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A unified treatment of circular dichroism, both natural and mag-
netic, in (spin-resolved) photoemission and photoabsorption from core
levels is given, valid in the many-body case and for extended systems,
together with an extension of the formalism to treat linear dichroism.
The reduction of this scheme to a one-electron picture in the frame-
work of multiple-scattering theory is briefly discussed and shows the
intimate connection of the two spectroscopiesvia a generalized opti-
cal theorem. Plausibility arguments are given that in correlatedd-band
systems screening and relaxation effects are not so drastic as in other
cases, due to the autoscreening action of the excited photoelectron, so
that the final density of states is much like the initial unperturbed one.
It is shown how to exploit this point of view to obtain in favorable
cases separated orbital and spin moment radial (surface) distribution
maps from dichroic magnetic EXAFS spectra (photoelectron diffrac-
tion patterns) related to the ground state. Dichroic natural spectra, both
in photoemission and absorption, are shown to be sensitive only to
atoms in chiral geometry.

Keywords: circular and linear dichroism ; multiple scattering
theory ; sum rules.

1. Introduction

In recent years, circular and linear dichroism in core-level excitations
have received increasing attention due to the availability of polarized
synchrotron radiation in the soft X-ray regime and the realization that
dichroic spectroscopies have the power to increase our selectivity on
the physical quantities we want to study. Therefore it would be use-
ful to have a theoretical scheme to use as a guidance in planning the
experiment, all the more that the same scheme can provide the nec-
essary tools for analyzing the experimental results and extracting the
maximum of information there contained. In the following we shall
show that this framework is provided by the multiple-scattering (MS)
theory as a unifying language to interpret the various spectroscopies.

2. The multiple-scattering basis

Since we want to derive expressions for the cross sections for circu-
lar (natural and magnetic) and linear dichroic spectroscopies valid for
the many-body case and in extended systems, we work in the second
quantization scheme. Our one particle basis will comprise spin–orbit
coupled core states of the form

�
c
c
;lc(r) = Rc(r)jc
; lc) = Rc(r)

X
mc�

Ylcmc�� (lcmc1=2�jc
) ; (1)

(where�� are the usual spin functions) and valence occupied and
excited states which are MS solutions of the Schr¨odinger equation,
obtained from the Dirac equation by working with the upper compo-
nent of the wave-function after eliminating the lower one (Wood &
Boring, 1978). This will ensure that the singularity of the potential at

the origin will be of the centrifugal type (� r�2) even for the spin–orbit
potential. Allowing for spin-polarized potential the equation reads, in
a.u.,
�
52 + k2

e �V0(r)�V1(r)sz � 2V2(r)~̀ �~s
	
 ke;s(r) = 0;

supplemented by scattering wave boundary conditions

 ke;s(r) = eike�r�s� f (k̂e; s; r̂ ; s0)
eker

r
�s0

describing an incoming electron plane wave along the directionk̂e

with spin projections = (�1=2) along the quantization axis and a
scattered spherical wave along directionr̂ with spin projections0 and
scattering amplitudef (k̂e; s; r̂ ; s0). HereV0(r) = [V"(r) +V#(r)]=2 is
the average of the spin up and spin down potential,V1(r) their semi-
difference andV2(r) the usual spin orbit potential corrected by rela-
tivistic effects.

In the MS approach the solution inside theith atomic muffin-tin
sphere can be written as

 ke;s(r i) =
X
L�

Bi
L�(ke; s)RL�(ri)YL(r̂ i)�� ; (2)

writing for brevity L � l ;m. With a proper normalization of the radial
functionsRL�(ri) to one state per Rydberg, the scattering amplitudes
Bi

L�(ke; s) obey the MS equations (Gunnellaet al, 1998),
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�
is the usual MS matrix generalized to spin variables andRi denotes
the position of theith atom in the cluster with respect to the origin of
the coordinates.

By introducing as usual the scattering path operator�
i j
L�;L0

�
0

as the

inverse ofMi j
L�;L0

�
0
, the solution for the scattering amplitudesBi

L� is
given by

Bi
L�(ke; s) =

X
j

X
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L�;L0si

l 0YL0 (k̂e)e
ike�R j : (3)

As is well known,� i j
L�;L0s is the probability amplitude for the excited

photoelectron to propagate from sitei, starting with angular momen-
tumL around sitei and spin�, to arrive at sitej with angular momen-
tumL0 and spin�0. It is the obvious generalization of the correspond-
ing spin-independent quantity (Natoli, 1995).

Also it is worth noting that the scattering amplituteBi
L� satisfies a

generalized optical theorem (Natoliet al., 1986),

X
s

Z
dk̂eB

i
L�(ke; s)B

j
L0�0

(ke; s) = Im �
ij
L�;L0�0

(4)

which can be used to relate averages of operators in the final state to a
density of states in case of absorption.

