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Modern synchrotron radiation sources with insertion devices and

focusing optics produce high ¯uxes of X-rays at the sample, which

leads to a requirement for photon-counting detectors to operate at

high counting rates. With high counting rates there can be signi®cant

non-linearity in the response of the detector to incident X-ray ¯ux,

where this non-linearity is caused by the overlap of the electronic

pulses that are produced by each X-ray. A model that describes the

overlap of detector pulses is developed in this paper. This model

predicts that the correction to the counting rate for pulse overlap is

the same as a conventional dead-time correction. The model is also

used to calculate the statistical uncertainty of a measurement and

predicts that the error associated with a measurement can be

increased signi®cantly over that predicted by Poisson (Nÿ1=2)

statistics. The error differs from that predicted by a conventional

dead-time treatment.
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rates; non-linear responses.

1. Introduction

The purpose of an X-ray detector is to measure the ¯ux of a beam of

X-rays, where the X-ray ¯ux is commonly expressed as the number of

X-ray photons in the beam in a given energy bandwidth per unit time.

X-ray detectors may be classi®ed as one of two types:

(i) integrating detectors, in which the X-rays are converted into an

analogue electrical signal, the size of the signal being proportional to

the X-ray power;

(ii) photon-counting detectors, in which each X-ray generates a

pulse and the number of pulses counted in a ®xed time period is

proportional to the X-ray ¯ux.

This paper is concerned with photon-counting detectors, such as

scintillation, solid-state and gas-proportional detectors (Knoll, 1989).

We assume that the ¯ux of X-rays being measured is constant over

time or that any time structure is on a much shorter time scale than

the detector response. Photon-counting detectors rely on the

absorption of an incident X-ray followed by some physical process

that converts the energy of the absorbed X-ray into an electronic

pulse. It is a feature of photon-counting detectors that the detection

ef®ciency can approach 100%, and, in the low-count-rate regime,

every X-ray absorbed in the detector generates a pulse so that there is

a linear relationship between the mean number of counts in a

counting period and the X-ray ¯ux. To process and count the number

of pulses, the detector is connected to electronics known as the

counting chain. The counting chain may also allow the energy of each

absorbed X-ray to be determined if the size of the pulse depends on

the energy of the X-ray. Photon-counting detectors are used in

applications where accurate measurement of X-ray ¯ux is required,

where the X-ray ¯ux is not too high and where energy resolution is

required.

At synchrotron radiation sources, photon-counting detectors are

used in a variety of experiments. The best photon-counting detector

for a particular application depends on the energy resolution and the

count rate that is required. In general, if higher energy resolution is

required, the detector will be limited to lower count rates. A number

of applications of photon-counting detectors at synchrotron sources

are possible, for example

(i) measuring the X-ray ¯ux in a monochromatic beam,

(ii) measuring the X-ray ¯ux at a fundamental energy while at the

same time rejecting X-rays at harmonic energies,

(iii) selecting or removing speci®c ¯uorescence signals,

(iv) determining the X-ray spectrum (energy dispersive measure-

ments).

In the ®rst application, the detector is not required to have any

energy-resolving capability, although energy resolution will allow

background radiation at other energies to be discriminated. Detec-

tors in the second category are required to count X-rays with a

fundamental energy but not X-rays with the harmonic energy. The

harmonic energy from a monochromator may have two or three times

the fundamental energy, and therefore moderate energy resolution is

required of the detector. In the third category, better energy reso-

lution is required, as the background may include the exciting

radiation and other ¯uorescent radiation, which may be close in

energy to the ¯uorescent radiation of interest. The fourth category

also requires high energy resolution, as the detector, rather than the

incident radiation, is used to provide the energy resolution of the

experiment.

The stages in the counting chain are as follows:

(i) Ampli®cation and shaping ± takes the electronic pulse from the

detector and applies ®ltering, shaping and ampli®cation to give a

sharp pulse of suitable amplitude.

(ii) Analysis ± selects pulses according to the pulse height to give

energy sensitivity.

(iii) Accumulation ± counts the pulses in one or multiple channels

in a ®xed time period.

