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In order to suppress harmonic intensity of undulator radiation, a

scheme similar to the detuning technique used in the double-crystal

monochromator is investigated and found to be effective only when

the number of periods of the undulator is small, once the ®nite

emittance of the electron beam and angular acceptance of the

beamline are taken into account. Instead, a simple scheme is

proposed for undulators with many periods: the undulator is divided

into several segments and the optical phase in between is adjusted to

shift the fundamental energy without signi®cantly affecting other

harmonics.
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1. Introduction

It is well known that the spectrum of undulator radiation (UR) has a

series of sharp peaks with the width proportional to the reciprocal of

the number of periods of the undulator. In the case of a conventional

undulator, the peak energies are integer multiples of a certain

minimum energy (fundamental energy) determined by the electron

energy, magnetic strength and periodic length. It is therefore

impossible to obtain pure radiation without contamination by higher

harmonics only with a conventional monochromator.

One solution to this problem is the detuning technique generally

used in a double-crystal monochromator (Batterman & Bilderback,

1991). Because the Darwin width of the second crystal is narrower for

higher harmonics, tilting it slightly from the Bragg angle (detuning)

results in a reduction of the higher-harmonic intensity. In the soft

X-ray region, however, such a technique cannot be applied. The

unwanted higher harmonics are in some cases removed by optical

elements dedicated to harmonic rejection, which in turn causes a

degradation of the available ¯ux.

Another solution is to adopt the quasi-periodic undulator (QPU)

proposed by Hashimoto & Sasaki (1994) and improved by several

authors (Chavanne et al., 1998; Sasaki et al., 1998; Diviacco et al.,

2000). The spectrum of QPU consists of harmonics with energies

which are not integer multiples of the fundamental energy, enabling

monochromated radiation to be obtained with much less harmonics

than that obtained with a conventional undulator. Several QPUs of

pure-permanent magnet and hybrid types have been constructed. The

disadvantages of these devices are that they cannot be restored to

normal, i.e. periodic devices. The electromagnet QPU (Schmidt et al.,

2001) can be restored to the periodic device; however, a longer

periodic length is in general necessary to construct an electromagnet

undulator than others.

In this article we propose simpler schemes to suppress the higher-

harmonic intensity. Two different methods are shown. The ®rst one is

based on a principle analogous to that of detuning in the double-

crystal monochromator and does not require any special optical or

magnetic instruments; however, it has a narrow application. On the

other hand, the second one, which is the main subject of this article,

can be applied in any case.

2. Principle

The principle of the scheme to be proposed is based on detuning. Two

methods are presented. One is to detune the photon energy with the

photon beam being monochromated, and the other is to divide the

undulator into several segments and detuning the optical phase in

between.

2.1. Energy detuning

Apart from the term describing the intensity speci®c to the

harmonic number, the spectral pro®le of the kth harmonic of UR is

dominated by the function S de®ned by

S�N; �� � sin N�

N�
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;

with

� � � kÿ !=!1� �;

where ! is the photon energy, N is the number of periods and !1 is

the fundamental energy. Let us consider the case where the photon

beam is monochromated at the energy !m = !1 ��!. Clearly, the

kth harmonic energy selected by the monochromator is equal to

k!m = k�!1 ��!�, which leads to the UR intensity proportional to

Ik = S�N; �k�!=!1�. If j�!j is smaller than !1=�kN�, Ik is a

decreasing function of kj�!j. In other words, the bandwidth of each

harmonic is proportional to the reciprocal of the harmonic number.

Thus, it is possible to reduce the higher-harmonic intensity if we

monochromatize the photon beam at an energy slightly shifted

from !1.

2.2. Phase detuning

As discussed later, the scheme described in the preceding section is

not effective in the case where the number of periods is large, once

the emittance of the electron beam and angular acceptance of the

beamline are taken into account. In this section an alternative

method is presented.

