(r) is the unknown radial distribution function for neigh- 
boring atoms. This equation has the general form of the first kind 
Fredholm integral equation which can be generally solved with the 
method of linear inverse problems. 

In the field of image restoration and computerized tomography, 
wavelet transform is incorporated into the method to solve linear 
inverse problems in each field for purposes of nonlinear noise fil- 
tering and efficient discretization of the problem. Wavelet trans- 
form is also acknowledged as an general alternative for windowed 
Fourier transform. 

In the present article, a wavelet-Galerkin regularization algo- 
rithm to solve the single component basic XAFS equation is for- 
mulated and tested. 

2. Methods 

The k space part of the equation 1 is discretized using 256 fifth de- 
gree Daubechies wavelet(Daubechies 1992) bases which have the 
displacement and the scale parameter specified in the table 1. 

Table 1 
Ranges of wavelet displacement parameter for expansion of k space in 
each scale of wavelet subspaces, jo is the scale for the scaling function 
used in this expansion and is fixed to 1. j is the scale for the wavelet sub- 
spaces. This range is determined to cover the range of [1.5,15.5](/~ -1 ) 
in k space. 

3o = 1 j = 1 j = 2 j = 3 Total number of wavelets 
[-5,30] [-1,34] [2,65] [8,127] 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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The r space part is discretized with the collocation method us- 
ing 1024 sampling points between the range of [0.0, 8.0](~). The 
discretized integral equation 1 takes the form of finite size matrix 
equation, 

X = Kg.  (2) 

The regularized solution of this matrix equation 2 is calcu- 
lated by applying the Landweber-Friedman-Bialy iterative method 
(Landweber 1951), 

g,~+l = g,, + o~K' (x  - Kgn) ,  (c~ > 0). (3) 

Here n is the number of iteration step, K* is transposed K,  g,~ is 
the approximate solution for radial distribution function at nth step 
and a determines the rate of convergence in iteration, c~ is fixed to 
5000.0 in our present calculation. As a stopping rule for iterations, 
we minimized the difference between the input spectrum and the 
reconstructed one, 

II Kg~ - x I I .  (4)  

Zero vector is used as an initial guess for g,~ in our calculations. 
The condition on radial distribution function, g(r) > 0 is in- 

cluded by cropping the minus part of output g,~+x (v) in each it- 
eration, and then by using this cropped output as a guess for next 
step. 

3. Test results 

To estimate the basic performance of our scheme, a model copper 
K-edge XAFS spectrum is used as an input spectrum x ( k )  for our 
test calculation. This model spectrum is produced by applying the 
equation 2 to the analytical model copper radial distribution func- 
tion upto the seventh shell, which is defined as follows, 

g(r) C E A ~-'~(~- R')2 = i t  (5) 

The exponential parameter a and the coefficient C are fixed to 
10.0 and 0.432529 respectively. The amplitude and the location 
parameters are given in the table 2. 

Table 2 
Amplitudes and locations of peaks for radial distribution function of 
copper. 

Shell Number(i) 1 2 3 4 
A~ 1.83679 0.459128 1.22459 0.459197 
R~ (,&) 2.556 3.615 4.427 5.112 
Shell Number(i) 5 6 7 
A~ 0.734816 0.204081 1.049451 
R~ (,&) 5.715 6.261 6.763 

The reconstructed radial distribution function for the model 
spectrum is shown in figure 2 with the original model distribution. 
The windowed Fourier transform of our model spectrum is also 
plotted in the same figure. 
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Figure 2 
Reconstructed radial distribution function for model Cu K-edge XAFS 
spectrum. Exact oroginal model radial distribution function is also plot- 
ted for reference. 

4. Conclusion 

The basic XAFS equation is regularized by Wavelet-Galerkin 
method using Daubechies wavelet and solved by Landweber- 
Friedman-Bialy iteration method. The result of test calculation for 
our scheme is fairly improved in comparison with that of the Win- 
dowed Fourier Transform. 

For practical use, our scheme is still insufficient because it is 
based on the too-much-simplified description of XAFS phenom- 
ena by the basic XAFS equation. It is to be modified to accomodate 
multiple scattering effects in future. 
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