The ampli®cation and shaping stage may be accomplished by a single

linear ampli®er. The gain of the ampli®er may be selected so as to

produce pulses of suitable amplitude for the next stage, and the

shaping time of the ampli®er may be increased to ®lter out more

electronic noise (at the expense of increasing the time duration of the

pulse). The analysis stage is used to measure the energy of the X-rays.

The analysis stage may use a single channel that produces an output

pulse only for pulses whose height is between prede®ned lower and

upper levels, i.e. a single-channel analyser (SCA), or may use many

channels so that each pulse is converted into an integer value in

proportion to the height of the pulse, i.e. a multi-channel analyser

(MCA). The purpose of the accumulation stage is to count the

number of pulses in each channel in a ®xed time period.

2. The statistics of photon counting

To measure X-ray ¯ux, the detected X-rays are counted over a ®xed

time, T. When the counting rate is low, so that every X-ray is counted,

the probability of there being n counts is given by a Poisson distri-

bution,

Pn��� � �neÿ�=n!; �1�
where � is a constant. This distribution re¯ects the random nature of

the arrival of X-rays in the detector. The mean number counted is

given by

n � P1
n�0

n Pn���:

It is easy to show that for a Poisson distribution, (1), this reduces to

n � �. � is therefore the mean (or expected) number of X-rays



counted in a time T, and �=T is the X-ray ¯ux. The error in the

number of X-rays counted is given by the standard deviation of the

distribution,

s�n� � �nÿ n�21=2 � P1
n�0

�nÿ n�2Pn���:

It is again easy to show that for a Poisson distribution, (1), this

reduces to s�n� � �1=2. Therefore, for a measurement (labelled k) that

yields nk counts in a time interval T, the X-ray ¯ux can be estimated

as nk=T, with an error of n
1=2
k =T. The fractional error in the

measurement of the X-ray ¯ux is therefore n
ÿ1=2
k . For a large number

of counts, n, the Poisson distribution can be approximated as a

normal distribution with standard deviation s�n�.
The aim of an X-ray experiment is to measure some property of a

sample that is exposed to an incident X-ray beam, and this

measurement is achieved by examining the ¯ux of the X-ray beam

that has interacted with the sample (for example, by scattering or

absorption in the sample). To perform such measurements accurately

requires a small fractional error in the measurement, so that n
ÿ1=2
k

must be small and therefore nk must be large. nk can be increased by

making the counting period longer or by using a more intense inci-

dent beam.

3. High counting rates

It is well known that the relationship between the X-ray ¯ux incident

on the detector and the mean number of counts becomes non-linear

at high counting rates (see, for example, Jenkins et al., 1981; Knoll

1989), thus limiting the count rate that can be achieved by a detector.

The source of this non-linearity is the inability of the detector and the

counting chain to resolve X-ray pulses when the time separation

between individual pulses becomes too small. In this non-linear

regime, counts are lost and the number of X-rays counted no longer

obeys Poisson statistics. It is important that this effect is modelled so

that the number of X-rays counted can still be used to estimate the

X-ray ¯ux and the fractional error in the measured X-ray ¯ux.

Conventionally, this effect is modelled as a dead time in the

detector and the counting chain. In the dead-time model, a dead

period occurs immediately following the successful detection of an

X-ray. During this dead period, the detector and counting chain are

blocked so that X-rays entering the detector are not counted. There

are two dead-time models that are commonly used. In the non-

paralysable model, the detector remains blocked for a ®xed length of

time, �, following the successful detection of an X-ray. In the

paralysable model, each X-ray entering the detector during the dead

period extends the dead period, so that the detector remains blocked

until a ®xed time, �, after the last X-ray in the dead period. The dead-

time model has been studied in detail for a wide range of detection

systems (for example, Faraci & Pennisi, 1983; Holford, 1982; Libert,

1977a,b,c, 1978; Mazoyer et al., 1985; MuÈ ller, 1973, 1974; Stephan et

al., 1994). It is characteristic of the dead-time model that whether or

not an X-ray is counted depends only on the arrival times of previous

X-rays in the detector and not on the arrival times of subsequent

X-rays. Thus, the dead-time model can be treated as a renewal

process [see Cox (1962) for a description of renewal processes]. The

dead-time model applies well when the mechanism is one in which

the detector is blocked by the successful detection of an X-ray, for

example, when the counting-chain electronics need a period of time

in which to recover from a detection event.