Let us consider an undulator composed of M segments with

number of periods N and drift spaces in between. In this case the

electric ®eld of UR is composed of M wave trains separated by the

time interval �T. To obtain the spectrum of radiation, the Fourier

transform of the electric ®eld is calculated as follows,
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where Ek is the kth component of the Fourier series obtained by

expanding the electric ®eld E in one period. Let us consider again the

case where the photon beam is monochromated at the energy !m =

!1 ��!. The kth harmonic intensity extracted by the mono-

chromator is proportional to Ik , calculated as



Ik �
sin kM��N�!=!1 ��'=2�
M sin k��N�!=!1 ��'=2�
� �2

S�N; k��!=!1�; �1�

where we have introduced a phase-mismatch parameter �' by

�' � !1�T:

Ik consists of two terms. The ®rst term denotes the interference effect

between segments, whereas the second term describes the normal

spectral pro®le of UR.

Now let us consider the case where �' = 4�=3, M = 2 and N = 50.

Substituting into equation (1), it is found that Ik for the third

harmonic reduces to S�MN; k��!=!1�, a normal pro®le of UR with

the number of periods of MN, while that for the fundamental is

signi®cantly distorted as shown in Fig. 1. The fundamental peak is

shifted to higher energy, while that at the third harmonic remains the

same. If M is increased with the product MN being constant, the

fundamental peak is shifted further. This means that the third-

harmonic intensity will be considerably reduced if we choose a large

number of M and monochromatize the photon beam at the energy of

the shifted fundamental peak.

3. Effect of angular divergence and acceptance

The discussions in the preceding section are made under the condi-

tion that the electron beam has zero emittance and energy spread,

and the beamline has an in®nitely small angular acceptance, the

effects of which are investigated in this section. The parameters used

in the calculation are summarized in Table 1, the beam parameters of

which are typical values for the medium-energy third-generation

synchrotron radiation facilities recently constructed or under plan-

ning. Energy spectra of the ¯ux passing through a rectangular slit with

horizontal and vertical full widths of 4�x;y are calculated, where �x;y

is the root-mean-square photon beam size observed at the slit posi-

tion. All calculations have been made in the near-®eld region with a

synchrotron radiation calculation code, SPECTRA (Tanaka & Kita-

mura, 2001), developed at SPring-8.

3.1. Energy detuning

Let us ®rst consider the case with the energy detuning. Energy

spectra of harmonics up to the ®fth are plotted in Fig. 2. In order to

clarify the detuning effect, the abscissa is shown with the photon

energy normalized by the harmonic number. Two different sets of �u

and N are considered. When N is equal to 10 (Fig. 2a), the energy

detuning is effective to suppress the higher-harmonic intensity

without sacri®cing signi®cantly the fundamental ¯ux. Detuning the

photon energy by �! = 1.5 eV leads to about 60% degradation of the

fundamental ¯ux, while it reduces the intensity of other harmonics by

two orders of magnitude. In the case of N = 100, however, the energy

detuning is not effective, as shown in Fig. 2(b). Owing to the ®nite

emittance and angular acceptance, the peak width is broadened for

each harmonic, which spoils the detuning effect. Energy detuning of

�! = 1.7 (2.6) eV degrades the fundamental intensity to 50 (20)%.

Nevertheless, the third harmonic still remains with an intensity of
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Figure 1
Phase detuning effect caused by the segmentation of the undulator and
insertion of mismatched phase.

Table 1
Parameters used in the calculation.

Electron energy 2 GeV
Average current 100 mA
Natural emittance 10 nm rad
Energy spread 0.001
Coupling constant 1%
Horizontal betatron value 24 m
Vertical betatron value 10 m
Undulator total length 5 m
Undulator K value 2
Slit distance from the source 30 m

Figure 2
Harmonic suppression by the energy detuning. Energy spectra up to the ®fth
harmonic considering the ®nite emittance and angular acceptance are shown
for two difference cases: (a) N = 10 and �u = 50 cm and (b) N = 100 and
�u = 5 cm.
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55 (20)% of the fundamental. In Table 2 the harmonic suppression

effects by the energy detuning are summarized in both cases of N = 10

and 100.

3.2. Phase detuning

Next let us consider the case with the phase detuning. In order to

create a phase mismatch �' of 4�=3, a drift space of length

�2=3��u�1� K2=2� has been inserted, where �u and K are the periodic

length and de¯ection parameter of the undulator.

