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The influence of experimental and model
uncertainties on EXAFS results
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We analyze EXAFS oscillations in k-space with the FEFF code
to obtain main-shell distances Rν and mean-square displacement
parameters σ2

i for all single and multiple scattering paths i in the
shells ν up to a maximum shell radius Rmax. To quantify the
uncertainty in the determination of these model parameters we
take into account experimental errors and uncertainties connected
with background subtraction, with the approximate handling of
the electronic many-body problem in FEFF, and with the
truncation of the multiple scattering series. The impact of these
uncertainties on the Rν and σ2

i is investigated in the framework
of Bayesian methods. We introduce an a priori guess of these
model parameters and consider two alternative strategies to
control the weight of the a priori input relative to that of the
experimental data. We can take a model parameter space of up to
250 dimensions. Optionally we can also fit the coordination
numbers Nj (j≤ν) and the skewness of the distribution of the Rν
besides the Rν and σ2

i. The method is applied to 10K Cu K-edge
and 300K Au L3-edge data to obtain model parameters and their
a posteriori error correlation matrices.
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1. Introduction

Our method of analyzing extended X-ray absorption fine-
structure (EXAFS) data is described in detail by Krappe &
Rossner (2000) and thus will be only briefly sketched in this
article. The well-known ill-posed nature of the inverse scattering
problem requires the introduction of an a priori probability
distribution for the model parameters to be obtained by the fit.
Using Bayes’ theorem, the a priori information is combined with
the experimental information to obtain an a posteriori
probability. It measures the degree to which the a priori
assumption has to be modified on the basis of the data obtained
by the measurement.

Following the work of Turchin & Nozik (1969) we consider
two types of conditions on the weight of the a priori data relative
to the experimental data in the fit. The first condition gives to the
a priori data the largest weight compatible with the experimental
data within a one-standard-deviation margin. With the a priori
data to be considered below, we find that even the largest weight
is compatible with the data, which means that the latter do not
contain information that requires a modification of the a priori
assumptions. The second condition associates the most probable
weight to the a priori data. It is then possible to define the
subspace ℜ of the whole model-parameter space where the data
determine the fit, and the complimentary space where the fit is
only controlled by the a priori assumptions. The error
correlations between all fitted parameters are determined by the
matrix elements of the regularized variance matrix.

We use a formula for X-ray absorption on a polycrystalline
or amorphous sample which includes the third cumulants C3 i of
the peaks in the pair-distribution function (Stern, 1988)
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with corrections ci=2σ2
i (Ri

-1+λ-1) to the mean shell radii. The
lengths of multiple scattering paths are functions of the shell
radii, the single scattering Ri. We therefore take as independent
model parameters S0

2, E0, the shell radii Ri, all σ2
i, and optionally

the coordination numbers Ni and third cumulants C3 i for the
single scattering paths, and build the model-parameter vector x.
The remaining quantities λ, feff(Ri), φ(Ri) are functions of k and
the model parameters x. They form a vector y. The systematic
uncertainties in these quantities, the truncation error of the
multiple scattering series, the experimental errors and the
uncertainty of the a priori data will be modeled by Gaussians.
Bayes’ theorem then yields also a Gaussian for the a posteriori
probability distribution of the components of x. The mean values
〈x〉 follow from solving the normal equation (Q+A)〈x〉=b and the
a posteriori variances are given by (Q+A)-1, where Q is the
information matrix, containing the derivatives of χ with respect
to the model parameters, the experimental errors and the
uncertainties of the model, A is the inverse variance matrix of the
a priori data, and the vector b depends on the average values of
the experimental data.

2. Data Analysis

2.1 10K Cu data

The K-edge copper data of Newville (1994) were analyzed
within the k range 0.1-19.9 Å-1 in steps of 0.05 Å-1 (see Fig. 1).
Considering the envelope of the Fourier filtered experimental
data with an r-space window of 20-25 Å, an absolute statistical
error of ∆χexp=0.001 has been assigned to these data. As the a
priori  model-parameter set we chose the 10 K fcc lattice constant
a=3.6032 Å (Zabinski et al., 1995), the correlated Debye model
with θDebye=315 K for the σ2

i, the third cumulants C3 i of all pair-
distribution functions were assumed to vanish, the Fermi energy
E0 was set to 8979 eV, and the many-body amplitude reduction
factor S0

2=1. The FEFF7 code (Zabinski et al., 1995) is used with
a filter of the curved wave-amplitude ratio of 4%, a cluster radius
of Rmax=8 Å, and a maximum leg number nleg=5 for multiple
scattering paths. The FEFF code yields the coordination numbers
Ni of the ideal fcc crystal, the electron mean free path λ(k), the
scattering amplitudes fi (Ri,k), and phases φi (Ri,k), for 10 single
and 59 multiple scattering paths. The fit parameters that represent
the components of the vector x were defined as S0

2, E0, the 10
single scattering half path lengths Ri, (i=1,...,10), all mean-square
displacement parameters σ2

i, (i=1,...,69), and the 10 single
scattering third cumulants C3 i, (i=1,...,10). The coordination
numbers Ni are not included in this fit, and the 59 multiple
scattering half path lengths Ri, (i=11,...,69), were related to the
single scattering values assuming an ideal fcc crystal structure.
All third cumulants of the multiple scattering paths were kept
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zero. Thus, the x vector had 91 components. The 139
components of the y vector were composed of λ(k), fi (Ri,k), and
φi (Ri,k), with i=1,...,69, and the model errors associated with
them were assumed to be ∆λ/λ=10%, ∆fi/fi=7%, and ∆φi=0.07
rad. The truncation error, which is caused by the 4% threshold of
the curved wave amplitude ratio was determined as described by
Krappe & Rossner (2000), and is shown in Fig.2 as dash-dotted
line. The resulting effective error, defined by the root mean
square sum of the experimental error (long dashed line), the
model errors, and the truncation error, is displayed by the solid
line. The short dashed line represents an additional systematic
error to account for deficiencies of the theory at small k (k≤3 Å-1)
and for the truncation in r space at 8 Å. Its exponential tail
approximates the envelope of the Fourier filtered χexp(k) with an
r-space window of 8-25 Å.

