
research papers

120 # 2003 International Union of Crystallography � Printed in Great Britain ± all rights reserved J. Synchrotron Rad. (2003). 10, 120±124

Multiple-electron excitation in X-ray
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The probability of secondary electron shake-off in X-ray absorption

is calculated using a model form for the time- and energy-dependent

core-hole±photoelectron potential, screened by the single plasmon

pole dielectric function of the surrounding material. The resultant

excitation probabilities are related to the energy-dependent intrinsic

loss function in EXAFS data analysis and compared with experiment.

Reasonable agreement is obtained close to the absorption edge

although the calculation is less accurate at higher photon energies.

The theory described allows the losses to be calculated with little

computational effort, making the method suitable for routine

EXAFS data analysis.
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1. Introduction

X-ray absorption theory is usually given in purely one-electron terms.

This gives very good results for the X-ray absorption coef®cient

(Gurman, 1983) and reasonable results for the extended X-ray

absorption ®ne structure (EXAFS) except for the amplitude. In a

single-electron formalism, Coulomb interactions between the created

photoelectron and the bystander electrons are neglected. These

interactions can give rise to multiple electron excitations which

remove photoelectrons from the elastic-scattering channel, hence

reducing the primary-channel EXAFS (Rehr et al., 1978). In EXAFS

data analysis, excitations at the absorbing atom (intrinsic losses) are

usually accounted for by multiplying the single-electron result by a

constant loss factor, s2
o, while the losses at the scattering atoms

(extrinsic losses) are included by introducing an imaginary part to the

scattering potential. A constant value for the intrinsic loss factor is,

however, a poor approximation, especially close to the X-ray

absorption edge. In this paper we investigate the energy dependence

of s2
o.

In a previous paper (Roy et al., 2001) we extended the time-

dependent perturbation theory of Thomas (1984) to describe the

energy dependence of the intrinsic losses for all atoms using a simple

generic model. In this formalism, however, the strength of the core-

hole±photoelectron potential was not given explicitly, but had to be

included by normalizing the results to experiment or theory (Roy &

Gurman, 1997) in the high-energy limit. In the present paper we

attempt to rectify this problem by using a model form for this

potential, screened by the energy- and frequency-dependent dielec-

tric function. We know that the previous form of the theory gives a

good description of the EXAFS losses. In this paper we attempt to

obtain an equally good description without the inclusion of any

`®ddle factors'. The aim is to describe the inherently dif®cult problem

of multiple electron excitations in terms of a physically intuitive

theory, following such authors as Gadzuk & Sunjic (1972), Noguera &

Spanjaard (1981) and Vatai (1988). The form of the theory described

is simple enough to be easily programmable and can be evaluated

suf®ciently quickly to be of use in routine data analysis. It is found to

give reasonable agreement with experiment for rare-gas atoms.

In the present paper (as in the previous work) we calculate only

shake-off transition probabilities. The shake-up, or bound-to-bound,

transitions are much less probable than excitations into the conti-

nuum (Carlson et al., 1968; Hasnain, 1990) and are usually ignored for

EXAFS data-analysis purposes (Hayes & Boyce, 1982). Also, shake-

up transitions typically involve only the weakly bound initial states.

The energies of these bound-to-bound transitions will therefore tend

to be small, and the photoelectron energy will not differ from that of

the elastically scattered primary photoelectron by more than a few

eV. Thus, experimentally, the two contributions to the EXAFS signal

tend not to be resolved and, in practice, the shake-up channels cause

no diminution to the measured EXAFS signal.

The calculation of the EXAFS intrinsic loss factor is identical to

that of the probability of multiple-electron excitation, a problem

which has been studied by many authors. Most of these calculations,

however, are complicated and computationally intensive (e.g. Chang

& Poe, 1975; Carter & Kelly, 1977) and are therefore unsuited for

EXAFS data-analysis purposes. Recently, work has been done on a

full description of EXAFS losses including the intrinsic and extrinsic

losses and the interference (Hedin, 1989) between these terms (e.g.

