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In this paper thermal effects in extended X-ray absorption ®ne structure (EXAFS) and X-ray

photoelectron diffraction (XPD) due to atomic vibration in cubic and quartic potentials are studied

by use of Feynman's path-integral approach. This approach can be applied to strongly anharmonic

systems where the cumulant analyses break down. It is closely related to the well known classical

approach which is only valid at high temperature. The phase of the thermal factor plays an important

role both in EXAFS and XPD analyses for the asymmetric potential with strong anharmonicity. At

low temperature the cumulant expansion up to the second order for the thermal damping function

agrees well with the self-consistent result, but up to higher orders should be taken into account for

the phase function. At high temperature the result from self-consistent calculations shows the

characteristic behaviour: the thermal damping function is negative in the high-k region for both

strongly and weakly anharmonic systems. The cumulant approximation cannot reproduce this

behaviour. For the strongly anharmonic systems the quantum result shows qualitatively different

behaviour from the classical approximation at low temperature: the former does not show the

negative values even in the high-k region, while the latter shows the phase inversion in the amplitude.

Keywords: EXAFS; X-ray photoelectron diffraction; Debye±Waller factors; path integrals;
cumulant expansion; anharmonic vibration.

1. Introduction

Theoretical aspects of temperature dependence in

extended X-ray absorption ®ne structure (EXAFS) were

®rst studied by Beni & Platzman (1976) within the frame-

work of harmonic vibration for nuclear motion and plane-

wave approximation for photoelectron waves. Since that

time some improvements have been found beyond the

harmonic approximation (Tranquada & Ingalls, 1983;

Fujikawa & Miyanaga, 1993; Miyanaga & Fujikawa,

1994a,b; Yokoyama et al., 1996a,b; Ishii, 1992) and the

plane-wave approximation (Brouder, 1988; Brouder &

Goulon, 1989; Rennert, 1992, 1993; Fujikawa et al., 1995,

1998; Yanagawa & Fujikawa, 1996a; Yimagawa & Fuji-

kawa, 1996). In order to include the anharmonic effects in

the EXAFS analyses, perturbation theory has been applied

by use of temperature Green's function or thermal

perturbation theory. The former approach has been applied

to in®nite crystals and the latter to ®nite clusters in solids.

These perturbation approaches are useful for describing

weak anharmonicity in the analyses of temperature effects

in EXAFS, electron energy-loss spectroscopy (EELS) and

X-ray photoelectron diffraction (XPD) spectra, and they

have provided interesting information based on cumulant

expansion.

On the other hand, the real-space classical approach

proposed by Yokoyama et al. (1989) has been widely used

to relate the EXAFS Debye±Waller factors to interatomic

potential. Dalba et al. have extensively applied the real-

space classical approach to the thermal factor in EXAFS

for AgI (Dalba et al., 1995), and to other systems (Dalba et

al., 1998). Stern et al. (1991) performed the anharmonic

analysis of the EXAFS for liquid Pb, and Baberschke and

co-workers studied the anharmonicity on the surface by

EXAFS (Arvanitis et al., 1993; Rabus et al., 1991). The

classical approximation can be safely used in the high-

temperature region even though the anharmonicity is

strong (Fujikawa & Miyanaga, 1993). Frenkel & Rehr

(1993) related XAFS cumulants with the thermal expan-

sion quantum mechanically .

Recently, we have derived general expressions for the

Debye±Waller factors in EXAFS, EELS and XPD based on

the perturbation theory by use of temperature Green's

function, and have applied these to one-dimensional crys-

tals (Fujikawa & Miyanaga, 1993; Miyanaga & Fujikawa,

1994a,b). Basically they are based on perturbation theory,

and their applicability is restricted to weakly anharmonic

systems.