Figure 1
EXAFS oscillation of experimental data (dots), the a priori data
(thin line), and the a posteriori data (thick line) for Cu.

Using the a priori parameter set and the uncertainty estimate
described above, the second Turchin condition was applied,
resulting in a ℜ-space of dimension 30. This can be interpreted
as an effective number of independent parameters Neff=30, which
is much smaller than the number of independent data points
Nd≈(2/π)∆k∆R=58 traditionally used in Fourier analysis. In a
second analysis of the same input data as before we determined –
in the spirit of the second Turchin condition – two independent
regularization parameters for two sets of model parameters. The
first parameter group corresponds to the set S0

2, E0, R1,...,R10, the
second to the parameter set σ2

1,...,σ2
69, C3 1,...,C3 10. The a

posteriori variance matrix of x is shown in Fig. 3, where the
diagonal elements are left out. The parameter sequence starting
with n=0 is: S0

2, E0, R1,...,R10, σ2
1,...,σ2

69, C3 1,...,C3 10. Close to
the diagonal line strong error correlations between the mean-
square displacement parameters σ2

i  and σ2
j (i≈j) of the multiple

scattering paths are clearly seen. Also the correlations between
the multiple scattering σ2

i’s and the single scattering Rj’s and
σ2

j’s (i≈j)  are represented by significant ridges. The strongest
error correlations exist between the single scattering Ri’s and the
third cumulants. Correlations between Ri and σ2

i for single
scattering paths are small as shown by the weak ridges parallel to
the diagonal line.

Figure 2
k-dependence of the effective error (solid line), the experimental
error (dashed line), the truncation error (dash-dotted line), and
the many-body model uncertainty (dotted line) for Cu.

Figure 3
Matrix elements of the regularized variance matrix for Cu;
diagonal elements are suppressed.

Figure 4
Deviations from their a priori values for the single scattering
path values of Ri, σ2

i, and C3 i and the corresponding a posteriori
errors for Cu.
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The fit results for the single scattering path values of Ri, σ2
i,

and C3 i are shown in Fig. 4 together with their a posteriori
errors. They are plotted as deviations from the a priori values
and indicate no significant deviations from the a priori estimate.
We conclude that the experimental data are consistent with the
information we had before the measurement

2.2 300K Au data

The same data-analysis procedure has been applied to the L3-
edge gold data of Newville (1994), measured at 300 K and
analyzed in the k range 0.2-15.4 Å-1 in steps of 0.05 Å-1. From
the envelope of the Fourier-filtered experimental data with an r-
space window of 20-25 Å we estimate an absolute statistical
error of ∆χexp=0.0002. Again the FEFF7 code was used with a
4% amplitude threshold, Rmax=8 Å, nleg=5, S0

2=1, E0=11918 eV,
a(fcc)=4.07825 Å, θDebye=180 K, and all third cumulants set to
zero. The x vector now has 45 components : S0

2, E0, seven single
scattering and 22 multiple scattering paths with half path lengths
Ri (i=1,...,7), mean-square displacement parameters σ2

i

(i=1,...,29), and third cumulants C3 i (i=1,...,7). The lengths of the
multiple scattering paths were again computed from the single
scattering values. The same model uncertainties were assumed as
in the previous case.

Application of the second Turchin condition gives an
effective number of independent parameters Neff=12, which,
again, is much smaller than the number of independent data
points Nd≈(2/π)∆k∆R=40. The fitting procedure yields deviations
from the a priori estimates for C3, R and σ2 values of the single
scattering paths as shown in Fig. 5. Contrary to the 10 K Cu data
a significant deviation of the C3 1 value is observed for the 300 K
Au data. This nonzero third cumulant results in an improved
description of the experimental data, leaving the fcc crystal
parameter essentially unchanged, but modifying the Debye-
Waller factor σ2

1 slightly from 0.0087 Å2 to 0.0077±0.0002 Å2.

Figure 5
Deviations from their a priori values for the single scattering
path values of Ri, σ2

i, and C3 i and the corresponding a posteriori
errors for Au.

3. Conclusion

We showed that the Bayesian approach combined with Turchin’s
conditions is a powerful tool in EXAFS data-analysis. We have
demonstrated that in cases where either the a priori information
is very good and/or the model uncertainties are large such that
the first Turchin condition would not lead to a modification of
the a priori parameters, new information about the crystal
structure can be provided by the second Tuchin condition which
puts a stronger weight on the measured data. Following the error
propagation from the measured input data to the output of the
data analysis in a systematic way, it is shown how the a
posteriori mean values and variances depend on the probability
distributions of the experimental data, the a priori information,
and the model uncertainties. Since in our approach the normal
equations are regularized by the a priori data we can handle
models with a large parameter space, and applying Turchin’s
conditions those parameters are identified which are sensitive to
the experimental data.
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