Fujikawa et al., 2000; Natoli, 1995; Newville et al., 1993; Tyson et al.,

1992); however, again we are unaware of any of these methods

currently being used for routine EXAFS data analysis. At present

most EXAFS data-analysis programs use the Hedin±Lundqvist

exchange and correlation potential to model inelastic effects.

Empirically, this potential includes all the losses to the EXAFS

amplitude (Roy & Gurman, 2001) although it was designed to model

only the extrinsic losses. The absolute accuracy of the Hedin±

Lundqvist potential is therefore uncertain (Tyson, 1991).

2. Theory

In the standard EXAFS problem a photon of frequency ! is absorbed

by an atom. The photon excites an electron from a given initial state,

'i, into a continuum state of energy !ÿ j!ij. Following the photo-

ionization, the resulting core-hole±photoelectron system acts as a

perturbation on the other, passive, electrons in the absorbing atom.

We approximate this time-dependent perturbation with a screened

model potential and use ®rst-order time-dependent perturbation

theory to calculate the probability of exciting each of the secondary

electrons.

The temporal variation of the potential arises because the photo-

electron takes a ®nite time to leave the atom, the time depending on

the size of the atom and the speed of the photoelectron. In the same

way as in the previous paper (Roy et al., 2001), following Gadzuk &

Sunjic (1975) or Thomas (1984), we approximate the unscreened

time- and position-dependent perturbation V�r; t� as a product of

time-dependent and position-dependent parts,

V�r; t� � V�r� f �t�; �1�

where we assume

f �t� � �1ÿ exp�ÿt=to����t�: �2�

With this form of the potential the passive electrons see the full core-

hole potential, V�r�, as t!1 when the photoelectron has left the

atom. In equation (2) the characteristic time, to = Rc=v, where Rc is a

characteristic distance of the atom and represents the size of the

orbital of passive electrons. v is the speed of the photoelectron, which,

following Thomas (1984), we have assumed to be time independent.



Finally, ��t� is the Heaviside step function which ensures that the

perturbation is switched on at t = 0 when the photoelectron is created.

Thomas (1984) treats Rc as an adjustable parameter. We, however,

take Rc to be the mean radius of each atomic orbital, arguing that the

majority of the interaction between the passive electron and the

photoelectron will take place within this radius. We set Rc from the

binding energy of each orbital, using the relation for hydrogenic

wavefunctions, Rc = no=�2Eo�1=2, where Eo is the binding energy and

no is the principle quantum number of each orbital.

The unscreened core hole can be described by a simple coulomb

1=r potential. However, using this potential for the core hole gives

values for the probabilities which are much too large. The 1=r

perturbation is too strong: the majority of passive electrons will not

see a bare core hole because of the screening effects of the other

passive electrons. This screening will, in general, be energy depen-

dent. We can model the screening using the single plasmon pole

dielectric function of Hedin & Lundqvist (1969). This energy-

dependent dielectric function will reduce the magnitude of the hole

potential seen by the passive electrons. It will also introduce some

many-body effects into our single-electron theory.

To screen the time-dependent potential we must ®rst write it in

Fourier transform,

V�q; !� � 4�

iq2

1

!
ÿ 1

!ÿ itÿ1
o

� �
: �3�

The screened time-dependent perturbation is then given by

V�r; t� � 1

�2��4
Z

dq d! exp iq � r� � exp i!t� �V�q; !�"ÿ1�q; !�; �4�

where "ÿ1�q; !� is the causal single plasmon pole dielectric function,

"ÿ1�q; !� � 1� !2
p

2�!ÿ i��
1

!ÿ !q ÿ i�
� 1

!� !q ÿ i�

 !
; �5�

!p is the appropriate plasma frequency and !q is the q-dependent

plasmon excitation energy.