Since we shall be concerned with transition from localized core
states which project the properties of the final state onto an atomic
site, we shall consider for convenience the following fermionic field,

Ψ(r) =
X
lm�

Rlm�(r)Ylm(r̂)��alm� +
X



�
c
c
;lc(r)ac
 ; (5)
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where the operatorsalm� annihilates an electron in the extended
valence states andac
 annihilates an electron in the core states. In
this representation the independent particle basis for excited states is
given by

jΨke;s> =
X
lm�

Bi
lm�(ke; s)a

y
lm�ac
 j0> (6)

wherej0> is the Slater determinant of the occupied states.

3. The expression for the magnetic dichroic signal

In the dipole approximation the transition operator is

� � r = (4�=3)r
X
�

Y�
1�(�)Y1�(r̂); (7)

where� is the complex polarization of the incident light. The cross-
section for the ejection of an electron along thek̂e direction with spin
s is given by

d�s

dke
(!;�) = 4�2
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whereh̄! is the energy of the incident photon and, by definition,
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�
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Here the sums overn;m run over all the electrons in the system and
j f ke;s> is the many-body time-reversed scattering state, normalized to
one state per Rydberg, as appropriate for photoemission so that, ifΘ
is the time reversal operator, thenj f ke;s> = Θj fke;s>. Note that the

total cross section is obtained by summing over all statesj f ke;s> with
the same final energy (elastic and inelastic channels), integrating over
all escape directions and summing over the photoelectron spin vari-
ables. In the independent particle approach the final state isΘjΨke;s>
so that to obtain the total cross section it is sufficient to integrate over
the directions of the ejected photoelectron and sum over the final spin.
This is the one-particle description of the photoemission process.

From Eq. (8) one immediately derives for the magnetic circular
dichroic (MCD) signal the expression

d�MCD

dke
= 4�2
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X
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1�(�)Y
�
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�)�Y�
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�)Y�
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(10)

as the difference of the cross section with different helicity� and��.
Using the relation (see Varshalovichet al., 1988, p. 66)

Y1�(�)Y1�(�
�) �Y1�(�

�)Y1�(�) =

(8�)1=2
X
�

(�1)�
�

1 1 1
� � ��

�
Y1�(k̂ ph); (11)

wherek̂ ph is the direction of the incident photon, we easily find for the
MCD signal

d�MCD

dke
(!) = �C(!)

X
���

�
1 1 1
� � �

�
Y1�(k̂ ph)���(!); (12)

putting for brevityC(!) = 4�2�h̄!(8�)1=2.
Writing the transition operators in Eq. (9) in second quantized form

[e.g. T� = (4�=3)
R

dr 	y(r)Y1�(r)	(r)] and picking out only the
matrix elements related to the physical process of interest we find,
after some tedious angular-momentum algebra,

T� =
X
lm�

(lck1kl)0 (�1)�(2c+ 1)1=2Dc
lm�

X
j j z

(2 j + 1)

�

�
l 1 lc
c 1=2 j

��
c 1 j

 �� jz

��
l 1=2 j
m � jz

�

� ayc
alm�; (13)

where

(lck1kl)0 = (�1)lc[(2lc + 1)(2l + 1)]1=2

�
lc 1 l
0 0 0

�
(4�=3)

andDc
lm� =

R
drr3Rc(r)Rlm�(r) is the dipole radial matrix element

of the transition. Notice that in the recoupling of the 3-j symbols to
derive the above equation, the sum overm is never used, so that we
can retain for the moment them and� dependence ofDc

lm�. A similar
expression is found forT� except for the replacement of�! �� and
the disappearance of the factor(�1)�, as appropriate for the complex
conjugate matrix element.

Inserting these espressions in Eq. (12) and using Eq. (6.2.8) of
Edmond (1974) we finally find

d�MCD
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X
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lm�Dc
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� < f ke;s
jayl 0m0�0

acjg>; (14)

where f (q; j j 0; ll 0) is a symmetric expression inj j 0 andll 0 given by

f (q; j j 0; ll 0) = (lck1kl)0
�
lck1kl 0

�0
(2c+ 1)(2 j + 1)(2 j 0 + 1) ��

l 1 lc
c 1=2 j

��
l 0 1 lc
c 1=2 j 0

��
1 j 0 j
c q 1

�
(�1)c+ j+ j0 :

In deriving Eq. (14) we have assumed that the matrix element
< f ke;s

jayl 0m0�0
ac
 jg> does not depend crucially on the magnetic quan-

tum number
, so that we could recouple the 3-j symbols with the help
of the appropriate 6-j symbol. In keeping with this we have dropped
in the formula the index
 of the annihilation operator of the core
hole. This assumption is obviously valid when the interaction of the
core hole with the photoelectron in the final state can be neglected,
but can remain equally valid in the presence of such interaction. This
is the case, for example, if the interaction reduces to a static spherical
Coulomb potential felt by the photoelectron or if one can perform an
average over the two spin–orbit split edges of the multiplet structure
between the photoelectron and the core hole.