The previous paper (Fujikawa et al., 1997) describes a

real-space approach to the EXAFS thermal factor analyses
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96 Path-integral approach to Debye±Waller factors

based on the ®nite-temperature path-integral method

originally developed by Feynman (1972) and improved by

Cuccoli et al. (1995) and Feynman & Kleinert (1986). This

approach without use of the perturbation theory can be

applied to strongly anharmonic systems and can be closely

related to the classical formulae, so we can study the range

of the applicability of the widely used cumulant analyses

and of the classical approximation for the study of EXAFS

thermal factors. This kind of study is important and basic

for the EXAFS, EELS and XPD analyses. In the previous

paper (Fujikawa et al., 1997) we pointed out the breakdown

of the cumulant expansion for a double-well potential,

which can be observed as an unexpected phase inversion of

the EXAFS oscillation (Mustre de Leon et al., 1992). More

recently we applied the path-integral approach to the

analyses of XPD and EXAFS thermal factors of diatomic

systems vibrating in the Morse potential in thermal equi-

librium at temperature T (Miyanaga & Fujikawa, 1998).

The Morse potential can describe dissociation processes

because of asymmetry, so that it is important to study the

EXAFS thermal factors for this anharmonic dissociative

potential both from chemical and physical interests. The

Morse potential is asymmetric and the phase factors should

also be in¯uenced by the thermal vibration; therefore it is

interesting to study the strongly anharmonic effects on the

EXAFS and XPD phase factors. Yokoyama (1998) applied

the path-integral method to EXAFS analyses for the Br2

diatomic molecule which can be considered as a model with

cubic and quartic anharmonic potential. He showed that

the effective potential method based on the path-integral

technique reproduces well the experimental second, third

and fourth cumulants.

In this paper we apply the path-integral approach to the

EXAFS and the XPD thermal factors of diatomic systems

vibrating with additional cubic and quartic anharmonic

potential which are in thermal equilibrium at temperature

T. This potential is asymmetric and the result can be

compared with the previous result for the Morse potential.

2. Basic theory

Let us consider diatomic systems in a reservoir at

temperature T whose relative vibrational motion is

described by the Hamiltonian

H � � p2=2�� � V�q�; �1�
where � is the reduced mass and q is the instantaneous

interatomic distance. When we deal with the statistical

average of an operator A, we should calculate the trace,

hAi � Tr �A��=Z; �2�
where � is the density operator de®ned by

� � exp�ÿ�H�; �3�
where � = 1/kBT and

Z � exp�ÿ�F� � Tr ��� �4�

is the partition function for the system. The trace can be

calculated by applying Feynman's path-integral techniques.

However, instead of summing over all paths in just one

step, one can classify the paths into two groups as proposed

by Feynman (1972). One group consists of an average

(quasi classical) path given by

q � R�
0

du q�u�=�; �5�

and the other group consists of quantum ¯uctuation around

q. The average path is the same as the classical path in the

high-temperature limit (�! 0). To use the non-perturba-

tion method based on the path-integral technique we

approximate the instantaneous potential V [q(u)] by a trial

potential quadratic in the ¯uctuation path (Cuccoli et al.,

1995; Feynman & Kleinert, 1986),

V ' V0�q; q� � w�q� � �!�q�2�qÿ q�2=2: �6�
Now the parameters w(q) and !(q) are to be optimized so

that the trial reduced density well approximates the true

reduced density. A variational approach which gives the

same result as the self-consistent approximation is also

possible. The ®nal expression for the average of a local

operator A can be represented in terms of the probability

density just like classical statistical mechanics (from now on

q is used instead of q for brevity),

hAi � R A�q�P�q� dq: �7�
This expression, however, includes the important quantum

effects, and the probability density is represented by

P�q� � �1=Z���=2���1=2 exp�ÿ�VL�q��; �8�
where the local effective potential VL(q) is de®ned by

exp�ÿ�VL�q�� �
R

dq0 exp�ÿVe�q� q0���2���q� q0��ÿ1=2

� exp�ÿq2=2��q� q0��: �9�
Now we have used the relations

Ve�q� � w�q� � �1=�� ln�sinh f �q�=f �q��; �10�

f �q� � �!�q�=2;