Using the above results we can calculate the probability of a

multiple-electron excitation following the creation of the core-hole±

photoelectron system. As discussed in the previous work (Roy et al.,

2001), time-dependent perturbation theory gives the probability

amplitude of a passive electron being excited from an atomic orbital,

j'oi, into an excited state, j ni, as

ano �
Z 1

o

exp i�!no � i�0�t� �h njV�r; t�j'oi dt; �6�

where the convergence factor exp�ÿ�0t� corresponds physically to the

®nite core-hole lifetime. Substituting result (4) for V�r; t� and inte-

grating over time we obtain the probability amplitude as

ano �  n

Z
dq exp�iq � r�
!no�2��4

Z
d!
!V�q; !�"ÿ1�q; !�
!no � !� i�0

���� ����'o

� �
: �7�

The ! integral above may be performed using contour integration by

closing contours in the lower half plane. All the poles in V�q; !� and

"ÿ1�q; !� must lie in the upper half plane so that V�r; t� is zero for

t< 0. We therefore simply pick up a contribution from the pole at

! = ÿ!no ÿ i�0 to obtain

an �
i

�2�3�  n

Z
dq exp�iq � r�V�q;ÿ!no�"ÿ1�q;ÿ!no�

���� ����'lo

� �
: �8�

We de®ne a slightly simpler form for !q to that normally used (Hedin

& Lundqvist, 1969) so that we may evaluate the q-integrals analyti-

cally. We choose

!2
q � !2

p � q4=4; �9�

which exhibits the correct high and low q limits and should therefore

give a good approximation to the true excitation frequencies. As we

are dealing with atoms and not a free-electron gas we make use of the

local density approximation to write the plasma frequency !p in

terms of the radially varying atomic charge density.

Then, using this approximate form for !q and taking the in®nite-

simals in "ÿ1�q; !� to zero we can integrate equation (8) directly using

a result from Gradsteyn & Ryzhik (1965),

an �
itÿ1

o

!no�!no � itÿ1
o �

 n

!2
no ÿ !2

p�r� f �r; !no�
r �!2

no ÿ !2
p�r��

�����
�����'o

* +
; �10�

where

f �r; !no� � 1
2 exp�ÿbr� � 1

2 cos�br� !no >!p�r�
� exp ÿbr=21=2

ÿ �
cos�br=21=2� !no <!p�r�; �11�

and

b4 � j!2
no ÿ !2

pj: �12�

There are weak divergences in the r-integrand for both !no >!p and

!no <!p of the form j!2
no ÿ !2

p�r�j1=4. However, the integrals are

easily evaluated numerically using a standard Romberg integration

routine (Press et al., 1992).

At this point we concentrate on the secondary electron shake-off

and ignore the possibility of bound-to-bound transitions. We can then

calculate the probability of exciting any of the secondary electrons

into any continuum state following the absorption of a photon in the

same way as in Roy et al. (2001). We ®nd

PT�!� �
1

2�

X
i

�i
o�!�
�o�!�

X
no;lo

n�no;lo�

Z kmax

o

k2tÿ2
o

!2
ko�!2

ko � tÿ2
o �

�
Z

Rlo
�k; r� 'lo

�r� !
2
ko ÿ !2

p�r� f �r; k�
r �!2

ko ÿ !2
p�r��

" #
r dr

�����
�����

2

dk; �13�

where the angular parts of the spatial integral have been evaluated to

give �lnlo
. 'lo

is a bound atomic orbital while Rlo
�k; r� is the photo-

electron ®nal state. In numerical work we take the initial states from

tables by Clementi & Roetti (1974) while the photoelectron ®nal state

may be easily calculated from the SchroÈ dinger equation in the

Hartree approximation using a standard Runge±Kutta routine.

A photon incident on an atom may excite electrons from any

occupied core state, 'i, provided that !> j!ij. To compare directly

with experiment, we have therefore weighted the probability of

exciting a secondary electron given that the photoelectron is from

state 'i with the probability that the photon is absorbed by the

electron in state 'i. Thus �i
o is the contribution to the total atomic

absorption coef®cient, �o, from all electrons in the initial state 'i.