4. The MCD signal in photoelectron diffraction

Eq. (14) is the general many-body result for the MCD photoemission
cross section we wanted to arrive at, valid for extended systems and
general direction of the incoming photon with respect to the quantiza-
tion axis. Its content is best illustrated in the case of the one-particle



J. Synchrotron Rad. (2002). 9, 9±16 Di Matteo and Natoli � Circular and linear dichroism 11

research papers

picture. Indeed, if we take the photon direction parallel to the quanti-
zation axis, so that� = 0, evaluate the various three and six j sym-
bols and use Eq. (6) for the final state, assuming only transitions to
l = lc + 1 orbital angular momenta, we obtain, writing for short
Alm� = Dc

lm�Blm�(ke; s)

� for transitions from theJc = lc + 1=2 edge

d�MCD

dke
(!; s) =

C(!)

2(2lc + 1)(2lc + 3)

�
P

m

�
G3(m)

�
A�lm"Alm" � A�l�m#Al�m#

�
+ G1(m)

�
A�lm+1#Alm" � A�l�m�1"Al�m#

� �
; (15)

� for transitions from theJc = lc � 1=2 edge

d�MCD

dke
(!; s) =

C(!)

2(2lc + 1)(2lc + 3)

�
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m

�
G2(m)
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A�lm"Alm" � A�l�m#Al�m#

�
� G1(m)
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� �
; (16)

where

G3(m) = 2
�

m(2lc + 1)(lc + 1)� lc(lc + 1) + 2lcm
2
	

G2(m) = 2
�

m(2lc + 1)lc + lc(lc + 1)� 2lcm
2
	

G1(m) = �[lc(lc + 1)� 2� m(m+ 3)]1=2(lc � m)[(lc � m)2 � 1]1=2

+[lc(lc + 1)� m(m� 1)]1=2(lc + m+ 1)[(lc + m)(lc + m+ 2)]1=2:

If one can neglect themdependence of the radial dipole matrix ele-
mentsDc

lm�, Eq.s (15, 16) show that the photoemission cross section is
proportional to thè-projected average in the final statej ke;s> (Eq. 6)
of the operators

X
lm

f G3(m)
�
a�lm"alm" � a�l�m#al�m#

�
+

G1(m)
�
a�lm+1#alm" � a�l�m�1"al�m#

�
g;

that is to say to a linear combination of the averages of the operators`z,
sz andtz = sz�3

�
~s � ~̀; `z

	
+
=[2l(2l + 1)]. This latter is better known

under the formtz = sz�3(~s � r̂) rz=r to which it is proportional by use
of the Wigner–Eckart theorem.

By way of example,

X
lm

m
�
a�lm"alm" � a�l�m#al�m#

�
=

X
lm�

ma�lm�alm�

/

Z
dr 	y(r)`z	(r);

and similarly fors andt.
In the many-particle case the same property still holds since each

operatoralm� (aylm�) picks out in the respective matrix element that
particular amplitude of the final state wave function as appropriate to
its character. Then such amplitudes are multiplied and combined in
the way dictated by the various three j symbols appearing in the ex-
pression for the cross section, which do not depend on the particular
approximation for the final state.

Of particular importance in photoemission is the elastic channel in
which the ejected photoelectron is scattered coherently by the atoms
surrounding the photoemitter. In the normal (non-magnetic) case it is

known that the diffraction patterns of the photoemitted current, as a
function of the escape direction of the photoelectron, allows a sort
of holographic reconstruction of the environment of the photoemitter.
Such an interpretation is based on the expression (3) for the scattering
amplitude as a function of the scattering path operator� (Gunnellaet
al., 1998, and references therein), where the reduction from the many-
channel case to the picture of one particle moving in an effective op-
tical potential for the elastic channel has been described. As apparent
from the above derivation and in analogy with the use of photoelec-
tron diffraction for surface structural analysis (Gunnellaet al., 1998),
magnetic circular dichroic photoelectron diffraction would allow for
a sort of holographic surface reconstruction of the spatial density of
the spin and orbital moment. As for the MCD sum rules one can take
particular combinations of the spin–orbit split edge spectra in order
to isolate one particular operator. For dichroism at theK edge, one
has to deal only with the average of the angular momentum operator
< ke;sj`zj ke;s>, but for LII ;LIII edges, for example, it is necessary
to separate the contributions from the two levels at energies above the
LII edge. This separation is possible if the two edges are so separated
in energy that the dichroic signal of theLIII has died out at energies
above theLII edge. Alternatively, one can use an interplay of theory
and experiment in order to carry out such separation.

