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The current molecular replacement programs are primarily imple-

mented in reciprocal space. In this paper a new implementation in

direct (real) space is proposed by matching the model atomic vectors

with the vectors in the Patterson vector space using a six-dimensional

exhaustive search method. It is shown that this implementation can

®nd the correct rotations and translations of � helices in a myoglobin

crystal structure using experimental diffraction data at 2 AÊ resolu-

tion. A comparison with previous Patterson vector search methods is

discussed.
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1. Introduction

The molecular replacement method (Rossmann & Blow, 1962) is a

very powerful and ef®cient method of solving the phase problem

when part of the target unknown structure is known. As implemented

in reciprocal space, it consists of two steps: rotation search and

translation search. In rotation search, the Patterson vectors (map) of

the search model are matched with those of the target crystal. An

integration radius is chosen so that only the self-Patterson vectors are

matched in rotation search. In translation search, a Patterson corre-

lation function is calculated. There are many implementations of the

rotation search and the translation search, of which AMoRe (Navaza,

1987) and X-PLOR (Brunger et al., 1987; Huber, 1965) are the most

popular program packages and are widely used. Because the overlap

of the self-Patterson vectors is very serious, when the search model is

only a small part of the target structure the rotation search often fails

to produce the correct solutions. Experience shows that the search

model should not be less than a quarter of the target structure

content. When the rotation solutions are inaccurate, it is impossible

for the translation search to ®nd the correct solutions. This is the main

limitation in applying the molecular replacement method.

Historically, the molecular replacement method has also been

implemented in real space (Hoppe & Paulus, 1967; Nordman &

Nakatsu, 1963; Nordman, 1966; Schilling, 1970). Furthermore, the

real-space implementation has been recently applied to the solution

of macromolecular structures (Nordman, 1972, 1994). With the

advent of more powerful computers, it is possible to re-implement the

molecular replacement method in real space with more ef®cient

algorithms. In this paper, we provide the formula with which we

implement an algorithm for calculating all the interatomic vectors

between two symmetry-related search models and matching them

with the cross-Patterson vectors. A fast translation algorithm is

implemented as developed previously (Jiang & Kim, 1991) so that an

exhaustive rotation search can be achieved. We show that using the

2 AÊ experimental diffraction data the correct rotations and transla-

tions can be found for all the � helices in myoglobin using only the

main-chain atoms in the search model. We discuss our results in

comparison with previous implementations and suggest the directions

of future developments.

2. Methods

2.1. Derivation of the matching formula

We denote xi and xj as the atomic vectors of the search model; vk as

the Patterson vectors of the target structure; R and t as the rotation

matrix and translation vector of the rigid-body transformation

applied to the search model; S1, t1 and S2, t2 as the two different

symmetry operations,
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2.2. Implementation

Our translation search algorithm is very fast and has been devel-

oped previously for docking two molecular surfaces (Jiang & Kim,

1991). Brie¯y, all difference vectors between two sets of vectors,

namely, the search and the target vectors, are calculated and the

matching score between each pair of the search and target vectors is

accumulated in a translation vector matrix. After looping through all

different pairs of the search and target vectors, the translation vectors

with the highest matching scores are found from the translation

vector matrix. Our rotation search is exhaustive. The rotation space is

sampled with polar angles (�, ', �) and the polar angles are sampled

with grids.

After the rotation and translation search, all R and t are sorted in

descending order of the matching scores and the sorted solutions are

used for clustering. The clustering algorithm is simple. A rotation

distance cut-off (in degrees) and a translation distance cut-off (Euler

distance) are selected. The clusters are searched from the top-score

solutions downward. The ®rst solution is a new cluster. Then, if the

next solution is outside the range of the rotation and translation

distance cut-offs, a new cluster is generated and saved. In this way,

similar (neighboring) solutions are grouped together and the uneven

sampling in the rotation space is also removed. In our tests, the

rotation distance cut-off and the translation distance cut-off are 25�

and 10 AÊ , respectively. The choices of the relatively big cut-offs take

into account the fact that the errors of the solutions can be relatively

large and that the small cut-offs will diminish the purpose of clus-

tering the solutions. It is also noted that the � helix has self-symmetry,

i.e. there are multiple ways of superimposing a helix onto itself. The

solutions related by the helix self-symmetry operations are grouped

together. In our tests, the known correct solutions are compared with

the clustered solutions.
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The `image-seeking function' we selected for the current imple-