In EXAFS experiments, where the initial photoelectron state is

known, the
P

i �
i
o=�o term in the equation above may be removed to

give P�!�, the contribution to the secondary excitation probability

from a given edge. Only those photoelectrons which do not excite

passive electrons into the continuum contribute to the EXAFS signal,

thus the amplitude reduction factor is simply the probability that

none of the secondary electrons are excited,

s2
o�!� � 1ÿ P�!�: �14�
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3. Results

In this section we calculate the secondary electron excitation prob-

abilities using equation (13) and compare with experimental data for

the neon L edge and argon K edge. We also examine the energy-

dependent amplitude reduction factor and calculate an example

EXAFS spectrum for copper. We choose these systems primarily

because of the availability of experimental data, but also to demon-

strate the ¯exibility of the method: the secondary excitation prob-

abilities may be easily calculated for any absorption edge of any

element.

3.1. Secondary electron excitation probabilities

Fig. 1 compares calculated and measured shake-off probabilities

for neon following an L-edge photoionization. The magnitudes of the

calculated results agree fairly well with the experimental data over

the whole of the energy range investigated, certainly to the level of

scatter in the various experimental results. The calculated result for

the neon L edge matches the data well at low energies and appears to

exhibit the correct energy dependence up to a photon energy of

�300 eV. The theoretical result has not, however, reached its sudden

limit even by 700 eVabove threshold but gives shake-off probabilities

which are still rising with energy. This could be due to a fault in

our model dielectric function. With the simpli®ed single plasmon

pole, LDA, dielectric function [equation (5)] it is possible that we

are under-screening the core hole at high primary photoelectron

energies.

Fig. 2 shows the shake-off probabilities against photon energy

following an argon K-edge photoionization. The experimental results

(points with error bars) have been measured by Armen et al. (1985)

while the dotted line is reproduced from Roy et al. (2001). The

calculated result, using the screened core hole, gives a reasonable

approximation to the measured data although the energy dependence

is not as good as for the neon L edge. Again, the calculated excitation

probabilities are still rising at high photoelectron energies where we

might have expected them to have reached their sudden limit. Over

the whole of the energy range investigated the screened core hole

result is not as good as the simple Thomas approximation result from

the previous paper. However, the screened core hole result appears

to better match the energy dependence of the experimental data at

low energies, up to about 70 eV above the edge.

3.2. Amplitude reduction factor

From equation (14) we can calculate the energy-dependent

amplitude reduction factor. To obtain the total loss factor for the

EXAFS amplitude we must also account for extrinsic losses to the

photoelectron beam at the scattering atom and in the medium in

between the central and scattering atoms. We do this by multiplying

by a mean-free-path term, exp�ÿ2�r1 ÿ ro�VPI=k�, where r1 is the

distance to the scattering atom, ro is the muf®n tin radius of the

central atom and VPI is the magnitude of a constant imaginary

potential, usually taken to be 4 eV.

Once we have obtained the total loss factor we can compare

EXAFS amplitudes using the screened core hole amplitude reduction

factor with those found experimentally and those calculated using the

standard Hedin & Lundqvist (1969) exchange and correlation

potential used in most current EXAFS data-analysis programs [e.g.

EXCURV98 (Binsted, 1998)]. This comparison is shown in Figs. 3 and

4 for copper.

The Daresbury program EXCURV98 was used to calculate an

EXAFS spectrum for Cu foil with both the Hedin±Lundqvist (solid

line) and the X� potentials. We used only the ®rst shell of scattering

atoms in order to obtain an unambiguous value for the distances used

in the mean-free-path term. The re®ned ®t gave a nearest-neighbour

distance of r1 = 2.541 � 0.006 AÊ , a ®rst-shell coordination number of

n1 = 11.3 � 1.5, a Fermi energy of Ef = ÿ13.2 � 0.8 eV and a Debye±

Waller factor of a1 = 0.016 � 0.002 AÊ 2. These parameters were then

used as input to calculate the spectra using the real X� potential

which includes no losses.