5. Photoabsorption and sum rules

Photoabsorption is obtained by integrating the many-body photo-
emission cross section over all event at a given excitation energy. In
the effective one particle picture this is obtained by integrating Eqs.
(15, 16) overdk̂e and summing over the spins. Use of the generalized
optical theorem in Eq. (4) leads to the following expression in the case
of a transitions from theJc = lc + 1=2 edge,

�MCD(!) =
C(!)

2(2lc + 1)(2lc + 3)

� Im
P

mf G3(m)
�
�oo

lm";lm" � �oo
l�m#;l�m#

�
+ G1(m)

�
�oo

lm+1#;lm" � �oo
l�m�1";l�m#

�
g; (17)

defining

�
oo
lm�;l 0m0

�
0 = Dc

lm��
oo
lm�;l 0m0

�
0Dc

l 0m0
�

0

and assuming that the absorber is located at siteo. A similar ex-
pression,mutatis mutandis, holds for theJc = lc � 1=2 edge. Since
Im � oo

lm�;lm� is proportional to the local projected density of states we
see that the MCD signal in absorption is proportional to the local den-
sity of the various operators~̀,~sand~t in the final state, again neglecting
themand� dependence ofDc

lm�. By developing the scattering path op-
erator in terms of multiple scattering paths in the EXAFS region one
can perform the same analysis as for the more conventional EXAFS.
In particular, in favorable cases one can now access radial distribu-
tion functions either of the density of orbital or spin moment by per-
forming the same combinations of the spectra, as discussed above for
photoemission (see Natoli, 1995, for more details) and with the same
limitations. With respect to this latter spectroscopy there is obviously
a loss of information, since we have integrated out two of the three
degrees of freedom of photoelectron diffraction spectra (energy and
polar angles of̂ke).

Up to now we have deliberately avoided the question of whether the
local density of the operators probed by MCD spectroscopy (i.e. ~̀, ~s
and~t ) has anything to do with the properties of the ground state, which
we are interested in. At first sight the presence of the core hole in the
final state would prone to give a negative answer to this question.
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There exist sum rules involving all possible transitions that relate
them to averages of operators over the ground state. One of them is
the generalizedf sum rule (i.e. for oscillator strengths) for circularly
polarized light (Smith, 1976, Eq. 70). Defining

X
�

f��� =
X
�

(E� � E�) j<Φ�jR
�jΦ�>j

2;

whereR� = X�Y is the many electron dipole operator for circularly
polarized light, one can show that

X
�

( f+�� � f���) =
2
h̄
(<Φ�jLzjΦ�>

+ (1=2mc2) <Φ�jSz(Xrx +Yry)VjΦ�>)

whereV is the spin orbit potential. Another one is the so called Kuhn
sum rule stating that the net transition rate for right- and left-hand light
are equal (Smith, 1976, Eq. 66), which is here rederived for later use.
From the definition of the absorption cross section in the many-body
case for opposite photon helicity,

�
�(!) / !

X
f

<gjR+j f >< f jR�jg> Æ(h̄! � Ef + Eg);

�
+(!) / !

X
f

<gjR�j f >< f jR+jg> Æ(h̄! � Ef + Eg);

(wheree.g. R� =
P

n r�n ), one easily obtains

Z
1

0

d!
�
�(!)

!
= <gjR+R�jg> � <gjR+jg><gjR�jg>;

Z
1

0

d!
�
+(!)

!
= <gjR�R+jg> � <gjR�jg><gjR+jg>;

so that
Z

1

0

d!
�
�(!)� �

+(!)

!
= 0: (18)

However they obviously cannot be used at particular edges to help in
the analysis.

At a particular edge the integration over energy of MCD spectra
(Carraet al., 1993) has been devised as a means to cope with this prob-
lem, in the hope of obtaining averages of magnetic operators related to
the ground state. As a matter of fact, if one eliminates the intermediate
states in Eq. (14) by dividing by! and integrating over allke and ener-
gies one would formally obtain the average of the magnetic operators
over the ground statefor the particular edge considered. However,
underlying such a result is the implicit assumption that different edges
do not interfere, since we have arbitrarily neglected in the transition
operatorT� all other transitions not coming from the particular edge of
interest. This fact might affect the spin sum rules in the presence of the
exchange interaction of the core hole with the valence electrons which
mixes the two corejc levels (Thole & van der Laan, 1988) and affects
their statistical branching ratio. By summing over the spin–orbit split
edges it is possible to derive an orbital sum rule valid in the presence
of such interaction, as done by Tholeet al. (1992) in the framework
of an ion model in a crystal field of arbitrary symmetry.