��q� � �coth f �q� ÿ 1=f �q��=�2�!�q��: �11�
The local effective potential VL(q) is reduced to the bare

potential V(q) in the high-temperature limit. In the EXAFS

analyses the operator A should be exp(2ik��), and in the

XPD analyses it should be exp[2ik��(1 ÿ cos��)] within

the plane-wave approximation, where k is the wavevector

of an ejected photoelectron, k = |k|, and �� is the projected

relative displacement (Beni & Platzman, 1976) which is

simply given by �q = q ÿ q0 (q0 is the equilibrium

interatomic distance) in one-dimensional cases (Tranquada

& Ingalls, 1983). �� is the scattering angle of the photo-

electron by a surrounding atom �. Thus, what we should

calculate to study EXAFS thermal factors is the thermal

average including the quantum ¯uctuation given by use of

the probability density P(q) de®ned by (8),
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g�k� � hexp�2ikq�i
� R1
ÿ1

exp�2ik�P�q� dq � jg�k�j exp�i'�k��: �12�

The XPD thermal factor depends on the scattering angle �
in addition to k,

g�k; �� � hexp�ikq�1ÿ cos ���i
� R1
ÿ1

exp�ikq�1ÿ cos ���P�q� dq

� jg�k; ��j exp�i'�k; ���; �13�

in the plane-wave approximation. This factor does not show

the thermal damping in the forward direction. If we go

beyond the plane-wave thermal approximation, the

thermal damping can be expected even in the forward

direction (Yanagawa & Fujikawa, 1996b; Fujikawa et al.,

1998). We now shifted the origin for the potential V to be

q0 = 0. This expression clearly shows that the widely used

classical real-space representation is reproduced with some

modi®cation including the quantum ¯uctuation effects: the

original interatomic potential V should be replaced by the

local effective potential VL(q) which is temperature

dependent and tends to V(q) at high temperature from a

physical consideration.

When all of the integrals in the cumulants and also the

cumulant expansion converge, the thermal damping func-

tion g(k) can be written

g�k� � exp�ÿ2k2hq2ic � 2
3 k4hq4ic ÿ : : :�

� exp�i�khqic ÿ 4
3 k3hq3ic � : : :��: �14�

The nth-order moments can be evaluated by

hqni � R1
ÿ1

qnP�q� dq; �15�

and those cumulants are calculated from the lower-order

moments,

hqic � hqi;

hq2ic � hq2i ÿ hqi2;

hq3ic � hq3i ÿ 3hq2ihqi � 2hqi3;

hq4ic � hq4i ÿ 4hq3ihqi ÿ 3hq2i2 � 12hq2ihqi2 ÿ 6hqi4:
�16�

In comparison with the results for the symmetric potentials

(Fujikawa et al., 1997), the odd orders of the cumulant

expansion can contribute to the phase of the thermal

damping factor. This expansion is useless for the Morse

potential in the high-temperature region because each of

the cumulant hqnic diverges for this potential, whereas each

Figure 1
(a) The quantum [solid line, given by equation (8)] and the classical (dashed line) probability density function for the weak anharmonic
potential (a = 0.05, b = 0.1) at T = 0.1. (b) The same graph as (a) except for T = 2.0. (c) The same graph except for the strong anharmonic
potential (a = 2.5, b = 5.0) at T = 0.1. (d) The same graph as (c) except for T = 2.0.
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cumulant converges for the present anharmonic cubic and

quartic potential.

The anharmonic cubic and quartic potential can be

represented as

V�q� � ��!2
0=2�q2 ÿ �aq3 � �bq3; �17�

where � is the reduced mass, and a and b are parameters

which describe the anharmonicity; hereafter we use a = 0.05

and b = 0.1 for weak anharmonicity and a = 2.5 and b = 5.0

for strong anharmonicity. In the practical systems it has

been reported that a = 0.32 and b = 0.17 for liquid Pb (Stern

et al., 1991), a = 0.76 and b = 0.42 for Kr crystal (Yokoyama

et al., 1997) and a = 0.714 and b = 0.43 for the Br2 molecule

(Yokoyama, 1998). For the present cubic and quartic

potential, !(q) and w(q) are given by

!2�q� � !0
2 � 12b��q� ÿ 6aq� 12bq2; �18�

w�q� � ��!0
2=2�q2 � �b�q4 ÿ 3�2� ÿ �aq3: �19�

In the numerical calculation, � = !0 = 1 for simplicity. We

consider the two different temperature regions: reduced

temperature T = 0.1 for low temperature and T = 2.0 for

high temperature (T = 1.0 corresponds to the Einstein

temperature). T = 2.0 (T = 0.1) corresponds to 132 K

(6.6 K) for the PbÐPb atomic pair (Stern et al., 1991) and

T = 2.0 (T = 0.1) corresponds to 1046 K (52.3 K) for CuÐO

(Crozier et al., 1987).