Fig. 3 shows a direct comparison between loss factors calculated

using the screened core hole and those given by the Hedin±Lundqvist

potential. To obtain the data points we have ratioed the peak heights

of the EXAFS spectra calculated with the Hedin±Lundqvist potential

to the equivalent peak heights of the spectra calculated with the X�
potential. The solid line shows the result for the loss factor calculated

Figure 1
The probability of secondary electron excitation as a function of photon
energy following the creation of a photoelectron from the L shell in neon. The
solid line shows the result calculated using equation (13). The points are
experimental data: diamonds from Bartlett et al. (1992), crosses from Samson
et al. (1992), open squares with error bars from Holland et al. (1979), crosses
with error bars from Wight & Van der Viel (1976) and triangles with error bars
from Carlson et al. (1968).

Figure 2
The probability of secondary electron excitation as a function of photon
energy for the argon K-edge. The points are experimental data from Armen et
al. (1985). The solid line shows the result calculated using a screened core hole
potential [equation (13)] while the dashed line is reproduced from Roy et al.
(2001).



using the screened core hole and multiplied by the appropriate mean-

free-path term to describe the losses outside of the central muf®n tin.

Within the range of an EXAFS spectra the model energy-depen-

dence calculation gives reasonable agreement with the losses

obtained using the Hedin±Lundqvist potential, at least to the �10%
level required by EXAFS calculations. The energy dependence of the

total calculated loss factor is unphysical at small k because of the

constant value for VPI used in the mean-free-path term. This

completely kills the EXAFS as k! 0. To model the mean-free-path

term more accurately we need an energy-dependent VPI , the simplest

form being one which simply cuts off at the binding energy of the

most weakly bound state. Below this energy, no inelastic scattering is

possible and thus we obtain no losses to the EXAFS.

In Fig. 4 we compare calculated EXAFS spectra for copper metal.

To obtain the solid curve we multiply the X� EXAFS spectra with the

calculated energy-dependent loss factor and by a mean-free-path

term, with the values of the parameters as given above. The dashed

line is the best-®t curve to the experimental data (dotted line) ®tted

using EXCURV98 with the Hedin±Lundqvist potential and including

only a single shell of scattering atoms. The two methods of calculation

appear to agree fairly well, although the agreement with experiment

is poor because we have ®tted using only a single shell of scattering

atoms to provide an unambiguous description of the mean-free-path

term. The loss factor calculated using a screened core hole is certainly

more accurate than the constant s2
o and VPI loss factors used

historically.

4. Conclusion

In this paper we have used time-dependent perturbation theory and a

model core-hole±photoelectron potential, V�r�, to obtain results for

the secondary electron shake-off probabilities as a function of photon

energy above the X-ray absorption edge.

We found the results to agree reasonably well with experiment.

The energy dependence of the shake-off probabilities is, however, not

quite correct. The dielectric function used appears to underestimate

the screening at high photoelectron energies, leading to secondary

electron excitation probabilities which are too large in this energy

region.

The magnitudes obtained are, however, generally within the

experimental error over the region of energy of interest in EXAFS.

Using this method to generate an energy-dependent loss factor for

EXAFS calculations would appear to give results almost as good as

those obtained with the Hedin±Lundqvist potential; the advantage

being that data-analysis programs using only real scattering potentials

are relatively simple to write and maintain compared with those

which use complex scattering potentials, especially when multiple

scattering must be taken into account. The Dirac±Hara exchange

potential is known to give better phase shifts for EXAFS purposes

than the real part of the Hedin±Lundqvist potential (Chou et al.,

1987). Using this real scattering potential and an energy-dependent

loss factor such as that described here we would expect to obtain

good EXAFS spectra without the complications of the complex

phase-shift approach.

The calculation using a screened core hole is not as accurate as the

results obtained with the time-dependent model discussed in the

previous paper (Roy et al., 2001). The current method, however, has

the advantage that it does not include `®ddle factors'. It may point the

way to a more accurate but still physically intuitive description of the

loss factors, possibly using a more accurate form of the dielectric

function.
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