In the derivation of these edge-specific sum rules, what one ac-
tually obtain is the average of certain combinations of the magnetic
operatorsOm over the statejg0 > = acjg> : < g0jOmjg0 >. For a

deep core transition, this is a highly excited state that can be ex-
panded in terms of the stationary statesΨn of the Hamiltonian of
the system:jg0> =

P
n�nΨn so that, assuming that the cross terms

<ΨnjOmjΨn0 > with n 6= n0 are negligible, one obtains

<g0jOmjg
0> =

X
n

�
2
n <ΨnjOmjΨn> :

In this sum one expects that the terms having the most important
overlap with the statejg0> are those describing an excited state re-
laxed around the core hole and that�

2
n should be identified with the

many-body reduction factorS2
n. It is hoped that the sum over all these

configurations will cancel the effects of the perturbation of the core
hole and restore the properties of the ground state. However, a direct
proof to our knowledge has not been given. An alternative possibility
might be to assume that this perturbation is not so drastic.

From this point of view, whenever sum rulesà la Tholeet al.work
(in the sense that one obtains ground state values for the averages of
the various magnetic operators as checked against independent exper-
imental findings), we should assume that the perturbation of the core
hole in the final state is negligible so that the final density of states is
much like the initial unperturbed one. This assumption should not be
far from reality since in correlated electronic systems presenting mag-
netic phenomena the processes of screening and relaxation in response
to the sudden creation of the core hole might not be so drastic as in
other cases (seee.g.the�� resonance in diatomic molecules!) due to
the autoscreening action of the excited photoelectron. Looking for in-
stance at theLII ;LIII absorption edge of Ni with its sharp white line
just at the edge, it is apparent that the excited photoelectron is seeing a
final 3d hole (there are only 0.6 holes in the 3d band), since its screen-
ing by the other electrons would cost too much energy to the system
and this energy is not available near the edge. On the other hand, stud-
ies by some authors (Nesvizhskii & Rehr, 1999) on theLII ;LIII edges
of Cu and Cr show that the use of a self-consistent ground state poten-
tial gives much better agreement with experiments than the one with
the core hole. It is clear that in the case of correlated systems theZ+1
final state rule, which in any case was based on simple metals (von
Barth & Grossman, 1982), has to be revised and more investigation is
needed on this problem.

This alternative point of view allows to relate integrated spectra to
ground-state properties in a different way. Making the reduction from
the many-body case to the one-particle model moving in an effective
optical potential we can again use Eq. (18). However, now the inte-
gration is over transitions to all states, either unoccupied or occupied.
Since the Pauli principle forbids these latter, we have

Z
1

Ef

d!
�
�(!)� �

+(!)

!
= �

Z Ef

0

d!
�
�(!)� �

+(!)

!
; (19)

whereEf is the Fermi level. In an independent electron model the
average of the magnetic operators over the states lying below the
Fermi level is nothing else that their value on the ground state. If this
point of view is correct far-reaching consequences can be derived for
the analysis of magnetic EXAFS and photoelectron diffraction in all
those cases where a separation of the dichoic signal from the two spin–
orbit split edge is possible, as discussed at the end of the previous sec-
tion. Indeed, these spectroscopies might then be used to obtain density
maps of the various magnetic operators referring to properties of the
ground state.
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6. Natural circular dichroism in photoemission and absorption

For non-magnetic materials the differential absorption of right- and
left-handed circular polarization is called natural circular dichroism
(NCD). It can be shown that in the case of absorption the only way to
observe a dichroic effect isvia an interference between electric dipole
and magnetic dipole and/or electric quadrupole matrix elements. In
fact, in the absence of magnetic fields one has

X
�

(E� � E�) j<Φ�jR
+jΦ�>j

2 =
X
�

(E� � E�) j<Φ�jR
�jΦ�>j

2;

since the intermediate states can be taken to be real. While in the opti-
cal regime E1–M1 interfence is preponderant, in the X-ray regime this
effect is depressed by two or three order of magnitude with respect to
E1–E2 (Alagnaet al., 1998). This effect has been recently measured at
the NdLIII of an hexagonal crystal of Na3[Nd(digly)3]�2NaBF4�6H2O
(digly = the dianion of diglycolic acid) (D3 symmetry) (Alagnaet al.,
1998) and at theLI; LII ;LIII edges of a non-linear crystal LiIO3 (Natoli
et al., 1998). The effect is small (∆�=� � 10�2�10�3) but definitely
measurable on third-generation synchrotron radiation rings and inser-
tion devices. We give here only the final result, referring the reader to
Natoli et al. (1998) for details of the derivation. One finds

�ND(k ph) = i16�3(h̄!)2
�

2
�

2
15

�1=2X
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f (ll 0)
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2
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ll 0(!);

where

f (ll 0) = (lck1kl)
�
lck1kl 0

�� 2 l 0 l
lc 1 2

�

and

�



ll 0(!) = �
X
mm0

�
l l 0 2
m �m0 


�

�
P

f Dc
l Q

c
l 0 <gjaylcalmj f >< f jayl 0m0

alcjg>;

whereDc
l (Qc

l 0 ) are dipole (quadrupole) radial matrix elements and, as
before, the sum is only over statesj f > at the same final energy in the
many-body case or should be replaced by an integration overke in the
one-electron case. Specializing to this latter case and takingk ph along
the direction of quantization, remembering Eq. (4) and calculating the
relevant three j symbol, we obtain