In modern counting chains, the analysis and counting stages can be

very fast. As examples, commercial fast SCAs that are able to resolve

pulses separated by less than 10 ns and MCAs that are able to

perform conversions in less than 1 ms are readily available. With such

fast electronics, the intrinsic width of the pulses at the analysis stage is

the dominant factor in determining the counting losses. The pulse

width is determined both by the intrinsic width of the pulse produced

by the detector and by the effect on the pulse of the ampli®cation and

shaping stage. When pulses overlap, the resulting signal at the

analysis stage is the sum of the signals from each individual pulse. If

we consider monoenergetic X-rays and a single-channel analyser

stage, set to accept only pulses within a narrow height range about the

monoenergetic height, then, if the count rate is low, every pulse will

be counted. If the count rate is high, however, it becomes possible

that a given pulse will overlap with the preceeding or the succeeding

pulse and will not be counted.

The effect of pulse overlap is illustrated in Fig. 1, which shows two

pulses overlapping. The pulse shape at the analysis stage is in general

not symmetrical but usually has a shorter rise and a longer decay

time. In the ®rst case in Fig. 1, the pulses are suf®ciently separated

such that there is no signi®cant change in the pulse height. In the

second case, the height of the second pulse is increased because of the

overlap, but the peaks of both pulses still fall between the lower and

upper levels of the SCA and are counted. In the third case, the peak

of the second pulse is now above the upper level and is therefore not

counted; only the ®rst pulse is counted. In the fourth case, the peak of

the second pulse is increased further, but the peak of the ®rst pulse

still falls between the lower and the upper levels and is counted. In

the ®fth case, the overlap is greater, and now the signal does not fall

back below the lower level between the two pulses. The combined

pulses appear as a single pulse that peaks above the upper level, and

no counts are recorded by the SCA. In the sixth case, the overlap is

now so great that only a single pulse is seen by the SCA, and again no

counts are recorded. Clearly, depending on the time separation

between two pulses, two, one or zero counts may be recorded. This

result is not predicted by the dead-time model, which always allows

the ®rst pulse to be counted.

4. Pulse-overlap model of photon counting

On the basis of this analysis, we have introduced a new model to

describe this process, called the pulse-overlap model. In the pulse-
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Figure 1
Reduction in the number of X-rays counted as the time difference between
two successive pulses is decreased. The horizontal axis is time and the vertical
axis is the signal. The signal is given by the sum of the individual pulses (shown
as dotted lines). UL is the upper-level setting for the SCA and LL is the lower-
level setting. The arrows indicate pulses that are successfully counted. A pulse
is counted when the signal goes from below to above LL and then returns
below LL again without having gone above UL.
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overlap model, an X-ray is only detected if it is separated from the

preceding X-ray by a time difference of more than �1 and from the

succeeding X-ray by a time difference of more than �2. Thus, the new

model differs from the dead-time model in that the detection of an

X-ray depends on the arrival time both of the previous and of the

subsequent X-rays. The paralysable dead-time model is a special case

of the overlap model and corresponds to a �2 of zero and a ®nite �1.

Because the pulses are asymmetric, we allow the two characteristic

times �1 and �2 to be different, and, in the example shown in Fig. 1, we

expect �1 >�2. The pulse-overlap model can be used to calculate the

expected number of counts in a time T when the expected number of

X-rays entering the detector is � (corresponding to an X-ray ¯ux of

�=T). The result, derived in Appendix A [equation (15)], is

m � � exp�ÿ��=T�; �2�
where � � �1 � �2. Equation (2) is identical to the result obtained

with the paralysable dead-time model if the dead time per pulse is �
(Jenkins et al., 1981). Equation (2) may also be used to estimate �k,

the number of X-rays entering the detector in a time T, given a

measurement (labelled k) in which there are mk counts,

mk � �k exp�ÿ�k�=T�: �3�
Equation (3) must be inverted to express �k as a function of mk, which

cannot be done analytically but is easily carried out numerically.