3. Results for EXAFS thermal factors

Figs. 1(a) and 1(b) compare the probability density of the

self-consistent result, equation (8), with that of the classical

approximation for the weak anharmonic system (a = 0.05,

b = 0.1) at low and high temperature. At low temperature

(T = 0.1), shown in Fig. 1(a), the probability density from

the self-consistent calculation represents the broad peak,

whereas that from the classical approximation is given by

the narrow peak. This phenomena indicates that the

tunnelling effect for the potential well is prominent at low

temperature in the self-consistent calculation. In the case of

the Morse potential (Miyanaga & Fujikawa, 1998) the peak

observed in the self-consistent calculation shifts to larger

distance, which arises from the quantum tunnelling effect

with a ®nite potential well. In the case of a cubic and

quartic potential, the potential well is in®nite and the

prominent peak shift cannot be observed. At high

temperature (T = 2.0), shown in Fig. 1(b), the classical

Figure 2
(a) The EXAFS thermal damping function obtained from equation (12) for weak anharmonicity (a = 0.05, b = 0.1) as a function of k at T =
0.1. The solid line shows the quantum calculation and the dashed line shows the classical approximation. The cumulant up to the second-
order (squares), fourth-order (diamonds), sixth-order (crosses) and eighth-order (pluses) terms. (b) The EXAFS phase function obtained
from equation (12) for weak anharmonicity (a = 0.05, b = 0.1) as a function of k at T = 0.1. The solid line shows the quantum calculation
and the dashed line shows the classical approximation. The cumulant up to the ®rst-order (squares), third-order (diamonds), ®fth-order
(crosses) and seventh-order (pluses) terms. (c) The same graph as (a) except for T = 2.0. (d) The same graph as (b) except for T = 2.0.
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result is quite close to the self-consistent result, and we can

expect that the classical approximation works well. A

similar result was obtained for the Morse potential

(Miyanaga & Fujikawa, 1998).

Figs. 1(c) and 1(d) compare the probability density of the

self-consistent result, equation (8), with that of the classical

approximation for the strongly anharmonic system (a = 2.5,

b = 5.0) at low (T = 0.1) and high (T = 2.0) temperature. The

peak width of the probability density is narrower than that

for weak anharmonicity. At low temperature (T = 0.1),

shown in Fig. 1(c), the probability density from the self-

consistent calculation is broad and shifts to larger distance

in comparison with the classical approximation. This result

is qualitatively similar to the result observed at high

temperature. However, even at high temperature for the

strongly anharmonic system the probability density

obtained by use of the self-consistent calculation shows the

prominent differences from that of the classical approx-

imation, whereas no clear difference has been observed for

weak anharmonicity. This interesting result suggests that

the quantum effect is prominent for the strongly anhar-

monic system.

We consider the important parameter g to describe how

large the quantum effect is. In the case of the Morse

potential,

V�q� � D�exp�ÿ2ÿq� ÿ 2 exp�ÿÿq��; �20�
with

g � �2ÿ2=�D�1=2: �21�
Small (large) g value gives rise to a weak (strong) quantum

effect.

Comparing the third- and fourth-order terms of the

power series expansion of the Morse potential,

V�q� � ÿD�Dÿ2q2 ÿDÿ3q3 � 7
12 Dÿ4q4 ÿ : : :; �22�

with the present anharmonic potential (17), we obtain D

and ÿ in terms of �3!0
6/8a2 and 2a/�!0

2. We thus

approximately estimate the parameter g by use of (21); g =

0.71 for the weakly anharmonic potential and g = 33.8 for

the strongly amharmonic one. This means that the quantum

effect is large for the strongly anharmonic potential. As

shown in Figs. 1(b) and 1(d), the classical approximation is

poor even at high temperature for the strongly anharmonic

Figure 3
(a) The EXAFS thermal damping function obtained from equation (12) for strong anharmonicity (a = 2.5, b = 5.0) as a function of k at T =
0.1. The solid line shows the quantum calculation and the dashed line shows the classical approximation. The cumulant up to the second-
order (squares), fourth-order (diamonds), sixth-order (crosses) and eighth-order (pluses) terms. (b) The EXAFS phase function obtained
from equation (12) for strong anharmonicity (a = 2.5, b = 5.0) as a function of k at T = 0.1. The solid line shows the quantum calculation
and the dashed line shows the classical approximation. The cumulant up to the ®rst-order (squares), third-order (diamonds), ®fth-order
(crosses) and seventh-order (pluses) terms. (c) The same graph as (a) except for T = 2.0. (d) The same graph as (b) except for T = 2.0.
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potential, which is quite in contrast to the weakly anhar-

monic potential.

