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The sagittal deviation of a Laue-diffracted X-ray beam caused by the

inclination of an exit crystal surface with respect to an entrance

crystal surface has been studied both theoretically and experimen-

tally. The use of this effect for sagittal focusing of X-ray synchrotron

radiation diffracted by a Laue crystal is suggested. The focusing is

based on the refraction effect due to the parabolic pro®le of an exit

or/and entrance surface. The crystal is not bent. In order to achieve a

reasonable focusing distance, the crystal should be cut asymmetri-

cally. The experiment was performed at beamline BM5 at the ESRF.
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1. Introduction

It has been shown that in Bragg-case diffraction the sagittal focusing

of a diffracted X-ray beam may be achieved when the crystal surface

is shaped such that it forms a longitudinal parabolic groove (HrdyÂ,

1998, 2001; HrdyÂ & Siddons, 1999; Artemiev et al., 2001). This effect

occurs because in inclined (not asymmetrical) diffraction the

diffracted beam is slightly deviated from the plane of diffraction. This

deviation, �, can be easily explained in terms of the con®guration of

the wave vectors in reciprocal space when taking into account

boundary conditions. A summary of theoretical and experimental

work on this subject is given by HrdyÂ et al. (2001). A similar approach

can also be applied to Laue-case diffraction. By pro®ling, for

example, the exit surface (or the entrance surface, or both) of a Laue

crystal, it should be possible to focus the diffracted radiation meri-

dionally or sagittaly, depending on how the surface is shaped. In fact,

the meridional deviation of the beam diffracted from a Laue crystal

whose exit surface is inclined to the incident surface was ®rst

observed by Kohra et al. (1965). To utilize this effect for meridional

focusing it is necessary also to take into account polychromatic

focusing and diffractional focusing (Afanasev & Kohn, 1977), which

will not be treated here. On the other hand, the sagittal deviation of

the diffracted beam in Laue-case diffraction has, to our knowledge,

been studied neither theoretically nor experimentally and will be

discussed in this paper. The discussion is based only on geometrical

theory, i.e. on the in¯uence of the crystal boundary on the directions

of the wave vectors. Obviously, a detailed theory that describes the

diffracted intensity is needed. The purpose of this paper is only to

demonstrate the new effect.

2. Theory

The situation in the reciprocal space for symmetrical Laue-case

diffraction is shown in Fig. 1. Let the incident wavevector be deter-

mined by the point L on the Ewald sphere. Then the normal to the

entrance surface passing through L intersects the dispersion surface

at the point P (the center of the diffraction region), which determines

the wave vectors generated inside the crystal. The points on Ewald

spheres that determine the exit diffracted and refracted wave vectors

are determined as an intersection of the normal to the exit surface,

passing through P, with the Ewald spheres. In this case, the normal

intersects the Ewald spheres again at the point L.

Let us now rotate the exit surface about the vertical axis (see Fig. 1)

by an angle �. The normal to the exit surface, passing through P,

intersects the Ewald spheres at M, which lies out of the diffraction

plane (ML = LP tan�). The sagittal deviation, �, of the exit diffracted

and refracted beams is

� � LP tan �=k; �1�
where k = 1/� is the absolute value of the vacuum wavevector, and

LP � re�=�2�V cos �B�
� �

F0r ÿ �jFhrj exp�ÿM�� �
; �2�

where re is the classical electron radius, V is the volume of the unit

cell, �B is the Bragg angle, � is the polarization factor, and F0r and Fhr

are the real parts of the structure factors of the corresponding

re¯ections (see, for example, Batterman & Cole, 1964). We assumed

here that in the vicinity of the Laue point the Ewald spheres may be

replaced by planes.

This deviation is rather small (of the order of microradians for

� = 0.1 nm and � = 45�). As in Bragg-case diffraction, however, �may

be substantially increased by using asymmetric Laue diffraction (see

Fig. 2). Here the normal to the exit surface, passing through P,

intersects the Ewald spheres at the points N and R. The point

N determines the outside-diffracted vector [NP = LP cos� /

cos(� + �), where � is the Bragg angle and � is the deviation of the

entrance surface from that in the Laue symmetrical case]. The point R

determines the outside refracted (forward diffracted) wave vector.

By rotating the exit surface about the intersection line of the plane

of diffraction and the surface by an angle �, the intersection point of
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Figure 1
The situation in the reciprocal space for Laue symmetrical diffraction. The
sagittal deviation of the diffracted beam is achieved by rotating the exit
surface by the angle �.
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the normal and the Ewald sphere moves from point N to point M in a

direction perpendicular to the plane of diffraction (NM = NP tan�).

The sagittal deviation, �, is then

� � LP cos � = cos�� � ��� � tan�=k: �3�

Clearly, for � + � close to 90� the sagittal deviation, �, could be of

practical interest. For example, for Si(111), � = 0.1 nm, � = 45� and

� = 79.3�, the expected value of � is about 6 � 10ÿ5. For � = 60�, the

expected value of � is 1 � 10ÿ4. These values decrease with

decreasing � provided that we keep � + � constant. The possible

realization of such a focusing element is shown in Fig. 3. To double

the deviation, �, the curved pro®le should be given to both faces of

the Laue plate.