Equation (3) is therefore used for applying a correction to data for

pulse overlap. Note that at low counting rates �k�=T is small, and the

corrected number of counts becomes �k � mk.

Pulse overlap affects not only the mean number of counts but also

the distribution of the number of counts about the mean. In

Appendix B, an expression for the standard deviation of this distri-

bution, s�m�, is derived for the pulse-overlap model. s�m� gives a

measure of the likely deviation of the number of detected counts, m,

from the mean value, m. The result is

s�m� � �mÿm�21=2

� m1=2 1� 2 exp�ÿ�� 0=T� ÿ 2 exp�ÿ��=T��1� ��=T�� �1=2
; �4�

where � 0 � max��1; �2�. Equation (4) can be used to estimate s�mk�
from an experiment in which there are mk counts. The purpose of the

experiment is, however, to measure �k, the estimated number of

X-rays per time T. The statistical accuracy of �k is given by the

standard deviation of the distribution of �k over kÿ s��k�, which can

be calculated via (3) and (4). This calculation is performed in

Appendix C, and the result is

s��k� �
�k�1� 2 exp�ÿ�k�

0=T� ÿ 2 exp�ÿ�k�=T��1� �k�=T��1=2

�1ÿ �k�=T�mk
1=2

:

�5�
We can de®ne a number of counts, �k, such that the fractional error in

�k is ��k�ÿ1=2: the Poisson statistics result. To de®ne �k, we set

��k�ÿ1=2 � s��k�=�k, which gives

�k �
�1ÿ �k�=T�2 mk

1� 2 exp�ÿ�k�
0=T� ÿ 2 exp�ÿ�k�=T��1� �k�=T� : �6�

The estimated number of X-rays per time T is therefore �k [�k is

given by (3)] and the fractional error on �k is ��k�ÿ1=2 [�k is given by

(6)]. In the absence of pulse overlap, Poisson statistics would hold and

we would have �k � �k � mk. In the presence of pulse overlap,

however, we have �k <�k and the statistical accuracy of the

measurement is reduced. In fact, it is possible to show that

�k < ck <�k, i.e. the estimated number of counts is greater than the

measured number and the number of counts used to calculate the

statistical error is less than the measured number.

As an example of a detector operating at high count rates, we take

a germanium solid-state detector, which could be used for a variety of

measurements (for example, ¯uorescence EXAFS measurements or

X-ray diffraction measurements), and we take a counting period T of

1 s. For 1 ms pulse-shaping time, values of �1 � 3:0 ms and �2 � 2:0 ms

are appropriate. With these values, the estimated number of X-rays

(�k) and the number of statistical counts (�k) are plotted against the

number of counts in the counting period (mk) in Fig. 2. As can be seen

from Fig. 2, the number of statistical counts is severely affected by

pulse overlap. If there was no overlap present, the statistical counts,

�k, would follow the Poisson line, �k � mk (dotted line in Fig. 2).

Even at count rates where the overlap correction required in order to

estimate the number of X-rays is small, the number of statistical

counts is signi®cantly less than the number of detected counts. The

number of statistical counts peaks when the number of detected

counts is about 46000. The number of statistical counts at the peak is

�k � 29 000, which corresponds to a fractional error of 0.6%. This is

the limit on the statistical accuracy that can be achieved in a ®xed

counting time by this detector and counting chain.

5. Conclusions

We have developed the pulse-overlap model to describe the loss of

counts that occurs with photon-counting detectors at high count rates.

The pulse-overlap model is more general than the conventional

extending dead-time model that is usually used to model counting

losses. In modern synchrotron experiments with fast electronics, in

which the length of the pulses is signi®cant compared with the speed

of the analysis and counting parts of the counting chain, the pulse-

overlap model should be used.

We have used the pulse-overlap model to derive the correction that

must be applied to the number of counts in a counting period in order

to obtain an estimate for the number of X-rays in the counting period.

