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We develop an approximation for the non-local spin-polarized op-
tical potential theory for atoms in solids at intermediate and high
energy. The present approximation for the optical potential builds
on the GW-expression. We separate the RPA polarization propaga-
tor into a core electron and a valence electron part, and can then
achieve a corresponding separation of the optical potential. For the
valence electron optical potential we use a local density approxi-
mation because the charge density changes fairly slowly, whereas
we use a non-local optical potential for the core electron part. Both
of them depend on the spin-polarization. We apply this method to
electron-Fe elastic scattering in solid, and discuss the results.

Keywords: spin-polarization ; GW approximation ; optical
potential.

1. Introduction
In spin-polarized low-energy electron diffraction (SPLEED) (Un-
guris et al., 1984; Weller & Alvarado, 1988), spin-polarized pho-
toelectron diffraction (SPPD) (Sincovi´c & Fadley, 1985), X-ray
magnetic circular dichroism (XMCD) (Sch¨utz et al., 1987), and
spin-polarized EXAFS (SPEXAFS) (Sch¨utz et al., 1989) spin-
dependent electron-atom elastic scattering plays as essential role.

Ankudinov and Rehr (1995, 1996) calculated the SPEXAFS and
XMCD by use of the spin-polarized local density potential which is
based on the von Barth-Hedin approximation (1972), and obtained
much improved results compared with one-electron theory. How-
ever, we have still a question on the reliability of the local density
approximation for the elastic scatterings from spin polarized sys-
tems. In our previous work, the core polarization contribution to
the optical potential plays an important role (Fujikawaet al., 1998,
2000)

In this work we employ the spin-polarized non-local optical po-
tential for core parts and the spin-polarized local potential (von
Barth-Hedin potential) for valence parts, and applied this theory
to elastic electron-atom scatterings from a spin-polarized atom in
solids.

2. Theory
In Hedin and Lundqvist (1969), p. 129, the following expression
for the self-energy (optical potential) is given,

Σ0 = GcW + GvWvPcWv + GvWv + � � �

�= Vc
ex +Vc

pol + Σv
: (1)

HereGvWv is the self-energy from the valence electronsΣv, GcW
is the core exchangeVc

ex and GvWvPcWv the screened polariza-
tion potential from the ion coresVc

pol. The total crystal potential
Vcryst is given by the Hartree potential plus this self-energy (Hedin,

1965a, 1965b; Hedin & Lundqvist, 1969). All these terms are spin-
dependent for spin polarized systems, that is, the optical poten-
tials for different spin are also different. The third termΣv can be
well approximated by spin-polarized local potential (von-Barth &
Hedin, 1971).

The core-polarization termGvWvPcWv can be approximated by
GvvPcv, wherev is the bare Coulomb potential (Fujikawaet al.,
1993).

The spin-dependent full RPA polarization propagator is (Hedin
& Lundqvist, 1969)

P(x; x0;!) = �

unoccX
k

occX
l

2("k � "l )

("k � "l )2
� !2

fkl(x) f �kl (x
0);

fkl(x) =  k(x) 
�

l (x): (2)

Herex = (r ; �) includes both space and spin variables. The sum
over k runs over unoccupied electron states, whilel runs over the
occupied core and valence electron states. By splitting the summa-
tion overl into core and valence contributions,P can be written as
a sum of core and valence parts,

P = Pc + Pv
: (3)

Similarly we can split the summation overk in the expression for
the one-electron Green’s function

G(x; x0;!) =
occ+unoccX

k

 k(x) �

k (x
0)

! � "k
(4)

to obtain
G = Gc + Gv

: (5)

The symbolGvvPcv stands for a convolution in energy space
(Fujikawa & Hedin, 1989), which can be done analytically, giving

[GvvPcv](x; x0;!)

=

unoccX
k

coreX
l

valenceX
k0

vkl(r) k0(x) 
�

k0 (x
0)v�kl(r

0

)

! � !kl � "k0
; (6)

where!kl = "k � "l , andvkl(r ) =
R

v(r � r 0) �

k (x0) l (x0) dx0.
The more tightly bound the core levell is, the smaller its contri-
bution to vkl(x) due to the smaller overlap with the unoccupied
function k. Thus the outermost core level will give the dominant
contributions.

We replace!kl by a constant∆, the average excitation energy,
and we can then use closure and avoid the summation over the un-
occupied states. The screened polarization potential can be written
by use of this approximation and the different orbital for different
spins (DODS) approximation,

Vc
pol
�(r ; r 0;!) = [GvvPcv]�(r ; r 0;!)