�ND(k ph k z;!) /

l<X
m=1

m
�
3(l 2

> � m2)
�1=2

Im(� oo
lm;l 0m0 � �

oo
l�m;l 0�m0 )

where l< (l>) is the lesser (the greater) ofl and l 0. This expression
lends itself to a MS path analysis of the signal. Examination of the
various ingredients entering into the above equations shows that the
signal is zero if the system under study has a local symmetry point
group containing an inversion center and, for particular incidence ge-
ometries, a reflection plane or a roto-reflexion axis, so that a mixing of
both dipole and quadrupole allowed wave function components is not
allowed. Stated in more physical terms, one observes that an absorp-
tion experiment conserves parity, therefore in particular is invariant
to a mirror reflection containing the incident photon direction. Since
this operation interchanges the hands of circular polarization the ab-
sorption does not depend on the helicity of the photon if the system
is invariant under the same operation, hence there is no dichroism. If
instead the system as a whole is not invariant, it may well happen that

a subset of MS paths transforms into itself under the reflection. In this
case the set does not contribute to the dichroic signal. This is easily
seen in the case of single scattering paths. Hence the dichroic absorp-
tion reflects only higher-order MS processes and only those processes
that involve subsets of atoms in chiral geometry. Therefore, in a path
analysis the dichroic effect brings about a drastic simplification that
can be exploited to the benefit of structural analysis. This aspect is in
fact common to all dichroic spectroscopies.

As in the case of MCD, a sum rule can be established that measures
the degree of mixing of even and odd parity compoments of the wave
function of the system. The relevant operator is easily seen to be

G


ll 0 = �
X
mm0

(�1)l 0+m0

�
l l 0 2
m �m0 


�
ayl 0m0

alm + h:c:

wherel and l 0 differ by 1. Its expression in configuration space has
been given by Carra & Benoist (2000) for
 = 0 in their Eq. (12):

� i(A� Ay)0Lz (20)

whereA0 in polar coordinates is given byA0 = (l cos� � sin� ∂
∂� )

and is such thatA0Ylm = (l 2 � m2)1=2Yl�1;m. There is no guarantee in
this case that its average refers to the ground state of the system, due
to the core hole and the fact that we might deal with non-correlated
systems. However, since the mixing of odd and even components in
the wavefunction is not a local property of the system, one might hope
to access ground state information.

Natural dichroism in photoemission introduces a new degree of
freedom into the effect, namely the escape direction of the photoelec-
tron. Considering also the incident photon direction and a third direc-
tion describing the orientation of the system under study (a molecular
axis in case of oriented molecules on a surface, the normal to a surface
etc.), the combined system of photon plus target can exhibit a defi-
nite handedness. More important, since the final-state wave function
is a scattering state and therefore complex, the argument used in the
case of photoabsorption does not apply here, so that one can observe
CD in the angular dependence of photoemission with the sole dipole
operator. Obviously the angle-integrated signal averages to zero. The
relevant formula is

d�MCD

dke
(!) = 4�2
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X
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where
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�

and
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l l 0 1
m �m0 


�

� Dc
l D

c
l 0 <gjaylcalmj f ke;s

>< f ke;s
jayl 0m0

alcjg> :

Putting
 = 0 and specializing to the one-particle case, one sees from
this last formula that in this spectroscopy one measures the average of
Lz in the final state. This is the exact analog of the MCD case if one
eliminates the spin.
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7. The expression for linear dichroism (LD)

Within the same framework used for MCD and NCD, we can
also study the linear dichroism, in both dipole–dipole and dipole–
quadrupole channels, in order to derive the expressions of the physical
observables that are measured in these processes. We limit ourselves
to the case of absorption and photoemission, neglect the spin and do
not treat the quadrupole–quadrupole (QQ) channel. The extension of
this formalism to the case of diffraction up to the QQ channel includ-
ing the spin variables will be treated in a forthcoming publication.

Let us start from the dipole–dipole channel. In principle, to treat
the LD we could follow the same procedure already described in the
case of MCD up to Eqs. (7), (8) and (9) and then adapt Eqs. (10) and
(11) to the case of two linear polarizations. But we prefer to choose
an alternative more general method, which unifies the treatment of
circular and linear dichroism and can be extended to treat resonant
diffraction. The idea is to recouple the two polarizations� and�� to
a rank-2 tensor after Eq. (8), as done by Luoet al.(1993) and write this
tensor in terms of its irreducible components. In this way the MCD is
expressed by the antisymmetric time-reversal odd part of the tensor
while the LD is given by its symmetric time-reversal even part.