We have also derived an expression for the statistical uncertainty

(error) in this determination of the number of X-rays. The error in a

measurement can be expressed in terms of an effective number of

statistical counts, �k, for which we can apply the Poisson formula,

��k�ÿ1=2, to calculate the fractional error. For the example of a solid-

state detector with 1 ms pulse shaping, the lowest fractional error

occurs when the count rate is 46 kcounts sÿ1, which corresponds to an

effective statistical count rate of 29 kcounts sÿ1 and a fractional error

of 0.6%, which is the limit on the accuracy that can be obtained with

Figure 2
Overlap-corrected X-ray counts for a solid-state detector with 1 ms pulse
shaping. The top curve represents corrected X-ray counts (�k) and the bottom
curve statistical counts (�k), both plotted against the number of detected
counts (mk). The dotted curve is the case when there is no pulse overlap,
Poisson statistics apply and �k � �k � mk.



this detection system in a ®xed counting period. Above this count

rate, the accuracy decreases.

The error in a measurement is used to calculate error bars on the

data and as the weighting for the data in model ®tting routines. It is

clearly important that the error is known in order that the correct

error bars are published and the data are weighted correctly. We have

shown that, if the normal Nÿ1=2 formula is applied, the error will be

signi®cantly underestimated in many applications.

APPENDIX A
Consider a counting period T, starting at time t � 0, in which n

photons arrive in the detector at times t1; t2; t3; . . . ; tn, where

0 � t1 � t2 � t3 � � � � � tn � T. Consider the i th pulse, which arrives

at time ti. This pulse will only be counted if ti ÿ tiÿ1 � �1 and

ti�1 ÿ ti � �2. The number of counts counted can therefore be written

as

m�t1; t2; t3; . . . ; tN� �
Pi�n

i�1

f �tiÿ1; ti; ti�1 �; �7�

where for simplicity we have de®ned t0 as the time of the last pulse

before time t � 0 and tn�1 as the time of the next pulse after time

t � T. The function f �u; v; w� is given by

f �u; v; w� � 1 when vÿ u � �1 and wÿ v � �2

0 when vÿ u<�1 or wÿ v<�2:

We can write f �u; v; w� in terms of the Heavyside step function ��x�,
where

��x� � 1 for x � 0

0 for x< 0;

and therefore

f �u; v; w� � ��vÿ uÿ �1 ���wÿ vÿ �2 �:
The number of counts is then given by

m�t1; t2; t3; . . . ; tn� �
Pi�n

i�1

��ti ÿ tiÿ1 ÿ �1 ���ti�1 ÿ ti ÿ �2 �: �8�

If the i th photon arrives in the detector at time ti then the probability

of the very next photon arriving in the time interval dti�1, starting at

time ti�1, is given by the probability that no photons arrive in the time

interval ti to ti�1, which is exp�ÿ��ti�1 ÿ ti�=T �, multiplied by the

probability that a photon arrives in the time interval ti�1 to

ti�1 � dti�1, which is ��=T�dti�1, i.e. exp�ÿ��ti�1 ÿ ti�=T � ��=T� dti�1.

The probability of n photons arriving in the detector in time

intervals dt1; dt2; dt3; . . . ; dtn, where the intervals start at time

t1; t2; t3; . . . ; tn, is therefore given by

p�t1; t2; t3; . . . ; tn�dt1dt2 . . . dtn � exp�ÿ��t1 ÿ t0�=T � ��=T� dt1

� exp�ÿ��t2 ÿ t1 �=T � ��=T� dt2 � � �
� exp�ÿ��tn ÿ tnÿ1 �=T � dtn

� exp�ÿ��tn�1 ÿ tn�=T �
� exp�ÿ����n=Tn� dt1dt2 � � � dtn: �9�

The number of these n photons that are expected to be counted

according to the pulse-overlap model is given by

m � P1
n�0

RT
0

dtn

Rtn
0

dtnÿ1 � � �
Rt2
0

dt1 p�t1; t2; t3; . . . ; tn�m�t1; t2; t3; . . . ; tn�;