3. Experiment

To verify (3) we have performed a simple experiment. We prepared

an asymmetrically cut Si single-crystal plate of thickness 1 mm (the

other dimensions are 50 � 50 mm). The angle between the entrance

surface and the (111) diffracting planes was 10.7�, which corresponds

to � = 79.3�. We machined wedges on both sides of the crystal, such

that the diffracted radiation should split in the sagittal direction, as

shown in Fig. 4. The angles of the two wedges were 45 and 60� (we

only used the 60� one). The experiment was performed at the ESRF

BM5 beamline. The crystal was placed after the main mono-

chromator, which was set to � = 0.1 nm and detuned to suppress

partially the higher harmonics. The diffracted beam formed an angle

of 1.5� with the exit surface of the crystal, and the angle between the

impinging beam and the entrance surface was 19.9�. The size of the

beam was 0.1 mm (vertically) by 3 mm (horizontally). The vertical

divergence of the beam was about 5 mrad. The image of the diffracted

radiation was detected at a distance of 40 cm from the crystal by a

CCD camera. The wavelength of 0.1 nm is large enough to see the

effect, but because of the high absorption we could only see the beam

diffracted from the edge of the crystal, where the thickness of the

crystal was suf®ciently small. On the other hand, we could see the

image of the third harmonic in the whole region of the crystal, but the

expected splitting for this harmonic is smaller. Fig. 5 shows the image

of the third (and higher) harmonics, and in the lower part we also see

the overexposed image of the ®rst harmonic. The vertical direction

corresponds to the sagittal direction (i.e. perpendicular to the plane

of diffraction). The place where the image changes direction corre-

sponds to the 120� edge of the crystal. Here we could see a `crack',

which is obviously the sagittal splitting for the higher harmonics. The

size of this crack is within one pixel, which represents about 10 mm.

Fig. 6 shows the same image as Fig. 5 but with a much shorter

exposure time. The region out of the wedge is practically not seen, but

at the lower part we see two spots; the upper spot is the image of the

edge of the crystal seen by the higher harmonics, and the lower spot is

the image of the edge seen by the ®rst harmonic. The ®rst-harmonic

spot is displaced with respect to the higher-harmonic spot, both

horizontally and vertically (meridionally and sagittally). The vertical

displacement determines the sagittal splitting that we were looking

for. The problem is that the comparison of the positions of the spots

belonging to different harmonics is not straightforward, and thus we

could make only a rough evaluation of the result. In any case, the

vertical displacement is at least four pixels in the right direction,

which supports the above theory.

4. Discussion

HrdyÂ (1998) showed that the tangential dependence of � on �
requires, in the case of Bragg diffraction, a longitudinal groove of

parabolic shape in order to generate the sagittal focusing. Analogi-

cally, in the Laue case, the tangential dependence of � in (3) suggests

that the correct shape of the groove (Fig. 3) should also be parabolic

(like in the Bragg case). The expression LP[cos� / cos(� + �)]/k here

plays the role of K0 in the Bragg case (HrdyÂ, 2001) and can be

substituted into the equation of a parabola. Note that in the Laue

asymmetrical case, and in the situation shown in Figs. 2 and 3, the

sagittal deviation of the diffracted beam is larger than the sagittal

deviation of the forward-diffracted (refracted) beam because

PN > PR.

The drawback of this method is that, although the groove squeezes

the diffracted beam in the sagittal direction, at the same time the

groove increases the size of the diffracted beam in the perpendicular

Figure 3
A sagittaly focusing Laue asymmetric crystal.

Figure 4
A schematic picture showing the splitting of the Laue diffracted beam on the
wedge.

Figure 2
The reciprocal space diagram for Laue asymmetrical diffraction. As in Fig. 1,
the sagittal deviation of the diffracted beam is achieved by the rotation of the
exit surface by an angle �.



direction. (The same problem arises in the Bragg case when only one

grooved crystal is used.) Nevertheless, this effect will be hidden in the

increased beam size caused by the Bormann triangle in the lateral

thick part of the crystal. If the size of the impinging beam (measured

in the plane of diffraction) is comparable to or higher than the depth

of the groove, this effect is not too important. In the opposite case,

however, the increased size of the diffracted beam must be

compensated for in another way. One possibility is to create the

pro®le of the crystal as shown schematically in Fig. 7. This solution

also reduces the absorption in the lateral parts of the crystal.

Obviously, this kind of focusing monochromator works at one

wavelength and in its close neighborhood. The dependence of the

focusing distance on the Bragg angle does not show the almost ¯at

region where the focusing distance is practically constant, as it is in

the Bragg case.

The meridional bending of this type of crystal to achieve a meri-

dional magni®cation other than 1:1 may be dif®cult.

Recently, Zhong et al. (2001a,b) showed that in the case of Laue

asymmetrical diffraction the sagittal focusing of diffracted radiation

might be achieved by sagittal bending of a crystal. This requires,

however, a precise bending mechanism, and focusing at a long

distance might be dif®cult. Like in the Bragg case, focusing may be

achieved more easily with the use of the above-described refraction

effect in the Laue asymmetrical case, but the estimation of the gain in

intensity needs a more detailed analysis for a particular experimental

arrangement.
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Figure 7
A possible pro®le of the Laue crystal to reduce the aberration and the
absorption in the thick lateral part of the crystal.

Figure 5
An image of the higher harmonics diffracted from the Laue crystal, with the
wedge produced in the lateral part of the crystal. The almost horizontal `crack'
indicates the sagittal splitting of the beam. In the lower part of the picture the
overexposed image of the ®rst harmonic is seen.

Figure 6
The same image as in Fig. 5 but with a shorter exposure time. The upper spot is
the edge of the crystal (the tip of the wedge) seen by the higher harmonics and
the lower spot is the image of the edge seen by the ®rst harmonic.