= A(r ; r 0)Gv�(r ; r 0;! � ∆):(� = up or down): (7)

This optical potential is non-local, spin-dependent and can be
solved self-consistently. We define a functionA(r ; r 0);

A(r ; r 0) =
unoccX

k

coreX
l

vkl(r)v
�

kl(r
0)

=

Z
v(r � r1)v(r

0

� r2)

�[Æ(x1 � x2)� �(x1; x2)]�
c(x2; x1)dx1dx2; (8)
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Figure 1
Differential cross section (DCS) in a:u: as a function of scattering angle
for electron elastic scattering from Fe atom in solids at 200 eV. Solid
(dotted) line shows spin-up (-down) results. Three potentials are used
for comparison; HF (Hartree-Fock), HF+VBH (von Barth-Hedin) and
FH (present method).
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Figure 2
The same type of results as in Fig. 1, but for 500 eV.

where� and�c are the one-electron density matrices for all elec-
trons and for core electrons respectively. As far as we consider the
spin-polarized systems within DODS approximation, the polariza-
tion functionA does not depend on spin-polarization. On the other
hand the Green’s functionGv depends on the spin-polarization
through the spin-polarized potentialsVc

ex+Vc
pol + Σv.

3. Results and discussion

Figure 1 shows the differential cross section (DCS) as a function of
scattering angle for elastic electron scattering from a spin-polarized
Fe atom in solids using different potentials, Hartree-Fock (HF),
HF for core electrons and von Barth-Hedin for valence electrons
(HF+VBH) and the present (FH) potentials. Here, we use an elec-
tron configuration of the Fe atom in ferromagnetic iron metal pro-
posed by Mizumaki (1996), 3d" 4:9463d# 1:6824s" 0:6904s# 0:644. The
kinetic energy of the incident electrons is assumed to be 200 eV.

In this figure we show the spin polarization of the incident elec-
trons by ”up” and ”down”. The calculated results show that the
DCS for the FH potential is the largest, and is quite different from
the HF+VBH result in small-angle scattering (� � 35Æ). This re-
sult shows that the non-local core polarization potential has large
influence on the elastic scatterings in the small-angle region. We
also find that these optical potentials give quite different DCS from
the HF potential. These findings are similar to those for the spin-
independent cases (Fujikawaet al., 2000). The spin splitting in the
DCS is not so sensitive to the potential, however the optical poten-
tial give a larger splitting than the HF potential.

Figure 2 shows the same type of results as in Fig. 1, but for 500
eV. With increasing energy the contribution from the optical poten-
tials tend to zero, and we can see that the difference between the
FH and the HF, and the difference between the HF+VBH and the
FH potentials become smaller when we go from 200 to 500 eV. We
still find a larger spin splitting with the optical potential than with
the HF potential.

In EXAFS back scattering amplitudes play an important role.
So far several calculations of SPEXAFS have been done based
on the spin-polarized local density approximations, for example
Ankudinov et al. used a crude approximation for the von Barth-
Hedin potential for all electrons (Ankudinov, 1996; Ankudinov &
Rehr, 1995). The back scattering amplitudes in the plane wave ap-
proximation are written as

f (�; k) = j f (�; k)j expfi (k)g: (9)

Figure 3 shows the back scattering amplitudej f (�; k)j for the spin-
polarized Fe atom in solids. In general the back scattering is mainly
affected by the potential from inner electrons, and the core polar-
ization potential has a large influence on the backscattering am-
plitudes. In the low energy region the difference ofj f (�; k)j for
different spins is larger than that in high energy region as expected.
The difference inj f (�; k)j for different spins decays slightly more
rapidly with k for the FH and HF+VBH potentials in comparison
with the result for the HF potential.

Figure 4 shows the phase of the back scattering amplitude (k)
for the spin-polarized Fe atom in solids. This figure shows that the
spin-polarization effect is much larger in the phase (k) than in the
backscattering intensityj f (�; k)j. Similar effect is observed for
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Figure 3
The back scattering amplitudej f (�;k)j as function of the photoelectron
wave vectork for a spin-polarized Fe atom in solids. Three different
potentials, HF, HF+VBH and FH, are used .
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Figure 4
The phase of the back scattering amplitude (k) as function of pho-
toelectron wave vectork for a spin-polarized Fe atom in solids. Three
different potentials, HF, HF+VBH and FH, are used .

the back scattering from non-magnetic systems; the potential has a
larger influence on the phase than on the back scattering intensity
(Fujikawaet al., 2000).

4. Conclusion
We present here the spin-polarized non-local optical potential the-
ory and some calculated results. In the small-angle scattering the
difference of the scattering intensity for different spin is larger for

the optical potentials than for the HF potential. In the back scatter-
ing that is also the case, and the spin effect is much larger in the
phase (k) than in the intensityj f (�; k)j. These results are impor-
tant to analyze SPEXAFS on the basis of Fourier transform tech-
nique. Unfortunately the computation time is quite large in compar-
ison with HF+VBH potential calculation (about 10 times larger).
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