�10�

where we have set t0 � 0 and tn�1 � T and where m�t1; t2; t3; . . . ; tn�,
the number of photons counted, is given by (8). Making use of (9), the

expected number of counts can be written as

m �Pi�n

i�1

��n=Tn� exp�ÿ�� RT
0

dtn

Rtn
0

dtnÿ1 � � �
Rti�2

0

dti�1

� Rti�1

0

dti��ti�1 ÿ ti ÿ �1 �
Rti
0

dtiÿ1��ti ÿ tiÿ1 ÿ �2 �

� Rtiÿ1

0

dtiÿ2 � � �
R t2

0 dt1: �11�

The integrals can be dealt with using Laplace transforms. The

convolution theorem for Laplace transforms states that for any two

functions, p�x� and q�x�, the Laplace transform of the convolution of

the two functions is equal to the product of their individual Laplace

transforms (see, for example, Guest, 1991),

L
RT
0

p�T ÿ t� q�t� dt

� �
� L� p�L�q�; �12�

where L refers to the Laplace transform. The Laplace transform of

(11) can easily be performed via the convolution theorem, (12). For

example, the integral over dtn in (11) is simpli®ed as follows,

L
RT
0

dtn

Rtn
0

dtnÿ1 � � � � sÿ1L
RT
0

dtnÿ1 . . . ;

where we have used L�1� � R10 exp�ÿxs� dx � sÿ1 to perform the

®rst integral. Continuing to transform each integral in turn, we reach

sÿn�i L
RT
0

dti��T ÿ ti ÿ �1�
Rti
0

dtiÿ1��ti ÿ tiÿ1 ÿ �2�
Rtiÿ1

0

dtiÿ2 � � �
R t2

0 dt1:

It is then necessary to apply a Laplace transform to the ®rst

Heavyside step function,

L��xÿ �1 � �
R1
0

��xÿ �1 � exp�ÿxs� dx

� R1
�1

exp�ÿxs� dx � exp�ÿ�1s�sÿ1:

Transforming the second Heavyside step function in the same way

and continuing to simplify the remaining integrals, the result is

exp�ÿs��1 � �2�� sÿ�n�1�, which may be substituted into (11) to give

m � Lÿ1
P1
n�1

��n=Tn� exp�ÿ��Pn
i�1

exp�ÿs�� sÿ�n�1�

� exp�ÿ��
X1
n�1

��n=Tn� nLÿ1 exp�ÿs�� sÿ�n�1�; �13�

where � � �1 � �2. The inverse Laplace transform is easily performed

using standard techniques, and the summation over n can be recog-

nized as the Taylor expansion of an exponential function. The result is

m � exp�ÿ��P1
n�1

�n�T ÿ ��n=�Tnn!� � �1ÿ �=T�� exp�ÿ�=T�: �14�

We can take advantage of the fact that � � T to write the mean

number of counts as

m � � exp�ÿ��=T�: �15�

APPENDIX B
To calculate the standard deviation of m, the number of photons

counted, we make use of the following formula relating the variance
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(the standard deviation squared) to the mean of m2 (m2) and the

squared mean of m (m2),

�mÿm�2 � m2 ÿm2: �16�
We ®rst calculate m2 in a similar way to that in which m was obtained

in Appendix A, and write the expression as

m2 �P1
n�1

��n=Tn� exp�ÿ��Pn
i�1

Pn
j�1

RT
0

dtn

Rtn
0

dtnÿ1 � � �
Rt2
0

dt1

���ti�1 ÿ ti ÿ �1 ���ti ÿ tiÿ1 ÿ �2 �
���tj�1 ÿ tj ÿ �1 ���tj ÿ tjÿ1 ÿ �2 �: �17�

This expression is more complicated than the corresponding

expression in Appendix A because of the presence of the double

summations (with indices i and j ) and the appearance of four instead

of two Heavyside step functions. To tackle this expression, we deal

with the integral part of (17) ®rst,

Ji;j �
RT
0

dtn

Rtn
0

dtnÿ1 � � �
Rt2
0

dt1��ti�1 ÿ ti ÿ �1 ���ti ÿ tiÿ1 ÿ �2 �

���tj�1 ÿ tj ÿ �1 ���tj ÿ tjÿ1 ÿ �2 �: �18�
Four cases depending on the indices i and j can be considered

separately: j � i, j � iÿ 1, j � i� 1 and jÿ i
�� ��> 1.