mentation is the correlation coef®cient between the Patterson vector

peak heights and the interatomic vector weights, as suggested by

Nordman (1994). It has been pointed out that the interatomic vectors

are not always located at the peak position in the Patterson map

(Buerger, 1959). Therefore, we do not use the point atoms to calcu-

late the interatomic vectors of the model. Instead, we ®rst calculate a

model electron density map from the search model at a proper

resolution and select all the density grid points above a certain peak

height (e.g. 2�), and then calculate the model interatomic vectors

from these selected grid points. CCP4 programs were used in these

calculations (Collaborative Computational Project, Number 4, 1994).

3. Results and discussion

We used an � helix (residues 3 to 18) of a myoglobin crystal structure

(PDB code 104M) as our search model. The structure 104M is sperm

whale myoglobin, belonging to space group P21 with cell dimensions

of a = 64.73, b = 30.91, c = 34.83 AÊ and � = 105.41�. The experimental

diffraction data used in our tests was retrieved from RCSB

(www.rcsb.org) with a PDB code 1A6M, also a sperm whale

myoglobin structure, belonging to space group P 21 with cell dimen-

sions of a = 63.80, b = 30.81, c = 34.35 AÊ and � = 105.80�. Only

re¯ections up to 2 AÊ were included in our calculations.

The results are shown in Table 1. It can be seen that all the helices

in myoglobin could be located in the top eight clustered solutions

with the highest correlation coef®cients. These results are similar to

those of a previous study (Nordman, 1972) in which individual helices

were also searched in Patterson vector space and the correct orien-

tations and translations were found. The difference between our

current implementation and that of Nordman (1972) is that the latter

used a two-stage search strategy: use the intramolecular (self) vectors

to ®nd the rotation and then use the intermolecular (cross) vectors to

®nd the translation. In our implementation we utilize the fact that the

rotation information is not only contained in the self-Patterson

vectors but also in the cross-Patterson vectors. A six-dimensional

search (in P21, a ®ve-dimensional search) can ®nd the rotation and

the translation of a search model simultaneously. It is not surprising

that similar results have been obtained. Our implementation is

computationally more intensive but reachable with the current

computing power (2 h on Intel Pentium III 450 Hz). We believe the

six-dimensional search method will prove to be more sensitive and

useful in future developments. This is because the six-dimensional

search method avoids the crowding of the self-Patterson vectors in

the rotation search stage, which has two rami®cations. One is an

increased tolerance of the errors in the search model and thus a larger

radius of convergence than the two-stage search method. The other is

that even smaller known structures than those used in our present

tests could be used as a search model in molecular replacement.

Further testing is needed to demonstrate these advantages of our

approach. A few other image-seeking functions have been suggested

previously (Nordman, 1994) and shown to be effective. In our

implementation the correlation coef®cient is more easily imple-

mented and requires the least amount of computation. We will try to

implement other image-seeking functions in the future with more

ef®cient algorithms.

Although the two crystal structures used in our tests are very

similar, as suggested by their cell parameters and space groups, our

tests were not performed on an ideal case but instead used two

experimental structures with the re¯ection data of one of them

available, both structures determined and deposited independently as

entries 104M and 1A6M, respectively. Since a single search model,

consisting of the main-chain atoms of residues 3 to 18 from the

structure 104M, was used, the errors between the search model and

the target fragment were not as small as the overall difference

between the two structures, 104M and 1A6M, might have suggested.

The root-mean-square deviation between the main-chain atoms of

the two structures is 0.24 AÊ , while those between the search model

and the individual target helices are listed in Table 1. These listed

root-mean-square deviations should be comparable with the value

one might expect for the difference between an ideal helix and a

regular � helix in any globular protein. Therefore, the overall simi-

larity between the structures 104M and 1A6M should not affect the

generality of our test results.