Figs. 2(a) and 2(b) show the amplitude |g(k)| and the

phase '(k) of the EXAFS thermal factor, respectively,

de®ned by (12) at low temperature (T = 0.1) for the weakly

anharmonic system (a = 0.05, b = 0.1). This ®gure shows the

results from the self-consistent calculation compared with

the classical approximation and the cumulant approxima-

tion de®ned by (14)±(16) [up to the second-, fourth-, sixth-

and eighth-order terms for the amplitude (a) and up to the

®rst, third, ®fth and seventh terms for the phase (b)]. In

Fig. 2(a) the cumulant expansion up to the second-order

term gives quite a satisfactory result for the amplitude, i.e. it

shows a good agreement with the self-consistent calcula-

tion, whereas the classical approximation gives a poor

result. In Fig. 2(b) for the phase, the ®rst-order cumulant

gives a linear function of k, which is a poor approximation,

whereas the cumulant expansion up to the seventh-order

term gives quite a satisfactory agreement. We also observed

the slow convergence for the phase factor in the cumulant

expansion in the study of the thermal damping factor for

the Morse potential (Miyanaga & Fujikawa, 1998).

Figs. 2(c) and 2(d) show the amplitude and phase,

respectively, of the EXAFS thermal factor at high

temperature (T = 2.0) for the weakly anharmonic system

(a = 0.05, b = 0.1). The amplitude is negative at 8 < k <

13 AÊ ÿ1, so that the phase of g(k) changes about � discon-

tinuously at k = 8 AÊ ÿ1. At such a high temperature the

classical approximation works well; however, the cumulant

approximation is poor even for weakly anharmonic systems

because it cannot predict rapid change of |g(k)| and '(k)

near k = 8 AÊ ÿ1. The convergence is very slow for the

cumulant expansion at 10 < k < 14 AÊ ÿ1 (this is signi®cant in

the practical EXAFS analyses). This singular behaviour is

in contrast to the smooth change of |g(k)| and '(k)

observed at low temperature in Figs. 2(a) and 2(b).

Figs. 3(a) and 3(b) show the amplitude and phase of the

EXAFS thermal factor, respectively, at low temperature

(T = 0.1) for the strongly anharmonic system (a = 2.5, b =

5.0). The thermal reduction (attenuation) of the amplitude

for the strongly anharmonic system is smaller than that for

the weakly anharmonic system. The cumulant expansion

shows good convergence for the strong anharmonicity; this

observation is quite similar to the weakly anharmonic

systems in Figs. 2(a) and 2(b). The phase '(k) for the

strongly anharmonic system shows a monotonic increase up

to about k = 20 AÊ ÿ1, whereas that for the weakly anhar-

monic system decreases in the region k > 14 AÊ ÿ1, shown in

Figure 4
(a) The XPD thermal damping function obtained from equation (13) for weak anharmonicity (a = 0.05, b = 0.1) as a function of � at T =
0.1. The energy of the photoelectron is 1000 eV. The solid line shows the quantum calculation and the dashed line shows the classical
approximation. The cumulant up to the second-order (crosses) and fourth-order (diamonds) terms. (b) The XPD phase function obtained
from equation (13) for weak anharmonicity (a = 0.05, b = 0.1) as a function of � at T = 0.1. The solid line shows the quantum calculation
and the dashed line shows the classical approximation. The cumulant up to the ®rst-order (crosses) and third-order (diamonds) terms. (c)
The same graph as (a) except for T = 2.0. (d) The same graph as (b) except for T = 2.0.
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Fig. 2(b). The cumulant expansion shows rapid conver-

gence in comparison with that for the weakly anharmonic

system shown in Figs. 2(a) and 2(b). This behaviour is

related to g; for large g (strong quantum effect) the

convergence of the cumulant expansion is generally rapid.