For case 1, j � i,

Ji;i �
RT
0

dtn

Rtn
0

dtnÿ1 � � �
Rt2
0

dt1��ti�1 ÿ ti ÿ �1 ���ti ÿ tiÿ1 ÿ �2 �;

since ��x���x� � ��x�.
For case 2, j � iÿ 1,

Ji;iÿ1 �
RT
0

dtn

Rtn
0

dtnÿ1 � � �
Rt2
0

dt1

���ti�1 ÿ ti ÿ �1 ���ti ÿ tiÿ1 ÿ � 0���tiÿ1 ÿ tiÿ2 ÿ �2 �:
For case 3, j � i� 1,

Ji;i�1 �
RT
0

dtn

Rtn
0

dtnÿ1 � � �
Rt2
0

dt1

���ti�2 ÿ ti�1 ÿ �1 ���ti�1 ÿ ti ÿ � 0���ti ÿ tiÿ1 ÿ �2 �:
For case 4, jÿ i

�� ��> 1,

Ji;j �
RT
0

dtn

Rtn
0

dtnÿ1 . . .
Rt2
0

dt1��ti�1 ÿ ti ÿ �1 ���ti ÿ tiÿ1 ÿ �2 �

���tj�1 ÿ tj ÿ �1 ���tj ÿ tjÿ1 ÿ �2 �;
where we have de®ned � 0 � max��1; �2� and so replaced

��t ÿ �1 ���t ÿ �2 � by ��t ÿ � 0�. As before, we set � � �1 � �2.

Under the summation over i and j in (18), case 1 occurs n times, cases

2 and 3 each occur nÿ 1 times, and case 4 occurs n2 ÿ 3n� 2 times.

The Laplace transform is again taken, but each of the four cases are

dealt with separately. The Laplace convolution theorem is used to

perform the multiple integrals and, in each of the four cases, the result

is independent of both i and j. The summation over i and j is therefore

easily carried out by multiplying each of the four results by the

number of times that each term occurs. This gives

L�m2� �P1
n�1

��n=Tn� exp�ÿ�� sÿ�n�1� n exp�ÿs���
� 2�nÿ 1� exp�ÿs�� � � 0 �� � �n2 ÿ 3n� 2� exp�ÿ2s��	: �19�

The inverse Laplace transform of (19) gives

m2 �P1
n�1

��n=Tn� exp�ÿ�� �n!�ÿ1 n�T ÿ ��n�

� 2�nÿ 1��T ÿ � ÿ � 0 �n � �n2 ÿ 3n� 2��T ÿ 2��n�: �20�
The summation of each term in (20) is then carried out to yield

m2 � ��1ÿ �=T� exp�ÿ��=T�
� 2 ��1ÿ �� � � 0 �=T � ÿ 1

� 	
exp�ÿ��� � � 0 �=T �

� �2�1ÿ 2�=T�2 ÿ 2��1ÿ 2�=T� � 2
� �

exp�ÿ2��=T�: �21�
We then substitute m2, which is given in (21), and m, which is given in

(14), into (16) to get s�m�, the standard deviation of m:

s�m�2 � �mÿm�2. We can take advantage of the fact that �1 � T,

�2 � T and �� 1 to remove higher-order terms and obtain the ®nal

expression for s�m�,
s�m�2 � � exp�ÿ��=T�

� 1� 2 exp�ÿ�� 0=T� ÿ 2 exp�ÿ��=T� �1� ��=T�� �: �22�

APPENDIX C
If for a given measurement we obtain mk counts, we can use (14) to

estimate the incident ¯ux. Let �k be the estimated number of photons

hitting the detector in time T, which we have calculated from mk. It

follows that mk and �k are related by

mk � �k exp�ÿ�k�=T�: �23�
We can also use (22) to estimate the standard deviation of mk,

s�mk�2 � mk�1� 2 exp�ÿ�k�
0=T� ÿ 2 exp�ÿ�k�=T� �1� �k�=T��:

�24�
The standard deviation, s��k�, of �k is related to s�mk� by

s��k� � s�mk� d�k=dmk: �25�
The differential is calculated from (23) to yield

s��k� � �km
ÿ1=2
k 1� 2 exp�ÿ�k�

0=T��
ÿ2 exp�ÿ�k�=T��1� �k�=T��1=2�1ÿ �k�=T�ÿ1: �26�

This result is the error on the estimated number of photons entering

the detector in a time T.
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