The absorption signal for a given polarization is expressed through
Eq. (8), which can be rewritten, by recoupling the two spherical har-
monics, to give

d�
dke

(!;�) = 4�2
�h̄!

X
�;�;q;�

�
1 1 q
� � �

�
T(q)
� (�;��)��� ;

(21)
where the irreducible tensor of rankq, T (q)

� (�;��), is defined as

T(q)
� (�;��) �

X
�;�

C q�
1�;1�Y1�(�)Y1�(�

�): (22)

Moreover, we can introduce another tensor of rankq representing the
properties of the system through the recoupling,

M(q)
� �

X
�;�

C q�
1�;1���� : (23)

Using the relation between 3-j symbols and Clebsch–Gordan
coefficients,

�
1 1 q
� � �

�
� (�)�

(2q+ 1)1=2
C q��

1�;1�; (24)

we find that Eq. (21) can be interpreted as a scalar product between
two irreducible tensors, one representing the properties of the light,
T(q)
� (�;��), and the other showing the response of the system,M(q)

� ,

d�
dke

(!;�) = 4�2
�h̄!

X
q;�

(�)�
(2q+ 1)1=2

T(q)
� (�;��)M(q)

��: (25)

If we write down the first tensor explicitly, we have, for the three pos-
sible values ofq,

� T(0)
0 (�;��) = �(1=p3)(3=4�)�� ��: being a scalar product

between the two polarizations, this term cannot give rise to any
kind of dichroism.

� T(1)
� (�;��) = (i=

p
2)(3=4�)(�� � �)�: this is the axial

vector responsible for MCD, as seen before. This tensor is
sensitive to time-reversal odd observables.

� The rank-2 time-reversal even irreducible tensor is responsible
for LD, as shown below, and its components, apart from a com-
mon factor 3

4� , are given by

T(2)
�2 = �

�
�1��1;

T(2)
�1 =

1p
2
(��1�0 + �

�
0�1);

T(2)
0 =

1p
6
(��1��1 + 2��0�0 + �

�
�1�1)

= 3��0�0 � �� � �:

The linear dichroism is defined as the differential absorption of two
different linear polarizations that are real and conventionally chosen
orthogonal to each other, say�� and��. From the definition we
obtain

d�LD

dke
�
�

d�
dke

(!;��)� d�
dke

(!;��)

�
: (26)

Note that it is convenient to choose at this point a reference frame for
the irreducible tensors where the quantization axis coincides with the
direction of propagation of the light. We can choose, for simplicity,
�� � (1; 0; 0) and�� � (0; 1; 0) in the frame wherek � (0;0; 1).
In this case onlyT(2)

�2 andT(2)
0 survive and this latter cannot be respon-

sible for LD as it reduces to a scalar product due to the fact that�0 = 0
for both polarizations

Using this reference frame, we obtain, from Eqs. (25) and (26),
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dke
(!) = 4�2
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1p
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h
M(2)

2 + M(2)
�2

i
; (27)

where the expression forM(2)
�2 can be obtained from Eqs. (13) and

(14), substituting 2 to 1 and�2 to� in the last 3-j symbol of Eq. (14).
Explicitly,
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At this point we can follow the same steps made in section 4, to ob-
tain the expression for LD in terms of an effective operator acting on
the final states. We give, as an example, just the case where we sum
up over the two partner functionsJc � 1=2, thus eliminating the spin
variable. The final result is

X
lm

(2l + 1)

�
1 lc l
l 2 1

�
(�)m+l

�
l l 2

m+ 2 �m �2

�

�
�
aylmalm+2 + ayl�mal�m�2

�
/
Z

dr 	y(r)(`2
x � `2

y)	(r);

and the signal is proportional to the average in the final state of the
operator̀ 2

x � `2
y. The directionsx andy appear explicitly because we

already chose a specific reference frame. The general result must be
read as follows: the LD in the dipole–dipole channel allows to see the
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difference of the projections of the square of the magnetic moments
along the directions of the two polarizations. In the reference frame
chosen,z has no particular meaning for the crystal, that can be ori-
ented with its symmetry axes (if it has any) along the direction ofz
or not. What is important for detecting a signal is that the point group
associated to the crystal space group be sufficiently low to admit as a
totally symmetric representation the combinationhM(2)

2 + M(2)
�2i.