The classical approximation is poor as expected for the low-

temperature region.

Figs. 3(c) and 3(d) show the amplitude and phase,

respectively, of the EXAFS thermal factor at high

temperature (T = 2.0) for the strongly anharmonic system

(a = 2.5, b = 5.0). The amplitude |g(k)| shows the negative

value at 7.5 < k < 12 AÊ ÿ1 and phase shifts about � as shown

in Figs. 2(c) and 2(d). The amplitude |g(k)| and the phase

'(k) show a rapid change in the region k = 6±7.5 AÊ ÿ1 for

the self-consistent and the classical approaches, whereas

the cumulant expansion gives a smooth change as expected.

The classical result is similar to that of the self-consistent

calculation; however, the agreement with the self-consis-

tent calculation is worse than that for the weakly anhar-

monic system shown in Figs. 2(c) and 2(d). This behaviour

is explained by the strong anharmonicity which is expected

to show the strong quantum effect as discussed before; even

at high temperature the quantum effects play some

important roles.

4. Results for XPD thermal factors

In this section we discuss the XPD thermal factors with

cubic and quartic anharmonicity. In the analyses of XPD

spectra, small-angle scattering plays an important role and

so we calculate the thermal factor up to � = 60�. The kinetic

energy of the photoelectron is assumed to be 1000 eV; our

attention will be focused on the angular distribution of

XPD intensity at high energy.

Figs. 4(a) and 4(b) show the amplitude |g(�)| and phase

'(�), respectively, of the XPD thermal factor de®ned by

(13) as a function of the scattering angle � at low

temperature (T = 0.1) for the weakly anharmonic system

(a = 0.05, b = 0.1). The self-consistent calculation is

compared with the classical approximation and the cumu-

lant approximation de®ned by (14)±(16) [up to the second-

and fourth-order terms for amplitude (a) and up to the ®rst

and third terms for phase (b)]. In Fig. 4(a) the cumulant

expansion up to the second order gives quite a good result

for the amplitude as observed in the case of the Morse

potential (Miyanaga & Fujikawa, 1998), whereas in

Fig. 4(b) the cumulant expansion shows rather slow

convergence. The classical approximation is very poor for

the amplitude and the phase as shown in the EXAFS

thermal factor.

Figs. 4(c) and 4(d) show the amplitude and phase,

respectively, of the XPD thermal factor at high temperature

(T = 2.0) for the weakly anharmonic system (a = 0.05, b =

0.1). In Fig. 4(c) both the cumulant and the classical

approximations give rather good results in the small-angle

region � < 30�. In the large-angle region, � > 30�, the

disagreement between the self-consistent calculation and

the cumulant expansion is prominent, particularly for the

phase. The classical approximation shows good results even

for the large-angle scattering. These results can be

compared with those shown in Figs. 2(c) and 2(d), where we

have found quite similar results. Under other conditions

discussed for the EXAFS thermal factors we obtain very

similar results to those obtained for the EXAFS thermal

factors. We will not repeat the similar discussion.

5. Conclusions

We have studied the thermal effects in EXAFS and X-ray

photoelectron diffraction spectra due to atomic vibration

with cubic and quartic anharmonicity by use of Feynman's

path-integral approach. This approach can be applied to

strongly anharmonic systems where the cumulant analyses

break down, and it is closely related to the well known

classical approach which is only valid at high temperature.

Some pronounced different features are observed for

this asymmetric potential in comparison with the results for

the symmetric potentials where only thermal damping is

expected. The phase of the thermal factor plays an

important role both in EXAFS and XPD analyses. At low

temperature the cumulant expansion up to the second

order agrees well with the self-consistent result for |g(k)|,

but up to the ®fth- or seventh-order cumulant should be

taken into account for the phase function '(k) for EXAFS

analyses. At high temperature the result from self-consis-

tent calculations shows the characteristic behaviour; the

rapid change of the phase cannot be explained by the low-

order cumulant expansion.

We compared the two different cases: the strong and the

weak quantum effects. For weak anharmonicity the clas-

sical approximation is good over a wide temperature

region; however, for strong anharmonicity it is poor

because of strong quantum effects. The parameter g is

important for such a qualitative discussion.
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