It is worth noting that using the same search model, i.e. a helix

consisting of residues 3 to 18 of the structure 104M, we could not ®nd

the correct rotations with other available reciprocal-space imple-

mentations such as AMoRe, X-PLOR and CNS (data not shown).

Because we use grid points to represent the Patterson map and the

search model in the form of a calculated electron density map, we can

choose different resolution ranges for map calculations so that

different levels of details of the search model can be included and

different amounts of diffraction data can be selected. More tests will

be performed using different resolution ranges.

Recently, several algorithms have been developed for performing

six-dimensional searches in molecular replacement (Kissinger et al.,

1999; Chang & Lewis, 1997; Tong, 1996). However, they are all

implemented in reciprocal space. Among them, the method of

Kissinger and co-workers (Kissinger et al., 1999) is the latest,

implemented in program EPMR, and has been tested extensively on a

variety of structures. We will discuss the relevant differences between

EPMR and our method in the following.

First, Kissinger et al. (1999) have shown that EPMR is very ef®cient

and fast as the number of required structure-factor calculations to

achieve the six-dimensional search is considerably less than that if a

systematic six-dimensional search is conducted. In fact, according to

their estimation, a systematic six-dimensional search in reciprocal

space would have been computationally infeasible. In contrast, we

have shown that a systematic six-dimensional search is possible when

conducted in real space using our proposed algorithm. Second,

Kissinger et al. (1999) demonstrated that EPMR could use less

accurate or less complete search models. In the test case of 6RHN, the

error for polyalanine atoms was 0.30 AÊ and the maximum truncation

achieved was 60%. In our test case of myoglobin (1A6M) the average

error between the helices was �0.7 AÊ and the truncation used was

Table 1
Results of the Patterson vector search.

The search model is the main-chain atoms of residues 3 to 18 from the
structure 104M. Column 2 shows the residues of the individual � helices in the
target structure 1A6M. Column 3 shows the root-mean-square deviation
between the main-chain atoms of the search model and the individual target
helices.

Helix
number Residues

Root-mean-square
deviation (AÊ )

Solution
rank

Correlation
coef®cient

1 3±18 0.11 1 0.799
2 20±35 0.76 2 0.782
3 36±42 0.65 3 0.772
4 51±57 0.60 8 0.775
5 58±77 0.62 7 0.775
6 86±94 0.56 4 0.781
7 100±118 0.65 6 0.776
8 124±149 0.85 5 0.779



almost 90% (using only 16 residues out of 153 residues in myoglobin).

Third, EPMR has been tested on a variety of structures and shown to

be able to tolerate errors as large as 3 AÊ (without truncation), better

than CNS and AMoRe. Although CNS and AMoRe could not

produce correct solutions in our test case, we have not tested our

method on search models with such large errors. The ®rst two

differences represent signi®cant advantages of our method while the

third difference points to one of the directions of our future devel-

opment. We would also like to point out that our intended devel-

opment of this systematic six-dimensional search method in real

space is not only for conventional molecular replacement using large

search models, but, more importantly, for the purpose of using

increasingly smaller fragments such as helices and sheets as search

models, with the hope that this approach will eventually solve the

phase problem for macromolecules. Therefore, our present work

should not be viewed solely from the perspective of rivaling the

currently available molecular replacement methods for conventional

structure determination. We believe that our preliminary results are

encouraging and the further pursuit of our method is warranted.

In summary, we have presented here a new implementation of the

molecular replacement method in real space using a six-dimensional

exhaustive search of Patterson vector space. When a search model

consisting of an � helix from residues 3 to 18 from a myoglobin

structure (104M) was used, all other helices in another myoglobin

structure (1A6M) could be found, using the 2 AÊ experimental data

for 1A6M which was available. Our results are similar to those of a

previous study using a two-stage vector search method in real space.

We believe our current implementation deserves further develop-

ment and testing in order to fully explore its potential applications.
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