The same procedure can be followed in the case of the dipole–
quadrupole channel. We report only the final results omitting the rather
tedious details of the derivation. As in Eq. (21), the signal is given by
the scalar product between a tensor representing the light properties
and one that is related to the properties of the system. In this case the
irreducible tensors involved are of rank 1, 2 and 3. If we choose the
same reference frame used previously,i.e.with thez axis in the direc-
tion of the wave vector, then some of the components of these tensors
are zero and the only different from zero are

T̃(1)
0 =

1p
2

k0(�
�
1��1 + �

�
�1�1);

T̃(2)
0 =

1p
2

k0(�
�
1��1 � �

�
�1�1);

T̃(2)
�2 = � 1p

2
k0(�

�
�1��1);

T̃(3)
0 =

1p
2

k0(�
�
1��1 + �

�
�1�1);

T̃(3)
�2 = k0(�

�
�1��1):

From these formulae it is simple to derive the conditions under which
it is possible to detect a dichroic signal: the irreducible tensorsT(1)

0

andT(3)
0 cannot give rise to any dichroism as they are symmetric in

the exchange�� $ � (this prevents from having circular dichroism)
and they go into themselves by interchanging two linear polarizations
�� and�� (this forbids linear dichroism). The time-evenT(2)

0 is re-
sponsible for NCD as already analyzed in the previous paragraph and
the time-odd tensorsT(2)

�2 andT(3)
�2 are those responsible for LD in the

dipole–quadrupole channel. Again, starting from definition (26), we
obtain that the signal in this case is proportional to

d�LD

dke
/ ik

�h
M̃(3)

2 + M̃(3)
�2 � h:c:

i
+

1p
2

h
M̃(2)

2 � M̃(2)
�2 � h:c:

i�
: (29)

The expression for thẽM can be derived in the same way as done pre-
viously for the dipole–dipole channel. We limit ourselves here to give,
as an example, the expression for the effective operators that are seen
in LD spectroscopy at theK-edge.

Summing again over the spin variables, the expression in second
quantization is (omitting the imaginary unit)

Gll 0 /
X

m
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��
l l 0 3

m+ 2 �m �2

�

+
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2

�
l l 0 2
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x (ayl 0malm+2 + ayl 0;�mal ;�m�2)� h:c:

wherel 0 = l � 1.
In terms of configuration space operators its expression reads:Z

dr 	y(r)
�
(`2

x � `
2
y)A0 � h:c:

�
	(r) (30)

in striking similarity with the analogous equation for natural dichro-
ism (Eq. (20), with the obvious difference that now the tensor is time-
reversal odd.

A similar result was found by Carraet al. (2001), but apparently
without the contribution of the rank-two time-odd orbital tensorT(2)

�2 .
This contribution is essential to obtain the simple form of the opera-
tor in Eq. (30) and also provides an exception to the usual statement
that odd-rank irreducible tensors are time-reversal odd and even-rank
irreducible tensors are time-reversal even.

Eq. (30) constitutes the basis for the analysis of the tranverse X-ray
linear dichroism at the VK-edge of V2O3 observed by Goulonet al.
(2000), measuring non-reciprocal gyrotropy in this system. A more
detailed investigation will be given elsewhere.

8. Conclusions

We have presented a unified approach for calculating magnetic and
natural dichroism (both circular and linear) in (spin resolved) photo-
emission and absorption as well as linear dichroism valid for extended
systems and the many-body case. The reduction of this scheme to
a one-particle model in the framework of multiple-scattering theory
shows their intimate relationvia the generalized optical theorem
Eq. (4). In photoemission the circular dichroic cross section is propor-
tional to linear combinations of the averages of the various operators
~̀,~s and~t in the final stateΨke;s(r) selected by the experimenter, with
simple coefficients that depend on the initial spin–orbit split edge. By
suitable linear combination of the two edges one can select one or
the other of such operators. Under the assumption that the final state
optical potential is similar to that of the ground state due to corre-
lation effects, this spectroscopy as a surface technique provides the
maximum of selectivity to explore the properties of the ground state
of the system under study. On the other hand, what is observed in
photoabsorption is substantially an average of the same expression
over all photoelectron directions. There is a loss of information with
respect to photoemission since we have at our disposal only the pho-
ton energy. We can now access bulk properties and in principle radial
distribution functions. Integrating over energy there is a further loss
of information and we probe the average of the same operators over
the ground state, under the assumptions discussed above. For LD we
have shown what type of operators are observed both in dipole–dipole
and in dipole–quadrupole transitions. More investigation is needed to
understand their role in the description of the various physical sys-
tems. The above spectroscopies constitute a powerful new class of
techniques that exploit the availability of tunable circularly polarized
X-rays with high brilliance coming from third-generation synchrotron
radiation sources. Combined with elemental selectivity they have the
potentiality to probe element-specific magnetic moments, exchange
and spin–orbit splitting and atomic-scale magnetic structure especially
in the study of nanoscale materials.

Part of the content of this paper was presented by CRN as an invited
talk at the XAFS XI International Conference, 26–31 July 2000, held
in Ako, Japan. Financial support is gratefully acknowledged. SDM
acknowledges the support of a Grant from the University of Salerno,
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