Energy spectra up to the ®fth harmonic are plotted in Fig. 3 for

different numbers of segments. As in Fig. 2, the energy is normalized

by the harmonic number. The total number of periods, or the product

MN, is assumed to be 100 and the periodic length is 5 cm. The spectra

shown in Fig. 3(a) for the case of M = 1 are therefore the same as

those in Fig. 2(b). They are shown just for comparison with other

cases. The fundamental peak energy is shifted due to the segmenta-

tion and phase mismatch, while those of other harmonics remain

almost the same. The fundamental degradation is about 30% in both

cases. In the case of two segments, the phase detuning may not be

suf®cient. The ¯ux ratios of the third and ®fth harmonics to that of the

fundamental are about 35% and 16%, respectively. Increasing the

number of segments considerably improves the situation. In the case

of four segments, the ratios of all harmonics are less than 2.4%. The

phase-detuning effects are summarized in Table 3.

4. Conclusion

We have presented two simple schemes to suppress higher-harmonic

intensity of UR. In the case of the energy detuning, no additional

instruments are necessary. The user of UR is required to simply shift

the energy slightly from the value where the fundamental intensity

has its maximum. As to the phase detuning, several mechanical

modi®cations and instruments are necessary. However, the scheme is

simple. We simply divide the entire undulator into several segments

and detune the phase between them. In x3 we used a simple drift

section to create phase mismatch; however, it is more useful and

¯exible to install a magnetic phasing section to create a bump of the

electron orbit to tune the phase. The magnetic ®eld of the phasing

section should be variable to ensure the phase mismatch condition

�' = 4�=3 for all the gap values of the undulator. Needless to say,

setting �' = 2� reproduces a normal undulator with a length of the

entire device, which is a great advantage over the QPU.

The phase-mismatch condition �' = 4�=3 introduced in this article

is to reduce the ratio of the third-harmonic intensity to the funda-

mental. If the user wanted to use the third harmonic and eliminate the

ninth, �' of [2�ÿ 2�=9 = 16�=9] would work well. The value of 2�=9

is derived from the ninth harmonic and the minus sign is to obtain the

peak shift to higher energy in order to avoid contamination by higher

harmonics due to the regular low-energy tails.

Table 2
Summary of the energy-detuning effects.

N = 10, �! = 1.5 eV N = 100, �! = 1.7 eV N = 100, �! = 2.6 eV

Harmonic Flux
Ratio
(%) Flux

Ratio
(%) Flux

Ratio
(%)

1st 2:4� 1013 100 4:6� 1014 100 1:8� 1014 100
2nd 1:1� 1012 4.6 1:2� 1013 3.3 3:3� 1012 1.8
3rd 1:1� 1012 4.6 2:2� 1014 55 3:6� 1013 20
4th 8:6� 1011 3.6 1:7� 1013 3.7 3:1� 1012 5.5
5th 8:5� 1011 3.6 1:1� 1014 24 1:5� 1013 8.3

Figure 3
Harmonic suppression by the phase detuning. Energy spectra up to the ®fth
harmonic are shown for different numbers of segments: (a) M = 1, (b) M = 2
and (c) M = 4.

Table 3
Summary of the phase-detuning effects.

Note that the ¯ux at the fundamental energy for the case of no segmentation
(M � 1) is equal to 30� 1014.

M = 2 M = 4

Harmonic Flux Ratio (%) Flux Ratio (%)

1st 6:7� 1014 100 6:2� 1014 100
2nd 1:7� 1013 2.5 1:2� 1013 1.9
3rd 2:4� 1014 36 1:0� 1013 1.6
4th 2:7� 1013 4.0 5:4� 1012 0.9
5th 1:1� 1014 16 1:5� 1013 2.4



Only a planar undulator is considered in this article. It is worth

noting that the proposed scheme can be applied to other undulators

such as the ®gure-8 (Tanaka & Kitamura, 1995) and elliptic undula-

tors. For the latter, the scheme is exactly the same as that presented so

far. In the case of the ®gure-8 undulator, �' should be optimized

because even harmonics also appear in the spectrum which is not the

case for standard undulators.
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